ОПТИЧЕСКОЕ ОТОЖДЕСТВЛЕНИЕ НОВЫХ КАНДИДАТОВ В КВАЗАРЫ НА 3 < z < 5.5 ИЗ РЕНТГЕНОВСКОГО ОБЗОРА ОБСЕРВАТОРИИ ХММ-НЬЮТОН

© 2019 г. Г. А. Хорунжев^{1*}, Р. А. Буренин¹, С. Ю. Сазонов¹, И. А. Зазнобин¹, М. В. Еселевич², В. Л. Афанасьев³, С. Н. Додонов³

¹Институт космических исследований РАН, Москва, Россия ²Институт солнечно-земной физики СО РАН, Иркутск, Россия ³Специальная астрофизическая обсерватория РАН, Нижний Архыз, Россия Поступила в редакцию 29.11.2018 г.: после доработки 20.03.2019 г.: принята к публикации 01.04.2019 г.

Представлены результаты оптической спектроскопии 39 кандидатов в квазары на фотометрических красных смещениях $z_{\phi or.} \gtrsim 3$ из каталога Хорунжева и др. (2016) (К16). Это каталог кандидатов в квазары и известных квазаров первого типа, отобранных среди рентгеновских источников каталога *ЗХММ-DR4* "случайного" обзора обсерватории ХММ-Ньютон. Спектроскопия новых кандидатов проводилась на 1.6-метровом телескопе АЗТ-33ИК Саянской солнечной обсерватории и 6-метровом телескопе БТА Специальной астрофизической обсерватории. Преимущественно выбирались яркие по рентгеновскому потоку кандидаты в квазары, которые могли быть использованы для построения рентгеновской функции светимости на светимостях $L_{X,2-10} > 10^{45}$ эрг/с. Чистота кандидатов из *К16* с большим рентгеновским потоком оказалась ниже, чем чистота квазислучайной выборки, исследованной нами ранее. В работе получены оценки эффективности наблюдений кандидатов в квазары в зависимости от их фотометрического красного смещения.

Ключевые слова: активные ядра галактик, рентгеновские обзоры, фотометрические красные смещения, спектроскопия, XMM-Newton.

DOI: 10.1134/S0320010819070040

1. ВВЕДЕНИЕ

Поиск квазаров на $z \gtrsim 3$ является одним из важнейших элементов исследования истории роста сверхмассивных черных дыр и эволюции массивных галактик во Вселенной. Для построения функции рентгеновской светимости квазаров на $z \gtrsim 3$ требуется набрать большую и хорошо определенную рентгеновскую выборку таких объектов на потоках $\leq 10^{-14}$ эрг/с/см² (0.5–2 кэВ).

Количества источников в глубоких рентгеновских обзорах спутников XMM-Ньютон и Чандра (характерные потоки $\leq 10^{-15}$ эрг/с/см² в диапазоне энергий 0.5–2 кэВ и площади порядка одного квадратного градуса) оказывается недостаточно, чтобы детально проследить эволюцию активных ядер галактик (Цивано и др., 2012; Вито и др., 2014). За счет добавления данных из менее глубоких рентгеновских обзоров XBootes, XMM-XXL (характерные потоки $\sim 10^{-14}$ эрг/с/см² в 0.5– 2 кэВ) площадь покрытия неба вырастает в ~10 раз (Уида, 2014; Аирд и др., 2015; Георгакакис и др., 2015; Калфоунцоу и др., 2014). Однако объема этих выборок оказывается недостаточно для исследования свойств популяции ярких (светимости > 5 × $\times 10^{44}$ эрг/с) и далеких (z > 3.5) квазаров.

Накопленные за 15 лет данные космического рентгеновского телескопа *XMM*-Ньютон представляют собой "случайный" рентгеновский обзор неба (Ватсон и др., 2009) общей пощадью около 800 кв. град с чувствительностью $\approx 5 \times \times 10^{-15}$ эрг с⁻¹ см⁻² (версия *3XMM*-*DR4*¹, Ватсон и др., 2009). По данным этого обзора можно получить выборку квазаров на z > 3, отобранных по их излучению в рентгеновском диапазоне, в разы превышающую существующие выборки Калфоунцоу и др. (2014) и Георгакакис и др. (2015).

^{*}Электронный адрес: horge@iki.rssi.ru

http://heasarc.gsfc.nasa.gov/W3Browse/ xmm-newton/xmmssc.html

465

В работе Хорунжев и др. (2016) предпринята попытка найти новые источники и получить более полную выборку рентгеновских квазаров на z > 3 в площадках "случайного" обзора обсерватории XMM-Ньютон 3XMM-DR4 на галактических широтах |b|>20°, с использованием фотометрических данных Слоановского обзора (SDSS, Алам и др., 2015), а также обзоров 2MASS (Катри и др., 2003) и WISE (Райт и др., 2010). Площадь пересечения обзора 3XMM-DR4 со Слоановским обзором составляет около 300 квадратных градусов. По данным широкополосной фотометрии вышеуказанных обзоров с помощью программного обеспечения ЕАΖУ (Браммер и др., 2008) были получены фотометрические оценки красных смещений $(z_{\text{фот.}})$. Был составлен каталог 903 кандидатов в далекие квазары, отобранных по фотометрическому красному смещению (К16). В каталог попали как уже известные квазары (со спектроскопическими красными смещениями $z_{\text{спек.}} > 3$), так и новые, не исследованные объекты (с фотометрическими оценками красного смещения $z_{\text{фот.}} > 2.75$).

Полнота *K16* в исследуемых площадках относительно спектроскопических каталогов квазаров (Слоановский обзор (Алам и др., 2015) и *The Half Million Quasars* (Флеш, 2015)) с $z_{\text{спек.}} > 3$ составляет около 80%. При этом нормированная медиана (Хоаглин и др., 1983; Сальвато и др., 2009) абсолютного отклонения величины ($\Delta z =$ $= |z_{\text{спек.}} - z_{\phi \text{от.}}|$) составляет $\sigma_{\Delta z/(1+z_{\text{спек.}})} = 0.07$, а доля больших выбросов $\eta = 9\%$, когда $\Delta z/(1 +$ $+ z_{\text{спек.}}) > 0.2$. В каталоге *K16* около 40% кандидатов не имеют спектроскопического красного смещения. Это новые кандидаты в квазары.

Чтобы понять точность оценки $z_{\text{фот.}}$ и оценить чистоту отбора кандидатов в квазары, в статье Хорунжев и др. (2017а) была проведена спектроскопическая проверка небольшой "случайной" выборки из 18 источников. На ее основе были сделаны выводы о качестве фотометрических оценок новых источников. Медианный рентгеновский поток *F*_{X.0.5-2} в диапазоне 0.5-2 кэВ "случайной" выборки совпадает с медианным рентгеновским потоком всего каталога $K16\,$ и равен $F_{\mathrm{X},0.5-2}\simeq5 imes$ $\times 10^{-15}$ эрг/с/см². Медианное значение видимой звездной величины i' = 19.9, что на 0.5 величины ярче среднего значения для каталога К16. Таким образом, "случайная" выборка является репрезентативной по рентгеновскому потоку для каталога *К16*, но не по оптическому (Хорунжев и др., 2016).

Данных "случайной" выборки не достаточно, чтобы сделать вывод о более ярких в рентгене источниках с меньшей пространственной плотностью. Качество $z_{\phi o \tau}$ яркой подвыборки может отличаться от средних значений для выборки в целом. Среди ярких в рентгене источников может быть больший процент катастрофических выбросов объектов, на которых алгоритм классификации и определения $z_{\phi o \tau}$ сработал неправильно.

Для подвыборки рентгеновски ярких кандидатов K16 на потоках $F_{\rm X,0.5-2} > 10^{-14}$ эрг/с/см² наблюдается больший процент рентгеновских источников с неоднозначным отождествлением в Слоановском обзоре (*SDSS*), чем в среднем по выборке K16: 33% против 24% соответственно.

Известно (см., например, Кравчук и др., 2013), что форма спектров квазаров большой светимости отличается от формы среднего спектра квазаров. Поэтому метод определения фотометрических красных смещений (Хорунжев и др., 2016), разработанный для среднего источника по выборке, может давать несколько отличный результат для источников яркой подвыборки.

Из-за перечисленных выше причин важно получить спектры ярких в рентгене кандидатов, чтобы понять качество их фотометрических красных смещений. Также нас интересуют объекты с $z_{\phi o \tau} \ge 4$: это наиболее редкие и интересные объекты, их число невелико. Для таких источников высока вероятность ошибочного определения $z_{\phi o \tau}$ по следующим причинам: эти источники более слабые в видимом диапазоне, меньшее число фильтров со значимым измерением потока задействовано для определения $z_{\phi o \tau}$. из-за их большого красного смещения, что делает их сходными по распределению энергии в фильтрах с более многочисленными звездами М-класса.

Нами была подготовлена программа наблюдений ярких в рентгене и далеких кандидатов из каталога *К16* на 1.6-метровом телескопе АЗТ-ЗЗИК и 6-метровом телескопе БТА. В рамках этой программы с сентября 2016 по март 2018 г. получены спектры 39 объектов. В этой статье представлен каталог источников (см. табл. 1), и приведены спектры подтвержденных квазаров.

2. СХЕМА НАБЛЮДЕНИЙ НА ТЕЛЕСКОПАХ АЗТ-33ИК И БТА

Целевые объекты выборки K16 — это квазары с широкими эмиссионными линиями. Медианная видимая звездная величина объектов $K16 i' \sim 20.5$. Время экспозиции выбиралось достаточным, чтобы проявились яркие линии эмиссии, по которым можно определить красное смещение квазара. Это позволяет при помощи небольшого телескопа получить спектры значительного числа объектов.

Name 3XMM	RA	DEC	OBJID SDSS	$F_{0.5-2}^{-14}$	i'_{PSF}	$z_{ m por}$	ODATE	INSTR	ETIME	$z_{ m cnek}$	QF	$L_{0.5-2}$	$z_{\Phi,D15}$	$z_{\Phi.R15}$	$z_{\Phi.R18}$
(1)	(2)	(3)	(4)	(2)	(9)	(7)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
1920.9+163209	4.8369	16.5360	1237678600233549966	0.85	19.04	2.96	16/09/28	A300	4×600	2.82	0	44.76		2.74	3.0
2624.7-012412	21.6027	-1.4037	1237678890666557538	0.41	18.78	3.03	16/09/30	A600G	6×600		-		2.29		1.62
2220.7-024825	35.5862	-2.8071	1237678888525168769	0.36	19.30	2.78	16/09/30	A600G	3×600	2.91	0	44.42	2.82	2.82	0.60
1620.1 + 000146	79.0840	0.0297	1237646647300588265	0.11	18.89	3.79	17/02/20	A300	3×600	3.91	0	44.22	3.70	4.32	1.22
1021.5+281026	122.5900	28.1739	1237657877541946176	0.69	20.07	3.31	17/02/23	A600G	5×600	3.40	0	44.86	3.35	3.37	3.08
4617.8+190342	131.5738	19.0620	1237667211581522773	0.98	20.61	3.42	18/02/16	S11940	3×900	3.47	0	45.03			
5812.2+280116	134.5510	28.0213	1237664668426830099	1.17	20.41	3.31	17/02/26	A600G	7×600	0.338	0	42.66	1.16		0.34
0131.1-015917	135.3795	-1.9881	1237655176544845924	0.60	20.49	3.97	17/04/26	S550R	2×900		-				0.78^{*}
0252.4 - 021633	135.7188	-2.2759	1237655176008106709	1.21	20.09	3.30	17/02/21	A600G	6×600		-		0.34		2.18
1807.4+160745	139.5308	16.1295	1237667735026794917	2.41	19.62	2.77	18/02/14	S11940	4×600	1.38	0	44.45	1.29	1.36	
3225.8+283428	143.1077	28.5744	1237664834859499550	2.63	19.66	2.78	18/02/14	S11940	2×600	2.72	0	45.21			2.80^{*}
2310.2+052649	170.7926	5.4471	1237655126077014173	1.67	19.20	2.79	17/03/18	A600G	4×500	2.89	0	45.07	2.88	2.85	2.82
0415.8+582501	181.0665	58.4178	1237661354316988507	0.27	18.43	3.77	17/02/26	A600G	4×600		1D				0.00^{*}
1901.5+295134	184.7576	29.8582	1237667254015754714	0.15	20.16	4.27	17/03/26	A600G	2×600		1D				1.11
2453.8+333247	186.2246	33.5472	1237665228379652133	0.60	20.24	4.43	17/02/23	A600R	2×600		1				
2736.3+124350	186.9012	12.7303	1237661950255366787	0.25	21.20	4.51	17/02/24	A600R	4×600		1D				0.70^{*}
3136.8+131544	187.9030	13.2617	1237661950792696231	0.99	19.82	3.39	18/03/15	A600G	5×600	3.48	0	45.04	3.44		1.24
3517.6+374447	188.8235	37.7465	1237664819289522570	0.84	20.69	3.28	18/03/14	A600G	9×600	2.87	1	44.77			3.08^{*}
5041.5 + 263641	192.6729	26.6116	1237667322186236073	0.65	18.83	3.06	17/03/17	A600G	1×600	3.43	0	44.84	3.32		1.92
0104.8+585318	195.2693	58.8878	1237655107306520735	0.52	20.37	4.20	17/04/02	S400	2×900		1D				2.31
1531.9 + 290806	198.8832	29.1358	1237665428628177151	1.09	21.04	4.64	17/04/02	S400	3×900	1.03	1D	43.79			0.92
2328.6+054125	200.8693	5.6899	1237655126626992244	0.88	18.72	3.08	17/04/24	A600G	3×600		1D				0.51

466

Таблица 1. Спектральная выборка кандидатов в квазары каталога *К16* (наблюдения с сентября 2016 г. по март 2018 г.)

ХОРУНЖЕВ и др.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 7 2019

нчание
1. Oko
Габлица

$z_{\Phi.R18}$	(16)	0.72	2.80	1.57	2.29	0.64	1.41						2.23	2.29	0.48		0.36		лическом SS (AR
$z_{\Phi.R15}$	(15)		2.83	1.23	3.39	3.46				0.39		3.46	1.50				4.24	2.79	фотомет те <i>i</i> ′SD
$z_{\Phi,D15}$	(14)			1.31	2.87	3.43				4.20		3.45	1.71		4.31		4.19		номер в (в фильт
$L_{0.5-2}$	(13)	44.64	44.91	44.13	45.04		44.09			45.09		45.08	44.73		45.16		44.62	45.26	альный
QF	(12)	1	1	1	0	1	1	1D	1D	1	1D	1	1D	1D	1	1D	1	0	– уник тизе т
$z_{ m cnek}$	(11)	4.91	3.01	1.42	3.04		1.27			4.34		3.40	1.56		4.37		4.40	2.75	DSS –
ETIME	(10)	4×900	2×600	5×900	3×600	5×600	2×600	4×600	3×600	2×900	5×600	3×600	7×600	3×600	2×600	2×600	1×600	4×600	OBJID SI — видима
INSTR	(6)	S550R	A600G	S11940	A600G	A300	A600G	A600R	S400	S400	A600R	A600G	A600G	S550R	A600G	A600G	A600R	A600G	¢лонение, 10− ¹⁴ <i>i</i> ′
ODATE	(8)	17/03/24	17/03/19	18/02/16	17/04/24	17/02/21	17/04/24	17/02/25	17/08/20	17/04/25	17/02/24	18/03/14	17/04/28	17/04/26	17/03/26	17/09/23	17/09/21	16/09/30	, DEC — ch
$z_{ m dor}$	(7)	4.74	2.78	3.25	3.06	3.58	3.33	4.49	3.35	4.10	5.10	3.25	3.05	4.91	4.37	4.22	4.05	2.76	сдение. Ормиро
i'_{PSF}	(9)	21.38	18.66	20.55	18.75	19.73	17.96	19.42	19.99	20.98	20.27	20.37	19.51	20.76	20.46	18.33	19.03	17.70	восхожи
$F_{0.5-2}^{-14}$	(5)	0.17	1.05	1.07	1.38	0.97	1.29	1.98	2.00	0.66	1.27	1.14	3.38	0.77	0.75	2.05	0.21	2.90	- прямое 2—3
OBJID SDSS	(4)	1237667911673971856	1237668316456157450	1237651252576911759	1237648721252122996	1237668505433735747	1237654880210911582	1237662700789104862	1237662198827909777	1237668651464918353	1237665584861610387	1237668505439503219	1237662661611291432	1237668634284261505	1237651225708921950	1237656496708190928	1237666211420307962	1237678598077743288	M-DR4 (3XMMJ), RA –
DEC	(3)	24.1891	17.4793	64.4022	-0.0002	67.5401	2.7309	54.4585	6.1483	-2.1918	57.1021	57.1863	18.7208	-1.7031	58.8853	12.1310	-5.8075	2.7890	логе ЗХМ овский по
RA	(2)	202.5112	206.6908	207.6025	228.8933	230.0004	239.5590	242.8908	244.5629	245.3125	247.9371	248.0339	249.3549	256.5507	258.4049	322.3022	327.5618	330.9106	ИМЯ В КАТА. — рентрен
Name 3XMM	(1)	J133002.7+241118	J134645.8+172846	J135024.6+642407	J151534.3-000000	J151959.7+673223	J155814.1 + 024351	J161133.3+542732	J161815.1 + 060856	J162114.9-021130	J163144.8+570606	J163207.9+571108	J163725.1+184314	J170612.4-014208	J171337.2+585306	J212912.2+120751	J215014.8-054826	J220338.5+024720	Примечание. Name — каталого SDSS F ⁻¹⁴

ОПТИЧЕСКОЕ ОТОЖДЕСТВЛЕНИЕ НОВЫХ КАНДИДАТОВ

467

PSF), $z_{
m ovc}$ — фотометрическое красное смещение в каталоге K/6, ODATE — дата наблюдений гг/мм/дд, INSTR — конфигурация инструмента (A — спектрограф ADAM на

телескопе АЗТ-33ИК с решетками: 300 — VPHG300, 600G — VPHG600G, 600R — VPHG600R; S — спектрограф SCORPIO-I на телескопе БТА с решетками: 550R

VPHG550R, 400— VPHG400; SII— спектрограф SCORPIO-II на телескопе БТА с решеткой 940— VPHG940@600), ЕТІМЕ — время экспозиции в секундах, 2спек спектроскопическое красное смещение, QF — флаг качества для z_{спек}. (0 — надежный, 1 — сомнительный, D — рядом находится другой оптический источник), L_{0.5–2} — десятичный логарифм ренттеновской светимости в диапазоне 0.5–2 кэВ, z_{ф.D15} — фотометрическое красное смещение (PEAKZ) каталога (Дипомпео и др., 2015), z_{ф.R15} фотометрическое красное смещение (ZPHOTBEST) каталога (Ричардс и др., 2015), $z_{\phi,R18}$ — фотометрическое красное смещение (PHOT_Z) каталога (Руиз и др., 2018),

(знак "*" означает, что объект по цветовом критерию (Руиз и др., 2018) классифицируется как звезда).

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 7 2019

Для надежного определения красного смещения и типа источников без ярких линий требуются спектры с более высоким отношением сигнал—шум в континууме. Для этого нужно проводить повторные наблюдения с более длительной экспозицией или на телескопах большего размера.

Наблюдения кандидатов в квазары проводились в темное время (фаза Луны меньше 0.3) и при средних величинах дрожания атмосферы меньше 2 угл. сек.

Основная часть спектров получена на 1.6метровом телескопе АЗТ-ЗЗИК (Камус и др., 2002), оборудованным спектрографом низкого и среднего разрешения АДАМ (Афанасьев и др., 2016; Буренин и др., 2016) и расположенным в Саянской солнечной обсерватории Института солнечно-земной физики Сибирского отделения Российской академии наук (ССО ИСЗФ СО РАН). На этом телескопе в основном снимались объекты ярче *i*' < 20 величины.

Более слабые источники и источники с неоднозначным оптическим отождествлением снимались на 6-метровом телескопе БТА, расположенном в Специальной астрофизической обсерватории Российской академии наук (САО РАН). Географическая широта САО РАН на 10° южнее широты ССО, что позволяет увеличить время наблюдения слабых источников на низких склонениях (DEC<0).

В каталоге *K16* есть случаи, когда рентгеновский источник имеет неоднозначное отождествление с источником *SDSS*: рядом с кандидатом в далекие квазары *K16* находится другой оптический источник, который может оказаться настоящим оптическим компаньоном рентгеновского источника. В таких ситуациях поворотные системы спектрографов, установленных на БТА, позволяют установить щель для максимального разнесения изображений спектров соседних источников.

2.1. Наблюдения на АЗТ-ЗЗИК

Телескоп АЗТ-ЗЗИК имеет диаметр главного зеркала 1.6 метра. Спектрограф АДАМ изготовлен в Специальной астрофизической обсерватории (САО) и в 2015 г. установлен на АЗТ-ЗЗИК. Основные конструктивные элементы спектрографа: ПЗС-матрица Andor Newton 920 с эффективностью около 90% в диапазоне от 4000 до 8500 Å и набор диспергирующих элементов (объемноголографических решеток). Квантовая эффективность всей системы (зеркала телескопа, спектрограф, решетки и ПЗС-матрица) достигает 50% (Буренин и др., 2016). Для наблюдений использовалась щель шириной 2 угловых секунды. Объекты на $z_{\phi or.} < 3.5$ снимались решеткой VPHG600G (диапазон 3700–7340 Å, разрешение 8.8 Å); объекты на $3.5 < z_{\phi or.} < 4.5$ — решеткой VPHG300 (диапазон 3900–10500 Å, разрешение 13.8 Å); объекты на $z_{\phi or.} > 4.5$ — решеткой VPHG600R (диапазон 6520–10100 Å, разрешение 7.3 Å). Указанные выше разрешения получены для щели шириной 2". Подбиралась такая решетка, чтобы предполагаемое положение линии Ly α оказывалось вблизи пика ее диффракционной эффективности.

2.2. Наблюдения на БТА

Спектроскопия на 6-м телескопе БТА проводилась с помощью спектрографов SCORPIO-I (Афанасьев и Моисеев, 2005) и SCORPIO-II (Афанасьев, Моисеев, 2011; Афанасьев, Амирханян, 2012) в режиме длинной щели. Наблюдения спектрографом SCORPIO-I велись со щелью 1" и решетками VPHG550R (диапазон 5900— 10100 Å, разрешение 10 Å), VPHG400 (диапазон 3500—9500 Å, разрешение 15 Å). При наблюдениях спектрографом SCORPIO-II использовались щель 2" и решетка VPHG940@600 (диапазон 3500—8500 Å, разрешение 12 Å).

3. РЕЗУЛЬТАТЫ

Измеренные красные смещения источников приведены в табл. 1. Спектры квазаров показаны на рис. 1. Обработка полученных спектров проводилась с помощью стандартного математического обеспечения IRAF². Спектральный поток поправлен за щель. Форма спектров исправлена с использованием наблюдений спектрофотометрических стандартов из списка (Массей и др., 1988).

Спектроскопическая выборка 39 представленных в статье объектов имеет медианный рентгеновский поток $\simeq 9.7 \times 10^{-15}$ эрг/с/см² в 0.5–2 кэВ. Это значение выше медианного рентгеновского потока источников каталога *K16*, так как специально исследовалась выборка квазаров большой светимости. Медианное значение видимой звездной величины *i*' = 19.8.

² http://iraf.noao.edu

Рис. 1. Спектры подтвержденных квазаров, полученные на телескопах АЗТ-ЗЗИК и БТА. Соседние спектральные каналы сгруппированы по два вдоль оси длин волн.

Красное смещение квазаров определено по положению пиков широких линий в спектре. Шесть источников, спектры которых приведены в этой статье, имеют светимости $L_{\rm X,2-10} > 10^{45}$ эрг/с и попали в выборку для построения рентгеновской функции светимости (Хорунжев и др., 2018): *ЗХММ J084617.8+190342*,

3XMM J123136.8+1131544, 3XMM J151534.3--000000, 3XMM J162114.9-021130, 3XMM J163207.9+571108, 3XMM J171337.2+585306.

Точность определения красного смещения далеких объектов зависит от разрешения спектрографа как $(1 + z)\frac{\Delta\lambda}{\lambda}$ и приблизительно равна 0.005 для спектров низкого разрешения. Поэтому значения

Рис. 1. Продолжение.

спектроскопического красного смещения для объектов приведены с точностью до второго знака после запятой. Известно, что форма и положение широких линий тесно связаны с процессами, протекающими вблизи черной дыры. Форма широких линий квазаров может быть асимметрична, а положение пика смещено. Красное смещение квазаров большой светимости, определенное по широким линиям, может более чем на 0.005 отличаться от значения *z*_{спек.} родительской галактики, (см., например, Коатман и др., 2016).

С осторожностью нужно относиться к значениям красных смещений в спектрах, где видна только одна линия, например, $Ly\alpha$. Для таких спектров больший риск ошибочной классификации. Эти объекты отмечены в табл. 1 флагом "QF = 1".

В связи с выбранной тактикой наблюдений трудно определить тип объектов без ярких эмис-

Рис. 1. Продолжение.

сионных линий в спектре. У таких источников в табл. 1 поле $z_{\text{спек.}}$ оставлено пустым, а флаг "QF" равен единице. Скорее всего, источники без ярких линий эмиссии не являются классическими квазарами 1-го типа. Среди источников с флагом "QF = 1" могут оказаться блазары и квазары с широкими линиями поглощения.

Рентгеновские источники с неоднозначным отождествлением в *SDSS* помечены флагом "D"

в графе "QF" табл. 1. Это означает, что в области радиусом 2σ ошибки локализации рентгеновского источника каталога *ЗХММDR4* находится более одного оптического партнера *SDSS*, один из которых является кандидатом в далекие квазары (Хорунжев и др., 2016). Среди кандидатов с флагом "D" не удалось подтвердить ни одного квазара на $z_{\text{спек.}} > 3$. Для большинства объектов с флагом "D" не удалось определить тип — для них

требуется большее время экспозиции. В спектрах некоторых кандидатов $z_{\phi or.} > 4$ прослеживаются спады интенсивности в местах, где должны быть линии поглощения титана, присущие звездам М-класса.

Вероятно, полученные значения $z_{\phi or.} > 3$ для этих источников — это ошибки работы алгоритма определения фотометрического красного смещения каталога *K*16. Поэтому при построении рентгеновской функции светимости (Хорунжев и др., 2018) фотометрические кандидаты с флагом "D" не использовались.

Подавляющее большинство кандидатов с $z_{\text{фот.}} < 3.0$ действительно являются квазарами и имеют $z_{\text{спек.}} < 3$. Поэтому в работе (Хорунжев и др., 2018) для построения рентгеновской функции светимости использовались только кандидаты в квазары $z_{\text{фот.}} > 3$.

Несколько объектов с $z_{\phi ot} \approx 3$ оказались квазарами на $z_{cnek} \approx 1.5$: *ЗХММ Ј091807.4+160745*, *ЗХММ J135024.6+642407*, *ЗХММ J155814.1+ 024351*. Пока слишком мало получено спектров, чтобы говорить о причинах катастрофических выбросов этих объектов. Надо отметить, что фотометрическое красное смещение этих источников успешно предсказывается в каталогах квазаров (Бови и др., 2011) и (Руиз и др., 2018), алгоритмы которых настроены для поиска объектов в широком интервале красных смещений от 0 < z < 3.5.

3.1. Замечания по отдельным источникам

ЗХММ J085812.2+280116. Источник является галактикой с узкими эмиссионными линиями [OII](3729 Å), Н β (4861 Å) и дублетом линий [OIII] (4960 Å и 5008 Å) на красном смещении $z_{\text{спек.}} =$ = 0.338. Этот источник есть в каталоге точечных рентгеновских источников спутника Чандра Ванг и др. (2016).

ЗХММ J120415.8+582501. Источник не имеет эмиссионных линий. Объект имеет значимый поток в радиодиапазоне в каталоге радиоисточников FIRST (Офек и Фрайл, 2011). Объект может быть блазаром.

ЗХММ J123517.6+374447. В спектре данного источника ($z_{\text{спек.}} = 2.87$) наблюдаются широкие линии поглощения.

ЗХММ Ј130104.8+585318. Рядом с кандидатом в квазары (RA = 13 : 01 : 04.62, DEC = +58 : 53 : 16.09, $z_{\phi or.} = 4.20$) находится известный квазар (RA = 13 01 04.92, DEC = +58 53 18.42, $z_{cпек.} =$ = 2.87) (Алам и др., 2015; Пэрис, 2016). Вероятно, этот квазар на $z_{cпек.} = 2.87$ является настоящим оптическим партнером рентгеновского источника.

ЗХММ J133002.7+241118. Источник имеет $z_{\text{спек.}} = 4.91$. Сначала его спектр был получен на A3T-33ИК 2017/03/24, затем подтвержден наблюдениями на телескопе БТА. Хотя в спектре видна всего одна линия, можно уверенно говорить, что это Ly α , и кандидат с $z_{\phi \text{от.}}$ =4.74 действительно входит в группу самых далеких квазаров, отобранных в рентгене (см. Хорунжев и др., 2017а). В каталоге *K16* этот источник был впервые заявлен как кандидат в далекие квазары. В каталоге (Руиз и др., 2018) его фотометрическое красное смещение $z_{\phi \text{от.}} = 0.72$.

*ЗХММ J163144.*8+*570606*. В полученном спектре кандидата с $z_{\phi o \tau} = 5.10$ видны особенности, типичные для звезд М-класса. Рядом с кандидатом в квазары (RA = 16 : 31 : 44.89, DEC = +57 06 07.56, $z_{\phi o \tau} = 5.10$) находится источник (RA = 16 : 31 : 44.85, DEC = +57 : 06 : 05.62), который в каталогах считается кандидатом в квазары

(Флеш, 2017) и (Руиз и др., 2018) на $z_{\phi \text{от.}} = 2.30$ и $z_{\phi \text{от.}} = 1.03$ соответственно. Вероятно, именно этот источник с ультрафиолетовым избытком является настоящим оптическим партнером рентгеновского источника *ЗХММ J163144.8+570606*.

ЗХММ J170612.4-014208. Источник имеет $z_{\phi \text{от.}} = 4.91$. В его спектре видны особенности, типичные для звезд М-класса.

ЗХММ J212912.2+120751. В спектре кандидата (RA = 21 : 29 : 12.52, DEC = +12 : 07 : 51.57 $z_{\phi o \tau.} = 4.22$) видны особенности, типичные для звезд М-класса. Скорее всего, настоящим оптическим партнером рентгеновского источникая является соседний с ним оптический источник (RA = = 21 : 29 : 12.24, DEC = +12 : 07 : 51.92, $z_{спек.} =$ = 1.149), который является квазаром (Алам и др., 2015).

4. АНАЛИЗ ФОТОМЕТРИЧЕСКИХ ОЦЕНОК КАТАЛОГА *К16*

К настоящему моменту получены спектры 57 новых кандидатов в квазары из каталога K16. Это составляет $\approx 15\%$ относительно числа новых кандидатов. Теперь общее число проверенных объектов в 3 раза больше, чем в "случайной" выборке, использованной для определения чистоты кандидатов K16 (Хорунжев и др., 2017а). Можно точнее оценить: прирост новых кандидатов в квазары и объемы требуемой спектроскопической поддержки для оптически ярких квазаров на z > 3.

Погрешность оценок $z_{\phi or.}$ определяется с помощью медианы нормированного отклонения $\sigma_{\Delta z/(1+z_{cnek.})}$. Для 57 источников $\sigma_{\Delta z/(1+z_{cnek.})} =$ = 0.08. Количество катастрофических выбросов $\eta = 46\%$. Ситуацию портят 14 обектов с неоднозначным отождествлением оптического партнера рентгеновского источника. Если исключить их из рассмотрения, то число выбросов снизится до $\eta = 30\%$. Но и после исключения сомнительных объектов процент неправильно отождествленных источников среди ярких и далеких квазаров остается выше, чем в среднем по выборке спектроскопически подтвержденных квазаров ($\eta = 8\%$), см. также табл. 2.

4.1. Чистота каталога К16

Оценим чистоту проверенных кандидатов и общую чистоту каталога *K16* в широких интервалах по фотометрическому красному смещению: $2.75 \le z_{\phi o ext{o} ext{c}} < 4$, $4 \le z_{\phi o ext{o} ext{c}} < 5$, $5 \le z_{\phi o ext{o} ext{c}} < 5.5$. Под чистотой подразумевается отношение числа спектроскопически подтвержденных квазаров ($|z_{\phi o ext{o} ext{c}} - z_{c ext{c} ext{c} ext{c}}|/(1 + z_{c ext{c} ext{c} ext{c}}) < 0.2$) к числу всех объектов

Таблица 2. Сравнение полноты отбора и точности оценок *z*фот, для каталогов кандидатов в квазары

Подвыборка 538 объектов $K/6$ с $z_{спек} > 0$ N_{in} 488267488538 η , %34388 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.020.020.080.05Подвыборка 43 источников $z_{cnek} \ge 0$ N_{in} 28193643 η , %2156330 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.030.030.400.05Подвыборка 15 квезаров $2.75 < z_{cnex} < 3.5$ N_{in} 9111315 η , %00460 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{cnex} > 3$ Подвыборка 19 квазаров $z_{cnex} > 3$ Подвыборка 19 квазаров $z_{cnex} > 3$ η , %00880	Параметр	D15	R15	R18	K16
$N_{\rm in}$ 488267488538 $\eta,\%$ 34388 $\sigma_{\Delta z/(1+z_{\rm cnex})}$ 0.020.020.080.05Подвыборка 43 источников $z_{\rm cnex} \ge 0$ $N_{\rm in}$ 28193643 $\eta,\%$ 2156330 $\sigma_{\Delta z/(1+z_{\rm cnex})}$ 0.030.030.400.05Подвыборка 15 квазаров $2.75 < z_{\rm cnex} < 3.5$ $N_{\rm in}$ 9111315 $\eta,\%$ 00460 $\sigma_{\Delta z/(1+z_{\rm cnex})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{\rm cnex} > 3$ Подвыборка 19 квазаров $z_{\rm cnex} > 3$ $N_{\rm in}$ 1481719 $\eta,\%$ 00880	Подвыбо	орка 538 о	бъектов К	16 с z _{спек} 2	> 0
η , %34388 $\sigma_{\Delta z/(1+z_{cnek})}$ 0.020.020.080.05Подвыборка 43 источников $z_{cnek} \ge 0$ N_{in} 28193643 η , %2156330 $\sigma_{\Delta z/(1+z_{cnek})}$ 0.030.030.400.05Подвыборка 15 квазаров $2.75 < z_{cnek} < 3.5$ N_{in} 9111315 η , %00460 $\sigma_{\Delta z/(1+z_{cnek})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{cnek} > 3$ Подвыборка 19 квазаров $z_{cnek} > 3$ Подвыборка 19 квазаров $z_{cnek} > 3$ η , %00880	$N_{ m in}$	488	267	488	538
$\sigma_{\Delta z/(1+z_{cnex})}$ 0.020.020.080.05Подвыборка 43 источников $z_{cnek} \ge 0$ N_{in} 28193643 $\eta, \%$ 2156330 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.030.030.400.05Подвыборка 15 квазаров $2.75 < z_{cnek} < 3.5$ N_{in} 9111315 $\eta, \%$ 00460 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{cnek} > 3$ Подвыборка 19 квазаров $z_{cnek} > 3$ Ліп1481719 $\eta, \%$ 008800	$\eta,\%$	3	4	38	8
Подвыборка 43 источников $z_{спек} \ge 0$ N_{in} 28193643 $\eta, \%$ 2156330 $\sigma_{\Delta z/(1+z_{cnek})}$ 0.030.030.400.05Подвыборка 15 квазаров $2.75 < z_{cnek} < 3.5$ N_{in} 9111315 $\eta, \%$ 00460 $\sigma_{\Delta z/(1+z_{cnek})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{cnek} > 3$ Подвыборка 19 квазаров $z_{cnek} > 3$ Подвыборка 19 квазаров $z_{cnek} > 3$ Подвыборка 19 квазаров $z_{cnek} > 3$ О081719 $\eta, \%$ 00880	$\sigma_{\Delta z/(1+z_{\mathrm{cnek}})}$	0.02	0.02	0.08	0.05
$N_{\rm in}$ 28193643 $\eta, \%$ 2156330 $\sigma_{\Delta z/(1+z_{\rm cnex})}$ 0.030.030.400.05Подвыборка 15 квазаров 2.75 < $z_{\rm cnex} < 3.5$ Nin9111315 $\eta, \%$ 00460 $\sigma_{\Delta z/(1+z_{\rm cnex})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{\rm cnex} > 3$ Nin $\eta, \%$ 00880	Подви	ыборка 43	источникс	ов $z_{\mathrm{спек}} \geqslant 0$)
$\eta, \%$ 21 5 63 30 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.03 0.03 0.40 0.05 Подвыборка 15 квазаров $2.75 < z_{cnek} < 3.5$ N_{in} 9 11 13 15 $\eta, \%$ 0 0 46 0 $\sigma_{\Delta z/(1+z_{cnex})}$ 0.01 0.02 0.16 0.03 Подвыборка 19 квазаров $z_{cnex} > 3$ N_{in} 14 8 17 19 $\eta, \%$ 0 0 88 0	$N_{ m in}$	28	19	36	43
$\sigma_{\Delta z/(1+z_{cnex})}$ 0.030.030.400.05Подвыборка 15 квазаров 2.75 < z_{cnek} < 3.5	$\eta,\%$	21	5	63	30
Подвыборка 15 квазаров 2.75 < $z_{\text{спек}}$ < 3.5 N_{in} 9 11 13 15 $\eta, \%$ 0 0 46 0 $\sigma_{\Delta z/(1+z_{\text{спек}})}$ 0.01 0.02 0.16 0.03 Подвыборка 19 квазаров $z_{\text{спек}} > 3$ N_{in} 14 8 17 19 $\eta, \%$ 0 0 88 0	$\sigma_{\Delta z/(1+z_{ m cnek})}$	0.03	0.03	0.40	0.05
$N_{\rm in}$ 9111315 $\eta, \%$ 00460 $\sigma_{\Delta z/(1+z_{\rm cnek})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{\rm cnek} > 3$ $N_{\rm in}$ 1481719 $\eta, \%$ 00880	Подвыбо	рка 15 ква	заров 2.75	$\tilde{o} < z_{ m cnek} < 1$	3.5
$\eta, \%$ 00460 $\sigma_{\Delta z/(1+z_{cnek})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{cnek} > 3$ N_{in} 1481719 $\eta, \%$ 00880	$N_{ m in}$	9	11	13	15
$\sigma_{\Delta z/(1+z_{cnek})}$ 0.010.020.160.03Подвыборка 19 квазаров $z_{cnek} > 3$ N_{in} 1481719 $\eta, \%$ 00880	$\eta,\%$	0	0	46	0
Подвыборка 19 квазаров $z_{\text{спек}} > 3$ N_{in} 14 8 17 19 $\eta, \%$ 0 0 88 0	$\sigma_{\Delta z/(1+z_{ m cnek})}$	0.01	0.02	0.16	0.03
$N_{\rm in}$ 14 8 17 19 $\eta, \%$ 0 0 88 0	Подя	зыборка 19	9 квазаров	$z_{\mathrm{спек}} > 3$	
$\eta,\%$ 0 0 88 0	$N_{ m in}$	14	8	17	19
	$\eta,\%$	0	0	88	0
$\sigma_{\Delta z/(1+z_{\rm cnek})}$ 0.02 0.02 0.50 0.02	$\sigma_{\Delta z/(1+z_{ m chek})}$	0.02	0.02	0.50	0.02

Примечание. N_{in} -– число объектов из сравниваемого каталога кандидатов в квазары, обнаруженных в соответствующей спектроскопической подвыборке, *п* — процент катастрофических выбросов среди обнаруженных кандидатов, когда отклонение z_{фот} от наблюдаемого z_{спек} удовлетворяет условию $|z_{\phi o \tau} - z_{c nek}|/(1 + z_{c nek}) > 0.2, \sigma_{\Delta z}/(1 + z_{c nek})$ — нормированная медиана абсолютного отклонения величины $\Delta z = |z_{ extsf{por}} - z_{ extsf{por}}|$ $-z_{\text{спек}}$, $\sigma_{\Delta z/(1+z_{\text{спек}})} = 1.48 \times Me(\Delta z/(1+z_{\text{спек}}))$. Подвыборка из 538 источников — это известные на момент публикации каталога К16 (Хорунжев и др., 2016) спектроскопически подтвержденные квазары. Подвыборки из 43, 15 и 19 объектов состоят из кандидатов каталога К16, спектры которых получены на телескопах АЗТ-ЗЗИК и БТА. Взятые для сравнения каталоги кандидатов в квазары с фотометрическими красными смещениями z_{фот}: D15 (Дипомпео и др., 2015), R15 (Ричардс и др., 2015), R18 (Руиз и др., 2018), К16 (Хорунжев и др., 2016).

со снятыми спектрами. Условие $|z_{\phi \text{от.}} - z_{\text{спек.}}|/(1 + z_{\text{спек.}}) < 0.2$ введено, чтобы учесть разброс значений $z_{\phi \text{от.}}$ относительно $z_{\text{спек.}}$. Величина 0.2 примерно соответствует 3 стандартным отклонениям $z_{\phi \text{от.}}$ относительно $z_{\text{спек.}}$ для всех известных и спектроскопически подтвержденных квазаров из полного каталога *K16* (см. Хорунжев и др., 2016, 2017а). Рассчитанная таким образом чистота спектроскопической выборки из 57 объектов показана на рис. 2 (кружками).

Для сравнения на рис. 2 стрелками показан нижний предел чистоты всего каталога K16 (без учета наблюдений на A3T-33ИК). Этот предел был выведен как отношение числа настоящих квазаров с известным спектроскопическим красным смещением и $|z_{\phi o T.} - z_{cnek.}|/(1 + z_{cnek.}) < 0.2$ к полному числу объектов каталога. Напомним, что источники-кандидаты, у которых отсутствует спектроскопическое красное смещение, составляли около 40% объектов K16. На рис. 2 ромбами показано, как изменилась оценка нижнего предела чистоты всего каталога K16 с учетом 57 спектроскопически проверенных кандидатов.

В интервале красных смещений 2.75 < $z_{\phi \text{от.}}$ < 4 оценки чистоты немного снизились относительно оценок по "случайной" выборке (Хорунжев и др., 2017а). В диапазоне $4 \le z_{\phi \text{от.}} < 5$ теперь проверено гораздо больше источников по сравнению со "случайной" выборкой. Видно, что общая чистота каталога *К16* выросла за счет подтвержденных нами кандидатов. В диапазоне $4 \le z_{\phi \text{от.}} < 5$ портят статистику кандидаты с неоднозначным отождествлением (отмечены флагом "D" в табл. 1). Среди них оказываются звезды *М*-класса, случайно попавшие в область ошибок рентгеновского источника, рядом с настоящим оптическим партнером, который чаще всего оказывается квазаром на $z_{\text{спек.}} < 3$.

С увеличением $z_{\phi or.}$ кандидатов возрастает доля источников с неоднозначной идентификацией. В каталоге *K16* в интервалах $3 < z_{\phi or.} < 4$ и $4 < z_{\phi or.} < 5$ примерно 21% и 47% фотометрических кандидатов имеют флаг "D". А среди известных квазаров каталога *K16* примерно 4% и 8% объектов имеют флаг "D" в интервалах $3 < z_{cnek.} < 4$ и $4 < z_{cnek.} < 5$. Соответственно, если потребуется достичь большей полноты на z > 4, придется проверять и кандидаты с неоднозначным отождествлением, что увеличит число спектроскопических мишеней почти в 2 раза.

4.2. Сравнение с фотометрическими оценками других авторов

Существуют другие каталоги кандидатов в квазары, с которыми можно провести сравнение полученных результатов. В табл. 1 приведены оценки

Рис. 2. Кружками с пуассоновскими ошибками показана чистота 57 кандидатов в квазары *K16*, спектры которых получены на АЗТ-33ИК и БТА. Стрелками показана оценка нижнего предела чистоты каталога *K16* относительно объектов с известными (из литературы или Слоановского обзора) спектроскопическими красными смещениями. Ромбами с пуассоновскими ошибками показана общая чистота каталога *K16* с учетом спектров, полученных на АЗТ-33ИК и БТА.

фотометрического красного смещения источников XMM-Ньютон из статей Дипомпео и др. (2015), Ричардс и др. (2015), Руиз и др. (2018). Оценки красных смещений квазаров из известных работ (Дипомпео и др., 2015) и (Ричардс и др., 2015) уже использовались ранее для сравнения (Хорунжев и др., 2017а). Наиболее интересны для сравнения результаты Руиз и др. (2018).

Авторами Руиз и др. (2018) проделана работа по определению фотометрических красных смещений для шестой версии каталога рентгеновских источников случайного обзора ХММ-Ньютон, который является расширением каталога 3XMMDR4. Напомним, что каталог 3XMMDR4 являлся исходным для каталога кандидатов К16 (Хорунжев и др., 2016). Значительная часть рентгеновских источников выборки К16 имеет фотометрические оценки (Руиз и др., 2018). В работе Руиз и др. (2018) проведено сравнение фотометрических оценок красного смещения в диапазоне 0 < z < 3.5, полученных одним и тем же методом MLZ-TPZ, но с использованием фотометрии двух разных обзоров: SDSS (Алам и др., 2015) и Pan-STARRS (Флювеллинг, 2016). Фотометрические оценки Руиз и др. (2018) приведены для сравнения в табл. 1 в колонке " $z_{\phi,R18}$ ".

Из табл. 1 видно, что часть действительно далеких квазаров с $z_{спек.} \ge 3$ имеет заниженные оценки фотометрических красных смещений ($z_{\phi.R18}$) изза сужения рабочего диапазона красных смещений 0 < z < 3.5 в статье Руиз и др. (2018). Такие объекты будут неправильно классифицироваться и увеличивать на несколько процентов долю выбросов на меньших *z* в каталоге Руиз и др. (2018). Однако есть и обратные случаи, когда фотометрический кандидат *K16* оказывается квазаром на существенно меньшем *z*, правильно предсказанным в каталогах Дипомпео и др. (2015), Ричардс и др. (2015), Руиз и др. (2018).

Важно подчеркнуть, что квазары, приведенные в нашей статье, не были известны указанным авторам и не участвовали при тренировке и проверке их алгоритмов измерения фотометрических красных смещений. Поэтому выборка спектроскопически проверенных кандидатов *K16* может использоваться для независимой проверки методов определения фотометрического красного смещения.

Рис. 3. Вверху. Доля проверенных фотометрических кандидатов в интервалах по фотометрическому красному смещению. Числа над столб- цами — число проверенных кандидатов в соответствующем интервале $z_{\text{фот}}$. Внизу. Доля новых, подтвержденных наблюдениями квазаров по отношению к квазарам с известным $z_{\text{спек}}$. в каталоге K16 в соответствующих интервалах по спектроскопическому красному смещению. Числа над столбцами — количество подтвержденных квазаров в соответствующем интервале $z_{\text{спек}}$. Еще 10 источников имеют $0 < z_{\text{спек}} < 2.75$.

Для сравнения оценок фотометрических красных смещений между собой рассмотрим четыре спектральных подвыборки (см. табл. 2), из которых исключены источники с флагом "D" и мишени наведения XMM-Ньютон: 1) 538 объектов с известным $z_{\text{спек.}} > 0$ на момент публикации каталога K16; 2) 43 объекта с $z_{\text{спек.}} \ge 0$ из 57 источников, обсуждаемых в этой статье; 3) 15 из 57 объектов в интервале $2.75 < z_{\text{спек.}} < 3.5$, где пересекаются целевые диапазоны каталогов K16 и Руиз и др. (2018); 4) 19 из 57 объектов на $z_{\text{спек.}} > 3$. Посчитаем для этих подвыборок число предсказанных кандидатов (N_{in}) и процент выбросов (η , %, когда $|z_{\phi o \tau} - z_{cnek.}|/(1 + z_{cnek.}) > 0.2$) для $z_{\phi o \tau}$. в каталогах кандидатов в квазары: *PEAKZ*, D15 (Дипомпео и др., 2015); *ZPHOTBEST*, R15 (Ричардс и др., 2015); *PHOT_Z*, R18 (Руиз и др., 2018) и $z_{\phi o \tau}$. *К16*. Для объектов, где не удалось определить спектроскопическое красное смещение по полученному на телескопах АЗТ-ЗЗИК и БТА спектру (см. табл. 1), спектроскопическое красное масное смещение при расчете процента выбросов η полагалось

равным 0, z_{спек.} = 0. Эти источники используются в спектроскопической выборке из 43 объектов.

Если рассматривать точность перечисленных алгоритмов, то на выборке *SDSS* она соответствует заявленной в статьях. Это не удивительно, потому что спектроскопия *SDSS* использовалась для проверки и тренировки всех рассматриваемых алгоритмов. Каталоги D15 и R18 оказываются более полными по числу кандидатов в квазары. Алгоритм R15 "дает" меньше кандидатов, т.к. использует более яркие объекты и применяет более жесткие критерии отбора по сравнению с D15.

В работе Руиз и др. (2018) использовалась ограниченная выборка рентгеновских квазаров для тренировки в диапазоне 0 < z < 3.5. Большинство объектов *К16* лежат за пределами рабочей области алгоритма Руиз и др. (2018), поэтому процент выбросов в подвыборке R18 резко увеличивается и для квазаров на $z_{\text{спек.}} > 3$ становится катастрофическим.

Точность алгоритмов D15 и R15, наоборот, возрастает с ростом красного смещения. Каталог D15 на $z_{\text{спек.}} > 3$ обладает большей полнотой среди рассматриваемых каталогов кандидатов в квазары. В выборку фотометрических кандидатов D15 не попали только несколько самых далеких квазаров, обнаруженных нами. Метод отбора Хорунжев и др. (2016), ориентированный на далекие источники, находит новые, ранее непредсказанные квазары на $z_{\rm спек.} > 3$. При этом на $z_{\rm спек.} \sim 3$ число катастрофических выбросов оказывается в 1.5–2 раза выше, чем в каталогах (Ричардс и др., 2015; Дипомпео и др., 2015). С увеличением красного смещения кандидатов число выбросов снижается, и точность фотометрических красных смещений К16 B03растает (см. табл. 2), сравниваясь по качеству с каталогами D15 и R15.

4.3. Оценка эффективности наблюдений далеких квазаров

Получено достаточное количество спектров новых кандидатов, чтобы напрямую измерить наблюдательную эффективность в режиме однощелевого спектрографа для задач отождествления кандидатов *К*16 и понять, в каком диапазоне фотометрических смещений можно получить больший прирост подтвержденных кандидатов в квазары.

На рис. З показана доля фотометрических кандидатов со снятыми спектрами в интервалах по $z_{\phi or.}$. Ниже для сравнения приводится доля подтвержденных квазаров относительно квазаров с уже известным $z_{cnek.}$ в каталоге *K16* в аналогичных интервалах по $z_{cnek.}$. Отметим, что систематический разброс между $z_{\phi or.}$ и $z_{cnek.}$ приводит к "перетеканию" источников между соседними интервалами, и подвыборки источников в интервалах по $z_{\text{фот.}}$ и $z_{\text{спек.}}$ отличаются. Из сравнения следует очевидный вывод, что наибольший прирост новых источников при одинаковых затратах времени дает проверка рентгеновских квазаров с $z_{\text{фот.}} > 3.5$.

Внутри интервала $4 < z_{\phi or.} < 5$ получены спектры 15 источников, что составило 43% от фотометрических кандидатов в данном интервале. Это дало прирост в 15% относительно квазаров с ранее известным $z_{cnek.}$. Надо отметить, что из 15 объектов 7 имеют неоднозначную идентификацию (отмечены флагом "D"). Если их не рассматривать, то процент успешно подтвержденных кандидатов оказывается выше. Можно ожидать, что проверка всех кандидатов *K16* на $z_{\phi or.} \sim 4$ увеличит число квазаров в интервале $4 < z_{cnek.} < 5$ на $\sim 35\%$.

Проверка всех кандидатов на меньших красных смещениях требует больших наблюдательных затрат. Например, в интервале $3 < z_{\phi o \tau} < 3.5$ нужно проверить в 4 раза больше кандидатов по сравнению с $4 < z_{\phi o \tau} < 5$. При этом процент прироста новых квазаров $3 < z_{cnek.} < 3.5$ будет ниже — 20%.

5. ЗАКЛЮЧЕНИЕ

В работе показано, что чистота ярких по рентгеновскому потоку кандидатов *К16* в квазары ниже оценок по квазислучайной выборке *К16* (Хорунжев и др., 2017а). Это важно учитывать при подготовке программ по оптической поддержке рентгеновского обзора обсерватории Спектр-РГ (Мерлони, 2014; Павлинский и др., 2011).

Ошибки в измерении *z*_{фот.} рентгеновских источников с неоднозначным отождествлением в оптике приводят к "засорению" выборок ложными кандидатами в яркие и далекие квазары. Ложные кандидаты оказываются в хвостах распределения по рентгеновскому потоку и красному смещению, где мало настоящих кандидатов, тем самым усложняя их поиск.

Локализация рентгеновского источника в диапазоне 0.5–2 кэВ в обзоре всего неба обсерватории Спектр-РГ будет около ~7-15" (Мерлони, 2014). Она в два раза больше, чем локализация рентгеновских источников обсерватории ХММ-Ньютон. Это будет осложнять определение настоящих оптических партнеров для источников обсерватории Спектр-РГ. Следовательно, при поиске кандидатов в далекие квазары для источников Спектр-РГ процент ложных кандидатов будет выше по сравнению с рассматриваемыми нами данными 3XMMDR4. Для повышения чистоты источников Спектр-РГ потребуется спектроскопическая проверка таких кандидатов. Это повысит наблюдательную нагрузку на оптические телескопы, участвующие в поддержке Спектр-РГ.

Как видно из сравнения методов определения фотометрических красных смещений, пока не существует универсального метода их оценки. Алгоритмы классификации и определения красного смещения в широком диапазоне не обеспечивают полноты отбора рентгеновских квазаров выше 80%, особенно для объектов на z > 4. Данная оценка получена для каталогов К16 и (Дипомпео и др., 2015) относительно подвыборок известных рентгеновских квазаров из К16. Так, из статьи (Хорунжев и др., 2016) видно, что описанный там метод пропустил $\approx 24\%$ ранее известных рентгеновских квазаров на $z_{\text{спек.}} > 3$ из *К*16. В каталоге (Дипомпео и др., 2015) обнаруживается 91% (см. табл. 2) ранее известных квазаров из К16, но существенная доля (около 20%) использовалась авторами каталога для тренировки. Квазары на $z_{\text{спек.}} > 3$, обнаруженные на телескопах АЗТ-ЗЗИК и БТА, не участовали в тренировке метода (Дипомпео и др., 2015), т.к. об их существовании на тот момент не было известно. Из этой подвыборки 74% источников являются кандидатами в квазары каталога (Дипомпео и др., 2015).

Пока наилучшим решением для достижения большей полноты отбора является использование комбинации оценок $z_{\text{фот.}}$, полученных несколькими алгоритмами. Необходимо продолжать дальнейшее совершенствование методов оценки $z_{\rm dot.}$ (Мещеряков и др., 2018) и проводить специальные программы поиска и проверки далеких квазаров. Фотометрический каталог Pan-STARRS (Чамберс и др., 2016) содержит инфракрасный фильтр *ц*. Чувствительность Pan-STARRS в фильтрах z и iна несколько величин глубже, чем в SDSS. Мы планируем провести новый отбор далеких рентгеновских квазаров с использованием фотометрии Pan-STARRS. Это, вероятно, увеличит число рентгеновских квазаров. Обнаруженные квазары из К16 войдут в новый каталог. Они составят подвыборку наиболее ярких в видимом диапазоне рентгеновских источников на $z_{\text{спек.}} > 3$.

Мы собираемся продолжить спектроскопию кандидатов выборки K16 на телескопах АЗТи БТА. Отметим, что для проверки 33ИК оставшихся кандидатов каталога *K16* потребуется больше наблюдательного времени. Их видимые звездные величины в среднем слабее: медианная видимая звездная величина пока не подтвержденных кандидатов i' = 20.2, что меньше медианной величины уже проверенных кандидатов i' = 19.8.

Исследование осуществлялось при поддержке гранта РНФ 14-22-00271. Наблюдения на телескопах САО РАН выполняются при поддержке Министерства науки и высшего образования Российской Федерации (Минобрнауки России). Наблюдения на АЗТ-ЗЗИК проведены с использованием оборудования Центра коллективного пользования "Ангара" http://ckp-rf.ru/ckp/3056. Работа оборудования телескопа АЗТ-ЗЗИК осуществляется в рамках базового финансирования программы ФНИ II.16.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аирд и др. (J. Aird, A. Coil, A. Georgakakis, K. Nandra, G. Barro, and P. Perez-Gonzalez), MNRAS 451, 1892 (2015).
- 2. Аламидр. (S. Alam, F. Albareti, C. Prieto, F. Anders, S. Anderson, B. Andrews, et al.), Astrophys. J. Suppl. Ser. 219, 12 (2015).
- 3. Афанасьев В., Моисеев А., Письма в Астрон. журн. 31, 214 (2005). [V. Afanasiev, A. Moiseev, Astron. Letters **31**, 193 (2005).]
- 4. Афанасьев В., Моисеев А. (V. Afanasiev and A. Moiseev), Baltic Astronomy 20, 363 (2011).
- 5. Афанасьев В., Амирханян В., Астрофизический Бюллетень 67, 455 (2012).
- 6. Афанасьев В., Додонов С., Амирханян В., Моисеев А., Астрофизический Бюллетень **71**, 514 (2016).
- 7. Браммер и др. (G Brammer, P. van Dokkum, and P. Coppi), Astrophys. J. 686, 1503 (2008).
- 8. Бови и др. (J. Bovy, J. Hennawi, D. Hogg, A. Myers, J. Kirkpatrick, D. Schlegel, N. Ross, E. Sheldon, et al.), Astrophys. J. 729, 141 (2011).
- 9. Буренин Р.А., Амвросов А.Л., Еселевич М.В., Григорьев В.М., Арефьев В.А., Воробьев В.С., и др., Письма в Астрон. журн. 42, 333 (2016).
- 10. Ванг и др. (S. Wang, J. Liu, Y. Qiu, Y. Bai, H. Yang, J. Guo, and P. Zhang), Astrophys. J. Suppl. Ser. 224, 40 (2016).
- 11. Ватсон и др. (M. Watson, A. Shroder, D. Fyfe, C. Page, G. Lamer, S. Mateos, et al.), Astron. Astrophys. 493, 339 (2009).
- 12. Вито и др. (F. Vito, R. Gilli, C. Vignali, A. Comastri, M. Brusa, N. Cappelluti, and K. Iwasawa), MNRAS **445**, 3557 (2014).
- 13. Георгакакис и др. (A. Georgakakis, J. Aird, J. Buchner, M. Salvato, M. Menzel, W. Brandt, et al.), MNRAS 453, 1946 (2015).
- 14. Дипомпео и др. (M.A. DiPompeo, J. Bovy, A. Myers, and D. Lang), MNRAS 452, 312 (2015).
- 15. Калфоунцоу и др. (Е. Kalfountzou, F. Civano, M. Elvis, M. Trichas, P. Green), MNRAS 445, 1430 (2014).
- 16. Камус С.Ф., Тергоев В.И., Папушев П.Г., Дружинин С.А., Караваев Ю.С., Палачев Ю.М., Денисенко С.А., Липин Н.А., Оптический журнал 69, 84 (2002). [S.F. Kamus, S.A. Denisenko, Lipin, V.I. N.A. Tergoev, P.G. Papushev, S.A. Druzhinin, Yu.S. Karavaev, Yu.M. Palachev, J. Optic. Technology, **69**, 674 (2002).]

ОПТИЧЕСКОЕ ОТОЖДЕСТВЛЕНИЕ НОВЫХ КАНДИДАТОВ

- 17. Ratpin in Ap. (R. Cutti, M. Skrutskie, S. van Dyk, C. Beichman, J. Carpenter, T. Chester, et al.), The IRSA 2MASS All-Sky Point Source Catalog, NASA/IPAC Infrared Science Archive. 06, http://adsabs.harvard.edu/abs/2003tmc..book.....C (2003).
- 18. Коатман и др. (L. Coatman, P. Hewett, M. Banerji, and G. Richards), MNRAS **461**, 647 (2016).
- 19. Кравчук и др. (C. Krawczyk, G. Richards, S. Mehta, M. Vogeley, S. Gallagher, K. Leighly, et al.), Astron. Astrophys. **558**, 89 (2013).
- 20. Массей и др. (Р. Massey, K. Strobel, J. Barnes, and E. Anderson), Astrophys. J. **328**, 315 (1988).
- Мерлони и др. (A. Merloni, P. Predehl, W. Becker, H. Bohringer, T. Boller, H. Brunner, et al.), eROSITA Science Book (2014). http://arxiv.org/pdf/1209.3114v2.pdf
- Мещеряков А., Глазкова В., Герасимов С., Машечкин И., Письма в Астрон. журн. 44, 801 (2018).
 [A. Mescheryakov et al., Astron. Letters 44, 735 (2018).]
- 23. Офек и Фрайл (E. Ofek and D. Frail), Astrophys. J. 737, 45 (2011).
- 24. Павлинский и др. (M. Pavlinsky, V. Akimov, V. Levin, I. Lapshov, A. Tkachenko, N. Semena, et al.), Proceedings of the SPIE **8147**, 5 (2011).
- 25. Пэрис и др. (I. Paris, P. Petitjean, N. Ross, A. Myers, E. Aubourg, A. Streblyanska, et al.), http://arxiv.org/pdf/1608.06483v1.pdf.
- 26. Райт и др. (E. Wright, P. Eisenhardt, A. Mainzer, M. Ressler, R. Cutri, T. Jarrett, et al.), Astron. J. 140, 1868 (2010).
- 27. Ричардс и др. (G. Richards, A. Myers, C. Peters, C. Krawczyk, G. Chase, N. Ross, et al.), Astrophys. J. Suppl. Ser. **219**, 39 (2015).
- 28. Руиз (A. Ruiz, A. Corral, G. Mountrichas, and I. Georgantopoulos), Astron. Astrophys. **618**, 52 (2018).
- 29. Сальвато и др. (M. Salvato, G. Hasinger, O. Ilbert, G. Zamorani, M. Brusa, N. Scoville et al.), Astrophys. J. **690**, 1250 (2009).

- 30. Уида и др. (Y. Ueda, M. Akiyama, G. Hasinger, T. Miyaji, M. Watson), Astrophys. J. **786**, 104 (2014).
- 31. Флеш (E.W. Flesch), Publ. Astron. Soc. Australia **32**, 010 (2015); arXiv:1502.06303
- 32. Флеш (E.W. Flesch), Publ. Astron. Soc. Australia **32**, 010 (2015); (version 5.2, 5 August 2017).
- Флювеллинг и др. (H. Flewelling, E. Magnier, K. Chambers, et al.), ArXiv e-prints [arXiv:1612.05243]. (2016).
- 34. Хоаглин и др. (D.C. Hoaglin, F. Mosteller and J.W. Tukey), *Understanding Robust and Exploratory Data Analysis* (Wiley Series in Probability and Mathematical Statistics, New York, 1983).
- Хорунжев Г.А., Буренин Р.А., Мещеряков А.В., Сазонов С.Ю., Письма в Астрон. журн. 42, 313 (2016). [G.A. Khorunzhev et al., Astron. Letters 42, 277 (2016).]
- Хорунжев Г.А., Буренин Р.А., Сазонов С.Ю., Амвросов А.Л., Еселевич М.В., Письма в Астрон. журн. 43, 159 (2017а). [G.A. Khorunzhev et al., Astron. Letters 43, 135 (2017а).]
- 37. Хорунжев и др. (G. Khorunzhev, S. Sazonov, R. Burenin, and M. Eselevich), Front. Astron. Space Sci. — Milky Way and Galaxies, Quasars at all cosmic epochs, (2017b), doi: 10.3389/fspas.2017.00037.
- Хорунжев Г.А., Сазонов С.Ю., Буренин Р.А., Письма в Астрон. журн. 44, 546 (2018).
 [G. A. Khorunzhev et al., Astron. Letters 44, 500 (2018)].
- 39. Цивано и др. (F. Civano, M. Elvis, M. Brusa, A. Comastri, M. Salvato, G. Zamorani, et al.), Astrophys. J. Suppl. Ser. **201**, 30 (2012).
- 40. Чамберс и др. (K. Chambers, E. Magnier, N. Vetalfe, H. Flewelling, M. Huber, C. Waters, et al.), https://arxiv.org/abs/1612.05560.(2016).