ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДОВ ЦЕФЕИД: DX Gem

© 2019 г. Л. Н. Бердников^{1*}

¹Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия Поступила в редакцию 07.03.2019 г.; после доработки 01.04.2019 г.; принята к публикации 01.04.2019 г.

Для малоамплитудной цефеиды DX Gem построена диаграмма O-C, охватывающая временной интервал 120 лет. Диаграмма O-C имеет вид параболы, что позволило впервые определить квадратичные элементы изменения блеска и вычислить скорость эволюционного уменьшения периода $dP/dt = -0.808(\pm 0.108)$ с/год, что указывает на второе пересечение полосы нестабильности. Имеющиеся данные, обработанные методом Эддингтона и Плакидиса, показывают присутствие случайных флуктуаций периода $\varepsilon/P \approx 0.0072$, амплитуда которых на диаграмме O-C сравнима с амплитудой эволюционных изменений.

Ключевые слова: цефеиды, изменяемость периодов, эволюция звезд.

DOI: 10.1134/S0320010819070015

ВВЕДЕНИЕ

Обнаружение парабол на диаграммах *О*-*С* позволяет вычислить скорости наблюдаемых эволюционных изменений периодов цефеид. Сравнение их с теоретическими скоростями, посчитанными для разных пересечений полосы нестабильности, позволяет идентифицировать номер пересечения, что в перспективе даст возможность построить зависимость период-светимость отдельно для каждого пересечения, что, в свою очередь, приведет к более точному определению расстояний цефеид.

Наш опыт показал, что, когда интервал времени, охваченный O-C диаграммой, достигает столетия, более 90% изученных цефеид (во всем диапазоне встречающихся в Галактике периодов) показывают эволюционные изменения их периодов (Тэрнер и др., 2006). В этой связи при изучении изменяемости периодов цефеид следует охватить наблюдениями как можно бо́льший интервал времени.

В данной работе мы исследуем поведение пульсаций малоамплитудной цефеиды DX Gem, период изменения блеска которой составляет 3^d14 и которая являлась реальным кандидатом на первое пересечение полосы нестабильности (Тэрнер, 1998).

МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа диаграмм O-C, а самым точным методом определения остатков O-C является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992). Для подтверждения реальности обнаруженных изменений периода следует показать, что случайные флуктуации пульсационного периода, если они присутствуют, не являются доминирующими на диаграмме O-C; для поиска этих случайных флуктуаций мы используем метод, описанный Эддингтоном и Плакидисом (1929).

Переменность DX Gem открыла Фаддеева (Мешкова, 1940). Теплицкая (1950) отнесла звезду к цефеидам и опубликовала элементы изменения блеска с периодом $3^{d}13587$. Изучением изменяемости периода занимались Барткус и Пучинскас (1961), Сабадош (1977, 1991), Ерлексова и Иркаев (1982), Бердников и Пастухова (1994) и Тэрнер (1998), причем последние три работы использовали данные в интервале JD 2425000– 2445000 (рис. 1) и получили параболу на диаграмме O-C с быстрым возрастанием периода, что позволило говорить о первом пересечении полосы нестабильности (Тэрнер, 1998). Однако незначительное расширение интервала JD (Бердников и

^{*}Электронный адрес: berdnik@sai.msu.ru

БЕРДНИКОВ

Рис. 1. Диаграмма *О*–*С* для цефеиды DX Gem относительно линейных (а) и квадратичных (б) элементов (1). Линия на рис. 1а — парабола, соответствующая элементам (1).

др., 1997) показало, что диаграмма O-C имеет сложную форму и для окончательных выводов требуется привлечение фотографических наблюдений, полученных на старых фотопластинках.

Для нового изучения периода DX Gem мы сделали глазомерные оценки блеска на фотографических пластинках фототеки Гарвардского университета (США). Кроме того, мы использовали новые опубликованные фотоэлектрические наблюдения и фотометрические данные, полученные в рамках проектов Hipparcos (EKA, 1997), NSVS (Возниак и др., 2004), ASAS-3 (Поймански, 2002) и ASAS-SN (Яясингхе и др., 2018).

Сведения о количестве использованных наблюдений приведены в табл. 1. Самая старая пластинка с изображением DX Gem была получена в 1898 г., а последние ПЗС-наблюдения были сделаны в 2018 г. Следовательно, наши данные охватывают временной интервал 120 лет.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых DX Gem приведены в табл. 2. В первом и втором столбцах даны моменты максимального блеска и ошибки их определения, в третьем — тип используемых наблюдений, в четвертом и пятом — номер эпохи E и значение остатка O-C, а в шестом и седьмом — число наблюдений N и источник данных. Данные табл. 2 изображены на диаграмме O-C (рис. 1) пустыми и заполненными квадратиками для гарвардских и остальных фотографических наблюдений соответственно и точками для всех остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O-C.

На рис. 1а показано, что диаграмма O-C имеет вид параболы. По всем моментам максимального блеска из табл. 2 получены квадратичные элементы изменения блеска цефеиды DX Gem:

Источник данных	Число наблюдений	Тип наблюдений	Интервал JD
Гарвард (данная работа)	857	PG	2414590-2447538
Бердников и др. (1997)	170	PG	2414343-2449390
Литература	137	В	2434812-2450347
Литература	159	V	2434812-2450347
Hipparcos	63	V	2447964-2449061
NSVS	149	V	2451274-2451633
ASAS-3	335	V	2452621-2455165
ASAS-SN	604	V	2455950-2458452

Таблица 1. Наблюдательный материал цефеиды DX Gem

$$Max HJD = 2436628.2772 (\pm 0.1236) + (1) + 3^{d}137095364 (\pm 0.0000193) E - - 0.401834 10^{-7} (\pm 0.535 10^{-8}) E^{2},$$

линейная часть которых использована для вычислений остатков O-C в пятом столбце табл. 2. Элементы (1) использовались для проведения параболы на рис. 1а, а на рис. 16 показаны отклонения от этой параболы.

По фотоэлектрическим наблюдениям было найдено, что максимумы в фильтре B наступают раньше, чем в фильтре V, на 0^d0246. Эта поправка учитывалась при построении рис. 1 и определении элементов (1), которые таким образом относятся к системе V.

На рис. 1 кроме эволюционных изменений присутствуют циклические колебания остатков O-C, которые были обнаружены также на диаграммах O-C VY Car и WZ Car (Бердников, Тэрнер, 2004), AQ Pup (Тэрнер и др., 2012), GY Sge (Бердников и др., 2007), S Vul (Махмуд, Сабадош, 1980), SV Vul (Тэрнер, Бердников, 2004), и многих других цефеид. Такие циклические колебания объясняются наличием случайных флуктуаций пульсационного периода (Тэрнер, Бердников, 2004). Природа этих флуктуаций пока неизвестна.

Для оценки величины случайных флуктуаций периода DX Gem, остатки O-C от элементов (1) для каждого r-го максимума — a(r) — были обработаны методом, опубликованным Эддингтоном и

м, опубликованным Эддингтоном и с/год. Уменьшение пер

Плакидисом (1929). Для этого вычислялись абсолютные величины всех задержек u(x) = |a(r+x) - a(r)| для максимумов, разделенных x циклами. Средние величины < u(x) > всех накопленных задержек, согласно Эддингтону и Плакидису (1929), должны быть связаны со случайной флуктуацией периода ε соотношением

$$\langle u(x) \rangle^2 = 2\alpha^2 + x\varepsilon^2,$$
 (2)

где α характеризует величину случайных ошибок измеренных моментов максимального блеска.

Результаты вычислений представлены на рис. 2 и указывают на существование линейного тренда $< u(x) >^2$ для разности циклов x < 500, где формальная подгонка уравнения (2) дает решение в виде

$$< u(x) >^2 = 0.1557(\pm 0.0906) +$$

+ 0.000518(\pm 0.000040)x,

откуда величина случайной флуктуации периода $\varepsilon = 0.0227 \pm 0.00064.$

Таким образом, имеющиеся данные свидетельствуют в пользу существования случайных флуктуаций периода $\varepsilon/P \approx 0.0072$, амплитуда которых на диаграмме O-C (рис. 1) сравнима с амплитудой эволюционных изменений.

Квадратичный член элементов (1) дает возможность вычислить скорость эволюционного уменьшения периода $dP/dt = -0.808 \ (\pm 0.108)$ с/год. Уменьшение периода однозначно указывает

Таблица 2. Моменты максимума блеска DX Gem

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2414857.9539	0.2214	PG	-6939	-1.9941	29	Гарвард (данная работа)
2415237.5960	0.2719	PG	-6818	-1.9405	10	Бердников и др. (1997)
2415692.2649	0.0856	PG	-6673	-2.1504	41	Гарвард (данная работа)
2416335.2207	0.0530	PG	-6468	-2.2992	61	Гарвард (данная работа)
2416843.5159	0.0889	PG	-6306	-2.2135	44	Гарвард (данная работа)
2417191.8592	0.0774	PG	-6195	-2.0877	34	Гарвард (данная работа)
2417819.2736	0.0692	PG	-5995	-2.0923	40	Гарвард (данная работа)
2418223.6103	0.2127	PG	-5866	-2.4410	9	Бердников и др. (1997)
2418509.6521	0.0511	PG	-5775	-1.8748	61	Гарвард (данная работа)
2419024.0433	0.0857	PG	-5611	-1.9674	32	Гарвард (данная работа)
2419403.7187	0.0765	PG	-5490	-1.8805	32	Гарвард (данная работа)
2419934.3099	0.0499	PG	-5321	-1.4584	54	Гарвард (данная работа)
2420508.6207	0.0874	PG	-5138	-1.2361	35	Гарвард (данная работа)
2420982.4520	0.1083	PG	-4987	-1.1061	30	Гарвард (данная работа)
2421890.0820	0.0860	PG	-4698	-0.0967	35	Гарвард (данная работа)
2423123.7894	0.0673	PG	-4305	0.7322	42	Гарвард (данная работа)
2424523.4836	0.0833	PG	-3859	1.2819	35	Гарвард (данная работа)
2425301.5552	0.0214	PG	-3611	1.3539	44	Барткус, Пучинскас (1961)
2425822.2902	0.0715	PG	-3445	1.3310	40	Гарвард (данная работа)
2426424.7585	0.1592	PG	-3253	1.4770	24	Гарвард (данная работа)
2426941.9178	0.0998	PG	-3088	1.0156	38	Гарвард (данная работа)
2426957.6530	0.0257	PG	-3083	1.0653	53	Барткус, Пучинскас (1961)
2427782.4147	0.0625	PG	-2820	0.7709	29	Барткус, Пучинскас (1961)
2428315.6028	0.0747	PG	-2650	0.6528	30	Гарвард (данная работа)
2428927.0620	0.0662	PG	-2455	0.3784	30	Мешкова (1940)
2428970.8176	0.1194	PG	-2441	0.2147	21	Бердников и др. (1997)
2429874.2499	0.1048	PG	-2153	0.1635	28	Гарвард (данная работа)
2431310.5784	0.0830	PG	-1695	-0.2976	17	Гарвард (данная работа)
2433013.7923	0.1401	PG	-1152	-0.5265	17	Гарвард (данная работа)
2433308.4846	0.1561	PG	-1058	-0.7212	4	Бердников и др. (1997)
2433314.5837	0.0585	PG	-1056	-0.8963	29	Сатывалдиев (1970)
2434453.1980	0.0506	PG	-693	-1.0476	28	Бердников и др. (1997)
2434848.5142	0.0541	PG	-567	-1.0054	25	Сатывалдиев (1970)

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 7 2019

Таблица 2. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2435375.4014	0.0783	В	-399	-1.1503	4	Вальравен и др. (1958)
2435375.7513	0.1495	V	-399	-0.8249	4	Вальравен и др. (1958)
2435814.5671	0.2346	PG	-259	-1.1779	4	Бердников и др. (1997)
2436313.4159	0.0303	PG	-100	-1.1273	39	Барткус и Пучинскас (1961)
2436388.5649	0.0993	PG	-76	-1.2686	29	Сатывалдиев (1970)
2437721.9687	0.0988	PG	349	-1.1303	21	Сатывалдиев (1970)
2438847.9140	0.0800	PG	708	-1.4022	20	Сатывалдиев (1970)
2440796.7772	0.0131	В	1329	-0.6752	30	Пел (1976)
2440796.8199	0.0144	V	1329	-0.6571	30	Пел (1976)
2441678.6277	0.0293	В	1610	-0.3485	6	Сабадош (1977)
2441678.6644	0.0547	V	1610	-0.3364	6	Сабадош (1977)
2442017.4847	0.0234	В	1718	-0.2978	7	Сабадош (1977)
2442017.5064	0.0508	V	1718	-0.3007	7	Сабадош (1977)
2443153.1926	0.0421	В	2080	-0.2185	4	Сабадош (1977)
2443165.3449	0.1057	V	2084	-0.6391	5	Сабадош (1977)
2443181.7204	0.0619	PG	2089	0.0754	15	Гарвард (данная работа)
2443410.6216	0.1023	PG	2162	-0.0313	19	Бердников и др. (1997)
2443592.8097	0.0667	V	2220	0.1807	9	Хенден (1980)
2443617.8776	0.0375	В	2228	0.1764	10	Хенден (1980)
2444439.7863	0.0180	В	2490	0.1661	8	Мофет, Бэрнс (1984)
2444439.8104	0.0128	V	2490	0.1657	8	Мофет, Бэрнс (1984)
2444671.9487	0.0515	PG	2564	0.1835	16	Бердников и др. (1997)
2444947.9248	0.0110	V	2652	0.0706	21	Берсье и др. (1994)
2444957.3260	0.0058	В	2655	0.0851	27	Мофет, Бэрнс (1984)
2444957.3479	0.0061	V	2655	0.0824	27	Мофет, Бэрнс (1984)
2445509.2668	0.0663	PG	2831	-0.1029	18	Гарвард (данная работа)
2446152.1277	0.1002	PG	3036	-0.3465	34	Бердников и др. (1997)
2446791.9104	0.0989	PG	3240	-0.5313	25	Гарвард (данная работа)
2448228.4351	0.0409	PG	3698	-0.7963	25	Бердников и др. (1997)
2448240.9700	0.0260	V	3702	-0.8343	35	Hipparcos
2448783.4928	0.0252	V	3875	-1.0290	28	Hipparcos
2449047.0733	0.0218	В	3959	-0.9400	10	Ареллано Ферро и др. (1998)
2449050.2354	0.0209	V	3960	-0.9395	11	Ареллано Ферро и др. (1998)

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 7 2019

Таблица 2. Окончание

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2449815.6600	0.0123	В	4204	-0.9416	21	Бердников, Тэрнер (2000)
2449815.6700	0.0121	V	4204	-0.9562	21	Бердников, Тэрнер (2000)
2450330.1899	0.0187	В	4368	-0.8954	10	Бердников и др. (1998)
2450330.2376	0.0250	V	4368	-0.8722	10	Бердников и др. (1998)
2451278.0246	0.0225	V	4670	-0.4880	9	NSVS
2451538.4514	0.0103	V	4753	-0.4401	116	NSVS
2451610.5973	0.0315	V	4776	-0.4475	24	NSVS
2452686.8034	0.0164	V	5119	-0.2651	47	ASAS-3
2453012.9811	0.0150	V	5223	-0.3452	60	ASAS-3
2453401.8430	0.0180	V	5347	-0.4832	38	ASAS-3
2453753.0360	0.0188	V	5459	-0.6449	52	ASAS-3
2454151.2770	0.0200	V	5586	-0.8150	23	ASAS-3
2454480.4824	0.0173	V	5691	-1.0046	58	ASAS-3
2454834.8125	0.0178	V	5804	-1.1662	47	ASAS-3
2455145.2321	0.0582	V	5903	-1.3192	10	ASAS-3
2456010.6740	0.0289	V	6179	-1.7155	11	ASAS-SN
2456026.4261	0.0642	V	6184	-1.6489	10	ASAS-SN
2457058.2305	0.0074	V	6513	-1.9488	107	ASAS-SN
2457378.1464	0.0079	V	6615	-2.0168	163	ASAS-SN
2457748.2341	0.0078	V	6733	-2.1063	176	ASAS-SN
2458086.9935	0.0101	V	6841	-2.1531	106	ASAS-SN
2458403.7214	0.0136	V	6942	-2.2718	31	ASAS-SN

на второе пересечение полосы нестабильности, однако наблюдаемая скорость уменьшения периода значительно превышает теоретические предсказания (Тэрнер и др., 2006; Фадеев, 2014). Повидимому, причиной являются большие случайные флуктуации периода, которые искажают картину эволюционных изменений периода.

Отметим, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. 3 с тем, чтобы их

Рис. 2. Зависимость квадрата средней накопленной задержки $\langle u(x) \rangle$ от разности циклов x для цефеиды DX Gem.

Рис. 3. Стандартные кривые цефеиды DX Gem в фильтрах *В* и *V*.

можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. В табл. 3 представлены звездные величины DX Gem для фаз от 0 до 0.995 с шагом 0.005 в системе BV; эти стандартные кривые, графически изображенные на рис. 3, построены по фотоэлектрическим наблюдениям.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода DX Gem нами были сделаны 857 глазомерных оценок блес-

ка на старых фотопластинках Гарвардского университета; кроме того, были собраны все опубликованные наблюдения, включая данные, полученные в рамках проектов Hipparcos (EKA, 1997), NSVS (Возниак и др., 2004), ASAS-3 (Поймански, 2002) и ASAS-SN (Яясингхе и др., 2018). Все имеющиеся данные были обработаны методом Герцшпрунга (1919), и были определены 92 момента максимального блеска, которые использовались для построения O-C диаграммы, охватывающей временной интервал 120 лет. Это позволило определить квадратичные элементы изменения блеска (1) и вычислить скорость эволюционного умень-

БЕРДНИКОВ

Фаза	В	V									
0.000	11.441	10.570	0.250	11.716	10.763	0.500	11.925	10.904	0.750	11.691	10.752
0.005	11.441	10.570	0.255	11.723	10.768	0.505	11.925	10.904	0.755	11.685	10.747
0.010	11.442	10.570	0.260	11.730	10.773	0.510	11.925	10.904	0.760	11.678	10.742
0.015	11.443	10.571	0.265	11.737	10.778	0.515	11.924	10.903	0.765	11.672	10.738
0.020	11.444	10.572	0.270	11.744	10.783	0.520	11.924	10.903	0.770	11.666	10.733
0.025	11.445	10.573	0.275	11.751	10.788	0.525	11.923	10.902	0.775	11.659	10.728
0.030	11.447	10.574	0.280	11.758	10.793	0.530	11.922	10.902	0.780	11.653	10.723
0.035	11.449	10.576	0.285	11.765	10.797	0.535	11.920	10.901	0.785	11.646	10.719
0.040	11.452	10.578	0.290	11.771	10.802	0.540	11.919	10.900	0.790	11.640	10.714
0.045	11.454	10.580	0.295	11.777	10.807	0.545	11.917	10.899	0.795	11.634	10.709
0.050	11.457	10.582	0.300	11.784	10.811	0.550	11.914	10.898	0.800	11.627	10.705
0.055	11.460	10.584	0.305	11.790	10.815	0.555	11.912	10.896	0.805	11.621	10.700
0.060	11.464	10.587	0.310	11.796	10.820	0.560	11.909	10.895	0.810	11.614	10.695
0.065	11.468	10.590	0.315	11.802	10.824	0.565	11.906	10.893	0.815	11.608	10.690
0.070	11.472	10.593	0.320	11.807	10.828	0.570	11.903	10.891	0.820	11.601	10.686
0.075	11.476	10.596	0.325	11.813	10.832	0.575	11.899	10.889	0.825	11.595	10.681
0.080	11.481	10.599	0.330	11.818	10.836	0.580	11.895	10.887	0.830	11.588	10.676
0.085	11.486	10.603	0.335	11.824	10.839	0.585	11.891	10.884	0.835	11.582	10.672
0.090	11.491	10.606	0.340	11.829	10.843	0.590	11.887	10.882	0.840	11.575	10.667
0.095	11.496	10.610	0.345	11.834	10.847	0.595	11.882	10.879	0.845	11.569	10.662
0.100	11.501	10.614	0.350	11.839	10.850	0.600	11.877	10.877	0.850	11.562	10.658
0.105	11.507	10.618	0.355	11.844	10.854	0.605	11.872	10.874	0.855	11.556	10.653
0.110	11.513	10.622	0.360	11.848	10.857	0.610	11.867	10.871	0.860	11.549	10.648
0.115	11.519	10.627	0.365	11.853	10.860	0.615	11.862	10.867	0.865	11.543	10.644
0.120	11.525	10.631	0.370	11.857	10.863	0.620	11.856	10.864	0.870	11.537	10.639
0.125	11.532	10.636	0.375	11.862	10.866	0.625	11.851	10.861	0.875	11.531	10.635
0.130	11.538	10.640	0.380	11.866	10.869	0.630	11.845	10.857	0.880	11.525	10.631
0.135	11.545	10.645	0.385	11.870	10.871	0.635	11.839	10.853	0.885	11.519	10.626
0.140	11.552	10.650	0.390	11.874	10.874	0.640	11.833	10.850	0.890	11.513	10.622
0.145	11.558	10.655	0.395	11.878	10.876	0.645	11.827	10.846	0.895	11.507	10.618
0.150	11.566	10.660	0.400	11.881	10.879	0.650	11.821	10.842	0.900	11.502	10.614
0.155	11.573	10.665	0.405	11.885	10.881	0.655	11.814	10.838	0.905	11.496	10.610
0.160	11.580	10.670	0.410	11.888	10.883	0.660	11.808	10.833	0.910	11.491	10.606

Таблица 3. Стандартные кривые блеска DX Gem в системе В и V

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 7 2019

Таблица 3. Окончание

Фаза	В	V									
0.165	11.587	10.675	0.415	11.892	10.885	0.665	11.801	10.829	0.915	11.486	10.603
0.170	11.595	10.680	0.420	11.895	10.887	0.670	11.795	10.825	0.920	11.481	10.599
0.175	11.602	10.685	0.425	11.898	10.889	0.675	11.789	10.821	0.925	11.477	10.596
0.180	11.610	10.690	0.430	11.901	10.891	0.680	11.782	10.816	0.930	11.472	10.593
0.185	11.617	10.695	0.435	11.904	10.892	0.685	11.775	10.812	0.935	11.468	10.590
0.190	11.625	10.701	0.440	11.907	10.894	0.690	11.769	10.807	0.940	11.464	10.587
0.195	11.633	10.706	0.445	11.909	10.895	0.695	11.762	10.803	0.945	11.461	10.584
0.200	11.640	10.711	0.450	11.911	10.897	0.700	11.756	10.798	0.950	11.457	10.582
0.205	11.648	10.716	0.455	11.914	10.898	0.705	11.749	10.794	0.955	11.454	10.580
0.210	11.656	10.722	0.460	11.916	10.899	0.710	11.743	10.789	0.960	11.452	10.578
0.215	11.663	10.727	0.465	11.917	10.900	0.715	11.736	10.784	0.965	11.449	10.576
0.220	11.671	10.732	0.470	11.919	10.901	0.720	11.730	10.780	0.970	11.447	10.574
0.225	11.679	10.737	0.475	11.921	10.902	0.725	11.723	10.775	0.975	11.445	10.573
0.230	11.686	10.743	0.480	11.922	10.902	0.730	11.717	10.770	0.980	11.444	10.572
0.235	11.694	10.748	0.485	11.923	10.903	0.735	11.710	10.766	0.985	11.443	10.571
0.240	11.701	10.753	0.490	11.924	10.903	0.740	11.704	10.761	0.990	11.442	10.570
0.245	11.709	10.758	0.495	11.924	10.904	0.745	11.698	10.756	0.995	11.441	10.570

шения периода $dP/dt = -0.808 \ (\pm 0.108) \ c/год,$ что указывает на второе пересечения полосы нестабильности. Имеющиеся данные свидетельствуют в пользу существования случайных флуктуаций периода $\varepsilon/P \approx 0.0072$, амплитуда которых сравнима с амплитудой эволюционных изменений.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (гранты 18-02-00890 и 19-02-00611).

СПИСОК ЛИТЕРАТУРЫ

- Альфонсо-Гарсон и др. (J. Alfonso-Garzon, A. Domingo, J.M. Mas-Hesse, A. Gimenez, A. Arellano Ferro, E. Rojo Arellano, S. Gonzales-Bedolla, and P. Rozenzweig), Astron. Astrophys. Suppl. Ser. 117, 167 (1998).
- Барткус Р., Пучинскас А., Бюлл. Вильнюс. астрон. обсерв. № 3, 9 (1961).
- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L. N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 17, 87 (1998).

- Бердников Л.Н., Игнатова В.В., Пастухова Е.Н., Тэрнер Д.Г., Письма в Астрон. журн. 23, 204 (1997) [L.N Berdnikov., V.V. Ignatova, E.N. Pastukhova, and D.G. Turner, Astron. Lett. 23, 177 (1997)].
- Бердников Л.Н., Пастухова Е.Н., Письма в Астрон. журн. 20, 829 (1994) [L.N. Berdnikov. and E.N. Pastukhova, Astron. Lett. 20, 720 (1994)].
- Бердников и др., (L.N. Berdnikov., E.N. Pastukhova, Gorynya N.A., and Zharova A.V.) Publ. Astron. Soc. 119, 82 (2007)].
- 8. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. **18**, 657 (2000).
- 9. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. 23, 123 (2004).
- 10. Берсье и др. (D. Bersier, G. Burki, and M. Burnet), Astron. Astrophys. Suppl. Ser. **108**, 9 (1994).
- 11. Вальравен и др. (Th. Walraven, A.B. Mueller, and P.Th. Oosterhoff), Bull. Astron. Inst. Netherl. 14, 81 (1958).
- 12. Возниак и др. (P.R. Wozniak, W.T. Vestrand, C.W. Akerlof, R. Balsano, J. Bloch, D. Casperson, S. Fletcher, G. Gisler, et al.), Astron. J. **127**, 2436 (2004).

- 13. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).
- 14. EKA (ESA), The Hipparcos and Tycho catalogues, ESA SP-1200 (Noordwijk: ESA, 1997).
- 15. Ерлексова Г.Е., Иркаев Б.Н., Переменные звезды **21**, 715 (1982).
- 16. Мешкова (Т.S. Meshkova), Переменные звезды 5, 255 (1940).
- 17. Мофет, Бэрнс (Т.J. Moffett and T.G. Barnes), Astrophys. J. Suppl. Ser. **55**, 389 (1984).
- 18. Пел (J.W. Pel), Astron. Astrophys. Suppl. Ser. 24, 413 (1976).
- 19. Поймански (G. Pojmanski), Acta Astron. 52, 397 (2002).
- 20. Сабадош (L. Szabados), Mitt. Sternw. Ung. Akad. Wiss. Nr. **70**, 3 (1977).
- 21. Сабадош (L. Szabados), Mitt. Sternw. Ung. Akad. Wiss. Nr. **76**, 1 (1980).
- 22. Сатывалдиев В., Бюлл. Инст. Астрофиз. АН Тадж. ССР № **54**, 21 (1970).

- 23. Теплицкая Р.Б. Астрон. Цирк. № 96-97, 3 (1950).
- 24. Тэрнер (D.G. Turner), JAAVSO 26, 101 (1998).
- 25. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, L.N. Berdnikov), Publ. Astron. Soc. Pacific **118**, 410 (2006).
- 26. Тэрнер и др. (D.G. Turner, S. van den Bergh, P.F. Younger, D.J. Majaess, M.H. Pedreros, and L.N. Berdnikov), Astron. J. **144**, 187 (2012).
- 27. Тэрнер и Бердников (D.G. Turner and L.N. Berdnikov), Astron. J. **423**, 335 (2004).
- 28. Фадеев Ю.А., Письма в Астрон. журн. **40**, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. **40**, 301 (2014)].
- 29. Хенден (А.А. Henden), MNRAS 192, 621 (1980).
- 30. Эддингтон, Плакидис (A.S. Eddington and S. Plakidis), MNRAS **90**, 65 (1929).
- Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Subo Dong, et al.), 2018arXiv180907329 (2018).