ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДОВ ЦЕФЕИД: BY Cas

© 2019 г. Л. Н. Бердников^{1*}

¹ Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия Поступила в редакцию 25.06.2019 г.; после доработки 25.06.2019 г.; принята к публикации 25.06.2019 г.

Для малоамплитудной цефеиды BY Cas построена O-C диаграмма, охватывающая временной интервал 123 года. Диаграмма O-C имеет вид параболы, что позволило впервые определить квадратичные элементы изменения блеска и вычислить скорость эволюционного увеличения периода $dP/dt = +0.985 \ (\pm 0.091) \ c/$ год, что указывает на третье пересечение полосы нестабильности. Тест на стабильность пульсаций, предложенный Ламбертом и Коэном (1993), подтвердил реальность увеличения периода.

Ключевые слова: цефеиды, изменяемость периодов, эволюция звезд.

DOI: 10.1134/S0320010819090018

ВВЕДЕНИЕ

Обнаружение парабол на O-C диаграммах позволяет вычислить скорости наблюдаемых эволюционных изменений периодов цефеид. Сравнение их с теоретическими скоростями, посчитанными для разных пересечений полосы нестабильности, позволяет идентифицировать номер пересечения, что, в перспективе, даст возможность построить зависимость период-светимость отдельно для каждого пересечения, а это, в свою очередь, приведет к более точному определению расстояний цефеид.

Наш опыт показал, что, когда интервал времени, охваченный O-C диаграммой, достигает столетия, более 90% изученных цефеид (во всем диапазоне встречающихся в Галактике периодов) показывают эволюционные изменения их периодов (Тэрнер и др., 2006). Поэтому при изучении изменяемости периодов цефеид следует охватить наблюдениями как можно бо́льший интервал времени.

В данной работе мы исследуем поведение пульсаций малоамплитудной цефеиды BY Cas, период изменения блеска которой составляет 3^d22.

МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Для изучения изменяемости периодов цефеид мы используем общепринятую методику анализа *О*-*С* диаграмм, а самым точным методом определения остатков *О*-*С* является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

Переменность ВҮ Саѕ открыл Белявский (1931), а Ланге (1933) отнес звезду к цефеидам с периодом 3^d241. Изучением изменяемости периода занимались Малик (1965), Ерлексова и Иркаев (1982) и Сабадош (1977, 1991). Бердников и Пастухова (1994) нашли параболу на *О*-*С* диаграмме, однако Бердников и др. (1997а), добавив новые наблюдения, поставили под сомнение наличие эволюционных изменений периода, и был сделан вывод о необходимости привлечения дополнительных наблюдений, особенно полученных на старых фотопластинках.

Для нового изучения периода ВУ Саѕ мы сделали глазомерные оценки блеска на фотографических пластинках фототеки Гарвардского университета (США). Кроме того, мы использовали все опубликованные фотоэлектрические, фотографические и визуальные наблюдения и фотометрические данные, полученные в рамках проектов Hipparcos (EKA, 1997), NSVS (Возниак и др., 2004), INTEGRAL-OMC (Альфонсо-Гарсон и др., 2012) и ASAS-SN (Яясингхе и др., 2018).

^{*}Электронный адрес: berdnik@sai.msu.ru

Рис. 1. Диаграмма *О*–*С* для цефеиды ВУ Саѕ относительно линейных (вверху) и квадратичных (внизу) элементов (1): линия — парабола, соответствующая элементам (1).

Сведения о количестве использованных наблюдений приведены в табл. 1. Самая старая фотопластинка с изображением ВУ Саз была получена в 1896 г., а последние ПЗС наблюдения были сделаны в 2019 г. Следовательно, наши данные охватывают временной интервал 123 года.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых ВУ Сая приведены в табл. 2. В первом и втором столбце даны моменты максимального блеска и ошибки их определения, в третьем — тип используемых наблюдений, в четвертом и пятом — номер эпохи E и значение остатка O-C, а в шестом и седьмом — число наблюдений N и источник данных. Данные табл. 2 изображены на O-C диаграмме (рис. 1) пустыми и заполненными квадратиками для гарвардских и других фотографических наблюдений, соответственно, и точками для всех остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O-C. На рис. 1 заметны волнообразные колебания с цикличностью около 20 000 дней. Подобные колебания были обнаружены давно (Луизе, 1903) и наблюдаются на O-C диаграммах многих цефеид, но природа их до сих пор не изучена (Тэрнер, Бердников, 2004; Тэрнер и др., 2006). ВУ Саз является спектрально-двойной (Сабадош, 1991; Горыня и др., 1995), но орбитальный период оценивается в 563 ± 4 дня (Горыня и др., 1995), так что двойственность не является причиной этих цикличных изменений.

Несмотря на то что циклические колебания остатков O-C доминируют на рис. 1, парабола тоже заметна. Поэтому по всем моментам максимального блеска из табл. 2 были вычислены квадратичные элементы изменения блеска цефеиды BY Cas:

$$Max HJD = 2436650.4370(\pm 0.1069) + (1) + 3!22210024(\pm 0.0000197)E - - 0.5029532 10^{-7} (\pm 0.463 10^{-8}) E^2,$$

Источник данных	Число наблюдений	Тип наблюдений	Интервал JD
Гарвард	591	PG	2414911-2447860
Литература	547	PG	2413837-2438709
Литература	49	VIS	2426927-2426979
Литература	199	В	2436792-2450349
Литература	263	V	2436792-2450349
Hipparcos	192	V	2447871-2449042
NSVS	86	V	2451421-2451593
INTEGRAL-OMC	1178	V	2452639-2457005
ASAS-SN	605	V	2455940 - 2458449
ASAS-SN	189	g	2458292-2458661

Таблица 1. Наблюдательный материал цефеиды ВУ Саз

Таблица 2. Моменты максимума блеска BY Cas

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2414655.0774	0.0529	PG	-6827	1.9455	9	Бердников и др. (1997а)
2414983.6745	0.0437	PG	-6725	1.8884	8	Кукаркина (1954)
2416114.8508	0.0740	PG	-6374	2.1075	34	Гарвард (данная работа)
2417100.9683	0.0674	PG	-6068	2.2624	17	Бердников и др. (1997а)
2417661.5655	0.0934	PG	-5894	2.2141	40	Гарвард (данная работа)
2418067.3260	0.0753	PG	-5768	1.9900	15	Кукаркина (1954)
2419655.8579	0.1471	PG	-5275	2.0265	13	Бердников и др. (1997а)
2420277.9084	0.0894	PG	-5082	2.2116	45	Гарвард (данная работа)
2422887.3306	0.0821	PG	-4272	1.7326	50	Гарвард (данная работа)
2424887.7288	0.0857	PG	-3651	1.2066	45	Гарвард (данная работа)
2426791.5508	0.0823	PG	-3060	0.7674	56	Гарвард (данная работа)
2426946.2745	0.0800	VIS	-3012	0.8034	49	Ланге (1933)
2428122.5094	0.1093	PG	-2647	0.9985	9	Кукаркина (1954)
2428425.0354	0.0740	PG	-2553	0.6471	43	Гарвард (данная работа)
2428985.5067	0.0787	PG	-2379	0.4729	38	Паренаго (1940)
2429388.1743	0.0665	PG	-2254	0.3781	31	Кукаркина (1954)
2429790.7544	0.0653	PG	-2129	0.1956	59	Гарвард (данная работа)

Таблица 2. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2430747.3227	0.0679	PG	-1832	-0.1999	23	Сатывалдиев (1970)
2431259.4862	0.0457	PG	-1673	-0.3503	65	Гарвард (данная работа)
2431352.9605	0.0395	PG	-1644	-0.3169	22	Диркс и Вакулер (1949)
2431781.3881	0.0378	PG	-1511	-0.4287	12	Ашбрук (1954)
2432232.4648	0.0974	PG	-1371	-0.4459	24	Сатывалдиев (1970)
2433111.8611	0.0537	PG	-1098	-0.6831	33	Кукаркина (1954)
2433208.4503	0.0378	PG	-1068	-0.7568	67	Гарвард (данная работа)
2433553.1096	0.0475	PG	-961	-0.8623	20	Сатывалдиев (1970)
2434126.4936	0.0570	PG	-783	-1.0121	33	Кукаркина (1954)
2434564.8843	0.0812	PG	-647	-0.8270	24	Хейло (1962)
2435702.2580	0.0771	PG	-294	-0.8547	27	Хейло (1962)
2436127.6423	0.0481	PG	-162	-0.7876	72	Хейло (1962)
2436707.6446	0.1029	PG	18	-0.7634	26	Хейло (1962)
2436817.3266	0.0135	В	52	-0.6328	17	Оостерхоф (1960)
2436817.3312	0.0175	В	52	-0.6282	17	Веавер и др. (1961)
2436817.3548	0.0116	V	52	-0.6314	17	Оостерхоф (1960)
2436817.3549	0.0201	V	52	-0.6313	17	Веавер и др. (1961)
2436914.0110	0.0128	В	82	-0.6114	26	Банер и др. (1962)
2436914.0475	0.0113	V	82	-0.6018	26	Банер и др. (1962)
2437162.2082	0.1008	PG	159	-0.5159	39	Хейло (1962)
2437764.7883	0.0702	PG	346	-0.4686	27	Сатывалдиев (1970)
2438409.2622	0.0062	В	546	-0.4147	45	Малик (1965)
2438409.2912	0.0069	V	546	-0.4126	45	Малик (1965)
2438651.1080	0.0713	PG	621	-0.2264	25	Сатывалдиев (1970)
2439785.4434	0.0212	V	973	-0.0972	11	Сабадош (1977)
2441999.8263	0.0325	V	1660	0.7029	24	Сабадош (1977)
2442032.0349	0.0214	В	1670	0.7174	22	Сабадош (1977)
2443598.4960	0.1265	PG	2156	1.2377	39	Гарвард (данная работа)
2443814.2960	0.0377	V	2223	1.1302	16	Сабадош (1991)
2443833.6030	0.0254	В	2229	1.1314	17	Сабадош (1991)
2446385.8440	0.0694	PG	3021	1.4690	48	Гарвард (данная работа)
2448174.5248	0.0157	V	3576	1.8573	96	Hipparcos

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 9 2019

Таблица 2. Окончание

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2448235.7171	0.0036	V	3595	1.8297	35	Мантегазза и Поретти (1992)
2448635.2893	0.0171	V	3719	1.8615	96	Hipparcos
2448880.1871	0.0109	В	3795	1.9066	26	Бердников (1993)
2448880.2192	0.0132	V	3795	1.9118	26	Бердников (1993)
2449995.0770	0.0251	V	4141	1.9229	17	Бердников и др. (1997b)
2450330.2031	0.0124	В	4245	1.9774	29	Бердников и др. (1998)
2450330.2267	0.0141	V	4245	1.9742	29	Бердников и др. (1998)
2451461.2874	0.0146	V	4596	2.0777	43	NSVS
2451528.9028	0.0184	V	4617	2.0290	43	NSVS
2453146.2382	0.0161	V	5119	1.8700	35	INTEGRAL-OMC
2453558.6723	0.0050	V	5247	1.8753	282	INTEGRAL-OMC
2453919.4911	0.0052	V	5359	1.8190	289	INTEGRAL-OMC
2454141.7276	0.0050	V	5428	1.7305	255	INTEGRAL-OMC
2454557.3351	0.0108	V	5557	1.6871	64	INTEGRAL-OMC
2455462.5162	0.0063	V	5838	1.4580	59	INTEGRAL-OMC
2455749.2533	0.0066	V	5927	1.4282	121	INTEGRAL-OMC
2455926.4380	0.0160	V	5982	1.3974	23	INTEGRAL-OMC
2455961.8852	0.0278	V	5993	1.4015	10	ASAS-SN
2456319.5091	0.0077	V	6104	1.3722	23	INTEGRAL-OMC
2456751.4241	0.0116	V	6238	1.5258	27	INTEGRAL-OMC
2457031.7815	0.0049	V	6325	1.5605	18	ASAS-SN
2457254.1819	0.0046	V	6394	1.6359	67	ASAS-SN
2457373.4443	0.0046	V	6431	1.6806	72	ASAS-SN
2457647.3947	0.0034	V	6516	1.7525	110	ASAS-SN
2457756.9724	0.0049	V	6550	1.7789	51	ASAS-SN
2457969.6768	0.0036	V	6616	1.8246	78	ASAS-SN
2458066.3547	0.0053	V	6646	1.8395	76	ASAS-SN
2458320.9352	0.0047	V	6725	1.8741	62	ASAS-SN
2458330.6335	0.0069	g	6728	1.8779	38	ASAS-SN
2458417.6341	0.0048	V	6755	1.9100	61	ASAS-SN
2458420.8833	0.0086	g	6756	1.9090	40	ASAS-SN
2458478.8786	0.0055	g	6774	1.9065	38	ASAS-SN
2458511.1059	0.0082	g	6784	1.9127	38	ASAS-SN
2458649.6725	0.0080	g	6827	1.9291	35	ASAS-SN

Рис. 2. Зависимость разности D_i последовательных остатков O-C из табл. 2: $D_i = (O-C)_{i+1} - (O-C)_i$ от $E'_i = (E_i + E_{i+1})/2$. Прямая линия подтверждает увеличение периода со временем; заметны также волнообразные колебания, доминирующие на O-C диаграмме (рис. 1).

линейная часть которых использована для вычислений остатков O-C в пятом столбце табл. 2. Элементы (1) использовались для проведения параболы на верхней части рис. 1, на нижней части которого показаны отклонения от этой параболы.

По фотоэлектрическим и ПЗС-наблюдениям было найдено, что максимумы блеска в фильтрах B и g наступают раньше, чем в фильтре V, на 0.40268 и 0.40069 соответственно. Эти поправки учитывались при построении рис. 1 и определении элементов (1), которые, таким образом, относятся к системе V.

Квадратичный член элементов (1) дает возможность вычислить скорость эволюционного увеличения периода $dP/dt = +0.985 \ (\pm 0.091) \ c/$ год, что согласуется с результатами модельных расчетов для третьего пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014).

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для этого мы вычислили разности D_i последовательных остатков O-C из табл. 2: $D_i = (O-C)_{i+1} - (O-C)_i$, и построили график зависимости D_i от $E'_i = (E_i + E_{i+1})/2$ (рис. 2). Разности D_i , которые имеют смысл отличий истинного периода от среднего периода в интервале эпох $E_i \div E_{i+1}$, показывают уверенное увеличение периода со временем (аппроксимация многочленом первой степени); кроме того, на рис. 2 заметна и волна, доминирующая на O-C диаграмме (рис. 1).

Следует отметить, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. З с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Таблица 3 содержит звездные величины BY Cas для фаз от 0 до 0.995 с шагом 0.005 в системе gBV; эти стандартные кривые, графически изображенные на рис. 3, построены по фотоэлектрическим (BV) и ПЗС (g) наблюдениям.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода BY Cas мы сделали 591 оценку блеска на фотографических пластинках, хранящихся в Гарвардском (США) университете; кроме того, были собраны все опубликованные фотометрические наблюдения, включая данные из каталогов проектов Hipparcos (ЕКА, 1997), NSVS (Возниак и др., 2004), INTEGRAL-OMC (Альфонсо-Гарсон и др., 2012) и ASAS-SN (Яясингхе и др., 2018). Все имеющиеся данные были обработаны методом Герцшпрунга (1919), и были определены 83 момента максимального блеска, которые использовались для построения О-С диаграммы, охватывающей временной интервал 123 года. Это позволило впервые определить квадратичные элементы изменения блеска (1) и вычислить

БЕРДНИКОВ

Фаза	g	В	V	Фаза	g	В	V	Фаза	g	В	V
0.000	10.845	11.413	10.180	0.335	11.216	11.822	10.457	0.670	11.195	11.830	10.472
0.005	10.845	11.413	10.180	0.340	11.221	11.828	10.461	0.675	11.188	11.822	10.467
0.010	10.845	11.414	10.180	0.345	11.226	11.833	10.465	0.680	11.180	11.814	10.462
0.015	10.846	11.415	10.181	0.350	11.231	11.838	10.469	0.685	11.173	11.806	10.456
0.020	10.847	11.416	10.182	0.355	11.235	11.844	10.473	0.690	11.166	11.798	10.450
0.025	10.849	11.417	10.183	0.360	11.240	11.848	10.476	0.695	11.158	11.790	10.445
0.030	10.851	11.419	10.184	0.365	11.244	11.853	10.480	0.700	11.151	11.781	10.439
0.035	10.854	11.421	10.185	0.370	11.248	11.858	10.484	0.705	11.143	11.773	10.433
0.040	10.856	11.424	10.187	0.375	11.252	11.863	10.487	0.710	11.136	11.765	10.427
0.045	10.859	11.427	10.189	0.380	11.256	11.867	10.491	0.715	11.128	11.756	10.422
0.050	10.863	11.430	10.191	0.385	11.260	11.871	10.494	0.720	11.121	11.748	10.416
0.055	10.867	11.433	10.193	0.390	11.264	11.875	10.497	0.725	11.113	11.740	10.410
0.060	10.871	11.436	10.195	0.395	11.267	11.880	10.501	0.730	11.106	11.731	10.404
0.065	10.875	11.440	10.198	0.400	11.271	11.884	10.504	0.735	11.099	11.723	10.398
0.070	10.880	11.444	10.201	0.405	11.274	11.888	10.507	0.740	11.092	11.715	10.392
0.075	10.884	11.449	10.204	0.410	11.278	11.891	10.510	0.745	11.084	11.707	10.386
0.080	10.890	11.453	10.207	0.415	11.281	11.895	10.513	0.750	11.077	11.698	10.380
0.085	10.895	11.458	10.211	0.420	11.283	11.899	10.516	0.755	11.071	11.690	10.374
0.090	10.901	11.463	10.214	0.425	11.286	11.902	10.519	0.760	11.064	11.682	10.368
0.095	10.907	11.469	10.218	0.430	11.289	11.906	10.522	0.765	11.057	11.674	10.362
0.100	10.913	11.474	10.222	0.435	11.292	11.909	10.525	0.770	11.050	11.666	10.356
0.105	10.919	11.480	10.226	0.440	11.294	11.913	10.527	0.775	11.044	11.658	10.350
0.110	10.925	11.486	10.230	0.445	11.296	11.916	10.530	0.780	11.037	11.650	10.344
0.115	10.932	11.492	10.234	0.450	11.298	11.919	10.533	0.785	11.031	11.642	10.338
0.120	10.938	11.498	10.239	0.455	11.300	11.922	10.535	0.790	11.025	11.635	10.333
0.125	10.945	11.505	10.243	0.460	11.302	11.925	10.537	0.795	11.019	11.627	10.327
0.130	10.952	11.511	10.248	0.465	11.304	11.928	10.539	0.800	11.013	11.619	10.321
0.135	10.959	11.518	10.253	0.470	11.306	11.931	10.541	0.805	11.007	11.611	10.315
0.140	10.966	11.525	10.258	0.475	11.307	11.934	10.543	0.810	11.001	11.604	10.310
0.145	10.973	11.532	10.263	0.480	11.308	11.936	10.545	0.815	10.995	11.596	10.304
0.150	10.980	11.540	10.268	0.485	11.309	11.939	10.547	0.820	10.989	11.589	10.298
0.155	10.987	11.547	10.273	0.490	11.310	11.941	10.548	0.825	10.983	11.581	10.293
0.160	10.994	11.555	10.279	0.495	11.311	11.943	10.550	0.830	10.978	11.574	10.288

Таблица 3. Стандартные кривые для ВУ Саѕ в фильтрах *g*, *B* и *V*

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 9 2019

Таблица 3. Окончание

Фаза	g	В	V	Фаза	g	В	V	Фаза	g	В	V
0.165	11.001	11.562	10.284	0.500	11.312	11.945	10.551	0.835	10.972	11.566	10.282
0.170	11.008	11.570	10.289	0.505	11.312	11.946	10.552	0.840	10.967	11.559	10.277
0.175	11.015	11.578	10.295	0.510	11.313	11.948	10.553	0.845	10.961	11.551	10.272
0.180	11.022	11.586	10.300	0.515	11.313	11.949	10.554	0.850	10.955	11.544	10.267
0.185	11.029	11.594	10.306	0.520	11.313	11.950	10.554	0.855	10.950	11.537	10.261
0.190	11.036	11.602	10.312	0.525	11.312	11.951	10.554	0.860	10.945	11.530	10.257
0.195	11.043	11.610	10.317	0.530	11.312	11.951	10.554	0.865	10.939	11.523	10.252
0.200	11.050	11.619	10.323	0.535	11.311	11.951	10.554	0.870	10.934	11.516	10.247
0.205	11.057	11.627	10.328	0.540	11.310	11.951	10.554	0.875	10.929	11.509	10.242
0.210	11.064	11.635	10.334	0.545	11.309	11.950	10.553	0.880	10.923	11.503	10.238
0.215	11.071	11.644	10.340	0.550	11.307	11.949	10.553	0.885	10.918	11.496	10.233
0.220	11.077	11.652	10.345	0.555	11.306	11.948	10.552	0.890	10.913	11.490	10.229
0.225	11.084	11.661	10.351	0.560	11.304	11.947	10.550	0.895	10.908	11.484	10.225
0.230	11.091	11.669	10.356	0.565	11.301	11.945	10.549	0.900	10.903	11.478	10.221
0.235	11.097	11.677	10.362	0.570	11.299	11.942	10.547	0.905	10.898	11.472	10.217
0.240	11.104	11.686	10.367	0.575	11.296	11.940	10.545	0.910	10.894	11.466	10.214
0.245	11.111	11.694	10.373	0.580	11.293	11.937	10.543	0.915	10.889	11.461	10.210
0.250	11.117	11.702	10.378	0.585	11.290	11.934	10.541	0.920	10.884	11.456	10.207
0.255	11.123	11.710	10.383	0.590	11.286	11.930	10.538	0.925	10.880	11.451	10.204
0.260	11.130	11.718	10.388	0.595	11.282	11.926	10.536	0.930	10.876	11.446	10.201
0.265	11.136	11.726	10.394	0.600	11.278	11.921	10.533	0.935	10.872	11.442	10.198
0.270	11.142	11.734	10.399	0.605	11.274	11.917	10.529	0.940	10.868	11.438	10.195
0.275	11.148	11.742	10.404	0.610	11.269	11.912	10.526	0.945	10.865	11.434	10.193
0.280	11.155	11.749	10.409	0.615	11.264	11.906	10.522	0.950	10.861	11.430	10.191
0.285	11.160	11.757	10.413	0.620	11.259	11.901	10.519	0.955	10.858	11.427	10.189
0.290	11.166	11.764	10.418	0.625	11.253	11.895	10.515	0.960	10.856	11.424	10.187
0.295	11.172	11.771	10.423	0.630	11.248	11.888	10.511	0.965	10.853	11.422	10.185
0.300	11.178	11.778	10.427	0.635	11.242	11.882	10.506	0.970	10.851	11.419	10.184
0.305	11.184	11.785	10.432	0.640	11.236	11.875	10.502	0.975	10.849	11.418	10.183
0.310	11.189	11.792	10.436	0.645	11.229	11.868	10.497	0.980	10.847	11.416	10.182
0.315	11.195	11.798	10.441	0.650	11.223	11.861	10.493	0.985	10.846	11.415	10.181
0.320	11.200	11.804	10.445	0.655	11.216	11.853	10.488	0.990	10.845	11.414	10.180
0.325	11.206	11.810	10.449	0.660	11.209	11.846	10.483	0.995	10.845	11.413	10.180
0.330	11.211	11.816	10.453	0.665	11.202	11.838	10.477				

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 45 № 9 2019

Рис. 3. Стандартные кривые цефеиды ВУ Саѕ в фильтрах *g*, *B* и *V*.

скорость эволюционного увеличения периода $dP/dt = +0.985 \ (\pm 0.091)$ с/год, что указывает на третье пересечение полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014). Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность увеличения периода.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (гранты 18-02-00890 и 19-02-00611).

СПИСОК ЛИТЕРАТУРЫ

- Альфонсо-Гарсон и др. (J. Alfonso-Garzon, A. Domingo, J.M. Mas-Hesse, and A. Gimenez), Astron. Astrophys. 548, A79 (2012).
- 2. Ашбрук (J. Ashbrook), Astron. J. 59, 11 (1954).
- 3. Банер и др. (K. Bahner, W.A. Hiltner, and R.P. Kraft), Astrophys. J. Suppl. Ser. **6**, 319 (1962).
- Белявский (S. Beljawsky), Astron. Nachr. 243, 115 (1931).
- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- Бердников Л.Н., Письма в Астрон. журн. 19, 210 (1993) [L.N. Berdnikov, Astron. Lett. 19, 84 (1993)].
- Бердников Л.Н., Игнатова В.В., Пастухова Е.Н., Тэрнер Д.Г., Письма в Астрон. журн. 23, 204 (1997а) [L.N Berdnikov., V.V. Ignatova, E.N. Pastukhova, D.G. Turner, Astron. Lett. 23, 177 (1997а)].
- Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 14, 237 (1997b).

- Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 17, 87 (1998).
- Бердников Л.Н., Пастухова Е.Н., Письма в Астрон. журн. 20, 829 (1994) [L.N. Berdnikov., E.N. Pastukhova, Astron. Lett. 20, 720 (1994)].
- 11. Веавер и др. (H. Weaver, D. Steinmetz, and R. Mitchell), Lowell Observ. Bull. **5**, 30 (1961).
- 12. Возниак и др. (P.R. Wozniak, W.T. Vestrand, C.W. Akerlof, R.Balsano, J. Bloch, D. Casperson, S. Fletcher, G. Gisler, et al.), Astron. J. **127**, 2436 (2004).
- 13. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).
- Горыня и др. (N.A. Gorynya, N.N. Samus, L.N. Berdnikov, A.S. Rastorgouev, and M.E. Sachkov), Commis. 27 IAU Inform. Bull. Var. Stars No. 4199, 1 (1995).
- 15. Диркс, Вакулер (W.H. Dirks and G. Vaucouleurs), Annales d'Astrophysique **12**, 219 (1949).
- 16. EKA (ESA), The Hipparcos and Tycho catalogues, ESA SP-1200 (Noordwijk: ESA, 1997).
- 17. Ерлексова Г.Е., Иркаев Б.Н., Переменные Звезды **21**, 715 (1982).
- 18. Зверев М., Переменные Звезды 5, 193 (1938).
- 19. Кукаркина Н.П., Переменные Звезды 10, 92 (1954).
- 20. Ланге (Lange G.), Leningrad Univer. Astr. Observ. Bull. No. **2**, 9 (1933).
- 21. Ломбард, Коэн (F. Lombard and C. Koen), MNRAS **263**, 309 (1993).
- 22. Луизе (M. Luizet), Astron. Nachr. 163, 355 (1903).
- 23. Малик (G.M. Malik), Astron. J. 70, 94 (1965).
- 24. Мантегазза, Поретти (L. Mantegazza and E. Poretti), Astron. Astrophys. **261**, 137 (1992).

- 25. Оостерхоф (P.Th. Oosterhoff), Bull. Astron. Inst. Netherl. **15**, 199 (1960).
- 26. Паренаго П.П., Переменные Звезды 5, 280 (1940).
- 27. Сабадош (L. Szabados), Comm. Konkoly Observ. Nr. **70**, 3 (1977).
- 28. Сабадош (Ĺ. Szabados), Comm. Konkoly Observ. Nr. **96**, 125 (1991).
- 29. Сатывалдиев В., Бюлл. Инст. Астрофиз. АН Тадж. ССР N 54, 21 (1970).
- 30. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, and L.N. Berdnikov), Publ. Astron. Soc. Pacific **118**, 410 (2006).
- 31. Тэрнер, Бердников (D.G. Turner and L.N. Berdnikov), Astron. Astrophys. **423**, 335 (2004).
- 32. Фадеев Ю.А. Письма в Астрон. журн. **40**, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. **40**, 301 (2014)].
- 33. Хейло Э.С., Переменные Звезды 14, 131 (1962).
- 34. Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Subo Dong, et al.), 2018arXiv180907329 (2018).