СПЕКТРОСКОПИЧЕСКОЕ ОПРЕДЕЛЕНИЕ КРАСНЫХ СМЕЩЕНИЙ ВЫБОРКИ ДАЛЕКИХ КВАЗАРОВ ОБСЕРВАТОРИИ СРГ ПО НАБЛЮДЕНИЯМ НА РТТ-150. I

© 2020 г. И. Ф. Бикмаев^{1,2*}, Э. Н. Иртуганов^{1,2}, Е. А. Николаева^{1,2}, Н. А. Сахибуллин^{1,2}, Р. И. Гумеров^{1,2}, А. С. Склянов^{1,2}, М. В. Глушков^{1,2}, В. Д. Борисов^{3,4}, Р. А. Буренин³, И. А. Зазнобин³, Р. А. Кривонос³, А. Р. Ляпин³, П. С. Медведев³, А. В. Мещеряков^{3,1}, С. Ю. Сазонов³, Р. А. Сюняев^{3,5}, Г. А. Хорунжев³, М. Р. Гильфанов^{3,5}

¹Казанский (Приволжский) Федеральный Университет, ул. Кремлевская, 18, Казань 420008, Россия ²Академия Наук РТ, ул. Баумана, 20, Казань 420111, Россия

³Институт космических исследований РАН, ул. Профсоюзная, 84/32, Москва 117997, Россия

⁴ Факультет вычислительной математики и кибернетики МГУ им. М.В. Ломоносова, Москва, Россия

⁵Институт астрофизики общества им. Макса Планка, Гархинг, Германия

Поступила в редакцию 04.08.2020 г.

После доработки 05.09.2020 г.; принята к публикации 22.09.2020 г.

Приведены результаты первых спектроскопических наблюдений на 1.5-м Российско-Турецком телескопе рентгеновских источников, открытых телескопом еРОЗИТА космической обсерватории СРГ и идентифицированых системой машинного обучения SRGz в качестве кандидатов в далекие рентгеновские квазары. Семь объектов подтверждены как квазары на красных смещениях z = 2.7-4.2, а два источника, которые были включены в программу оптических наблюдений с целью тестирования и настройки SRGz и имели значительную неопределенность фотометрического красного смещения, оказались сейфертовскими галактиками на $z \approx 0.6$.

Ключевые слова: квазары, активные ядра галактик, спектроскопия, СРГ, еРОЗИТА, РТТ-150.

DOI: 10.31857/S0320010820100046

ВВЕДЕНИЕ

Рентгеновская обсерватория СРГ (Сюняев и др., 2020), запущенная 13 июля 2019 г., успешно работает на орбите вокруг точки Лагранжа L2 системы Солнце-Земля. Основная цель обсерватории — обзор всего неба в широком диапазоне энергий 0.3-30 кэВ продолжительностью 4 года. В состав обсерватории входят два рентгеновских телескопа с оптикой косого падения: СРГ/еРОЗИТА (диапазон 0.3–10 кэВ) и СРГ/АРТ-ХС (диапазон 5-30 кэВ). Ожидается, что в ходе обзора телескоп СРГ/еРОЗИТА обнаружит около трех миллионов активных ядер галактик (АЯГ) и квазаров на красных смещениях вплоть до $z \sim 6-7$ (Колодзиг и др., 2013а), что позволит детально исследовать рост сверхмассивных черных дыр во Вселенной и их совместную эволюцию с родительскими галактиками и крупномасштабной структурой Вселенной (Колодзиг и др., 2013b).

Для реализации научного потенциала обзора всего неба СРГ одной из важнейших является задача массовой оптической идентификации и классификации обнаруженных рентгеновских источников. В значительной степени она решается (см., например, Хорунжев и др. 2016) благодаря имеющимся архивам обширных фотометрических и спектроскопических обзоров неба, таких как SDSS (Парис и др., 2018), PanSTARRS (Чамберс

В период с 8 декабря 2019 г. по 10 июня 2020 г. было проведено первое сканирование всего неба, в результате которого телескоп СРГ/еРОЗИТА (Предель и др., 2020) зарегистрировал более миллиона рентгеновских источников, большинство из которых, предположительно, является АЯГ и квазарами. Среди интереснейших объектов, впервые зарегистрированных в рентгеновских лучах телескопом еРОЗИТА, оказался квазар СFHQS J142952+544717 на z = 6.18. Это самый светимый в рентгеновском диапазоне квазар на z > 6 (Медведев и др., 2020).

^{*}Электронный адрес: ibikmaev@yandex.ru

и др., 2016), BASS (Зоу и др., 2019), LAMOST (Яо и др., 2019). Для идентификации, классификации и фотометрической оценки красных смещений объектов на основе этих данных в рабочей группе по поиску рентгеновских источников, их отождествлению и составлению каталога по данным телескопа еРОЗИТА российского консорциума СРГ/еРОЗИТА создана система машинного обучения SRGz (Мещеряков и др., 2020). Первыми результатами применения SRGz к данным еРОЗИТы стали списки кандидатов в далекие рентгеновские квазары ($z \gtrsim 3-4$), составленные по итогам проверочных наблюдений области Дыры Локмана и первого обзора неба обсерватории СРГ.

Для подтверждения природы, уточнения красных смещений и детального исследования (в частности, измерения масс сверхмассивных черных дыр) кандидатов в далекие квазары, отобранных системой SRGz, требуются спектроскопические наблюдения. Такие наблюдения необходимы также для настройки используемых алгоритмов машинного обучения и проверки функционирования системы SRGz в целом. В результате первых спектроскопических наблюдений рентгеновских кандидатов в далекие квазары еРОЗИТы были открыты новые источники: далекие рентгеновские квазары на $z \sim 4$ и более близкие квазары на $z \sim 1-3$. обнаруженные в поле Дыры Локмана. Спектры этих источников были получены на 1.6-м телескопе АЗТ-ЗЗИК Саянской обсерватории (Хорунжев и др., 2020) и 2.5-м телескопе КГО ГАИШ МГУ (Додин и др., 2020).

В данной работе приводятся результаты оптической спектроскопии на 1.5-м Российско-Турецком телескопе РТТ-150 девяти объектов из списков кандидатов в далекие квазары, полученных системой машинного обучения SRGz по результатам наблюдений области Дыры Локмана в ноябре 2019 г. и по каталогу источников обзора 1/6 неба СРГ/еРОЗИТА, полученному в феврале 2020 г. Наблюдения проводились в квоте времени Казанского федерального университета.

РЕНТГЕНОВСКИЕ НАБЛЮДЕНИЯ ТЕЛЕСКОПА еРОЗИТА

Рентгеновские данные, представленные в данной статье, были получены телескопом СРГ/еРОЗИТА в ходе наблюдений поля Дыры Локмана на стадии проверочных наблюдений в ноябре 2019 г. и в начале обзора всего неба в декабре 2019 г. — феврале 2020 г. Калибровка данных телескопа еРОЗИТА, создание карт неба, детектирование и характеризация источников производились при помощи программного обеспечения eSASS, разработанного германским консорциумом СРГ/еРОЗИТА, и программного обеспечения, разработанного российским консорциумом СРГ/еРОЗИТА. При обработке данных использовались результаты наземных предполетных калибровок, а также летных калибровочных наблюдений, выполненных в октябре-ноябре 2019 г.

Каталоги рентгеновских источников, зарегистрированных в поле Дыры Локмана и в ходе сканирования неба, кросс-коррелировались с набором фотометрических и спектроскопических каталогов и затем подавались на вход системы SRGz для отождествления, классификации и определения фотометрических красных смещений, как описывается ниже.

ОТОЖДЕСТВЛЕНИЕ ОПТИЧЕСКИХ КОМПАНЬОНОВ РЕНТГЕНОВСКИХ ИСТОЧНИКОВ И ИЗМЕРЕНИЕ ФОТОМЕТРИЧЕСКИХ КРАСНЫХ СМЕЩЕНИЙ ПРИ ПОМОЩИ SRGz

Для всех точечных рентгеновских источников СРГ/еРОЗИТА из первого обзора неба была проведена кросс-корреляция в радиусе 30" с оптическими источниками из каталогов Слоановского обзора SDSS DR16 (Ахумада и др., 2019), DESI Legacy Imaging Survey DR8 (DESI LIS, Дей и др. (2019)), Pan-STARRS1 DR2 (Чамберс и др., 2016). Кроме того, были использованы данные принудительной фотометрии инфракрасного обзора WISE для объектов обзора DESI LIS (Лэнг и др., 2016; Дей и др., 2019) и объектов Pan-STARRS1 (Буренин и др., 2020).

Полученный таким образом список оптических кандидатов для рентгеновских источников еРОЗИТА поступал на вход системы SRGz, которая представляет собой набор программных компонент, последовательно решающих задачи автоматического поиска (кросс-отождествления) наиболее вероятного оптического компаньона рентгеновского источника СРГ/еРОЗИТА, его фотометрической классификации (по схеме звезда/квазар/галактика) и измерения фотометрического красного смещения (photo-z). Система SRGz построена на использовании алгоритмов интеллектуального анализа данных — ансамблевых древовидных алгоритмов машинного обучения (градиентный бустинг и случайный лес деревьев решений, см. Мещеряков и др. 2018), которые обучаются на выборках квазаров, галактик и звезд из спектроскопического каталога SDSS, а также выборки оптических источников SDSS в окрестности рентгеновских объектов из ХММ-Newton Serendipitous Source Catalogue (3XMM DR8). Подробнее принципы работы SRGz и

-							
Название		F_x	δF_x	C	δC	σ	R
		10 11, эрг/с/см2	10 11, эрг/с/см2	отсчеты	отсчеты	угл. сек	угл. сек
1	SRGe J162803.4+564442	1.57	0.49	13.8	4.3	4.0	4.0
2	SRGe J145520.2+242030	3.85	1.43	11.7	4.0	16.1	12.1
3	SRGe J160333.5+565843	2.84	0.72	19.6	5.0	3.4	2.0
4	SRGe J162319.0+583240	1.93	0.55	16.2	4.6	3.7	3.8
5	SRGe J154228.1+612334	4.63	1.18	18.8	4.8	4.3	6.1
6	SRGe J110206.7+585844	1.01	0.17	47.7	8.0	2.1	2.1
7	SRGe J151025.1+312803	4.12	1.35	12.8	4.2	3.9	1.1
8	SRGe J134621.4+392445	3.88	1.49	8.6	3.3	4.9	0.6
9	SRGe J151252.1+032834	5.97	1.74	13.7	4.0	3.5	4.7

Таблица 1. Рентгеновские свойства источников

Примечание. *F_x* и *δF_x* — поток в диапазоне 0.3–2 кэВ и погрешность; *C* и *δC* — отсчеты от источника (за вычетом уровня фона) в диапазоне 0.3–2 кэВ и погрешность; *σ* — среднеквадратичная сумма 1*σ* погрешностей в положении источника по прямому восхождению и склонению; *R* — расстояние до оптического компаньона.

Таблица 2. Результаты SRGz для всех задетектированных оптических объектов в области локализации рентгеновских источников

No	Источник еРОЗИТА	SDSS obiID ¹	SRGz					Архив.		
0 12	Helo link er öbritti	3D33 00j1D	$z_{ m ph}$	zConf	P_{qso}	$P_{\rm gal}$	Pmatch	$z_{ m sp}$	π , mas	
1	SRGe J162803.4+564442	1237668504365826834	$4.00\substack{+0.25 \\ -0.20}$	0.82	0.98	0.01	0.65			
2	SRGe J145520.2+242030	1237665442064171149	$3.40\substack{+0.07\\-0.30}$	0.74	0.95	0.03	0.91			
3	SRGe J160333.5+565843	1237665570363343025	$3.35\substack{+0.09\\-0.10}$	0.96	0.99	0.00	0.76			
		1237665570363343026	$0.33^{+2.20}_{-0.15}$	0.16	0.47	0.39	0.03			
4	SRGe J162319.0+583240	1237668504901910661	$3.08\substack{+0.11 \\ -0.25}$	0.74	0.99	0.00	0.96			
5	SRGe J154228.1+612334	1237671769611698315	$2.79\substack{+0.13 \\ -0.09}$	0.94	0.99	0.00	0.98			
6	SRGe J110206.7+585844	1237655108910514193	$2.79\substack{+0.09 \\ -0.09}$	0.97	0.99	0.00	0.99	2.77^{1}		
7	SRGe J151025.1+312803	1237662224619798597	$2.88\substack{+0.08\\-0.19}$	0.81	0.99	0.00	0.99	2.75^{2}		
		1237662224619798596			0.0026	0.0018	0.29		0.53 ± 0.03^3	
8	SRGe J134621.4+392445	1237662193459986587	$0.10^{+1.43}_{-0.10}$	0.22	0.37	0.13	0.59		0.56 ± 0.18^3	
		_	$0.49\substack{+0.56\\-0.10}$	0.24	_	_	_			
9	SRGe J151252.1+032834	1237654880205930906	$0.57\substack{+2.53 \\ -0.15}$	0.15	0.99	0.00	0.97			

Примечание. Фотометрические измерения SRGz: P_{match} — вероятность ассоциации рентгеновского объекта с выбранным оптическим компаньоном (вычисленная на основе только фотометрических данных об объекте, см. текст); P_{qso} и P_{gal} — вероятности того, что объект является квазаром и галактикой соответственно (на основе 3-классовой фотометрической классификации квазар/галактика/звезда); z_{phot} — фотометрическая оценка красного смещения и соответствующая 1 σ погрешность, zConf — достоверность photo-z, характеризующая вероятность найти спектральное красное смещение в интервале $z_{ph} \pm 0.06 \times (1 + z_{ph})$. Архивные спектроскопические данные: ¹ — SDSS DR16 (Ахумада и др., 2019), ² — LAMOST DR5 (Яо и др., 2019). Измерение годичного параллакса: ³ — GAIA DR2. Наиболее вероятный оптический партнер рентгеновского источника определялся SRGz по величине P_{match} . Жирным шрифтом отмечено фотометрическое красное смещение для настоящих оптических компаньонов выбранных рентгеновских источников.

Рис. 1. Слева показано изображение источника SRGe J162803.4+564442 в рентгеновском диапазоне 0.3–2.0 кэВ, справа — изображение его оптического компаньона в фильтре г из обзора Pan-STARRS. На левой панели маленьким кружком указано положение рентгеновского источника, красный крест показывает положение его оптического компаньона. На правой панели крестом указано положение рентгеновского источника, сточника, а стрелка указывает на положение его оптического компаньона. На обеих панелях центр окружности совпадает с положением рентгеновского источника, а ее радиус соответствует размеру области 95% ошибки на локализацию источника. Размер рентгеновского изображения составляет 3 × 3 угл. мин, оптического — 1 × 1 угл. мин.

реализованные в ней алгоритмы будут описаны в отдельной статье (Мещеряков и др., 2020).

Для каждого оптического кандидата SRGz определяет вероятность P_{match} его ассоциации с рентгеновским источником, в поле которого он находится (в данной работе величина P_{match} pacсчитывалась моделью классификации, принимая во внимание исключительно фотометрическую информацию об объекте). При выборе оптического компаньона рассматривались только оптические кандидаты в области 95% пространственной локализации рентгеновского объекта, выбирался наиболее вероятный оптический объект по величине Pmatch. Фотометрический классификатор SRGz позволяет для выбранного оптического компаньона рентгеновского источника также измерить вероятность того, что он является квазаром P_{qso} или галактикой $P_{\rm gal}$ (или звездой, $P_{\rm star} = 1 - P_{\rm qso} -$ - Pgal). Фотометрическая оценка красного смещения объекта доступна в SRGz как в виде полного прогноза условного вероятностного распределения $p(z|X_{\rm ph})$ для наблюдаемых фотометрических признаков объекта (X_{ph}), так и в виде точечного прогноза $z_{\rm ph}$ и его доверительного интервала CI_{lpha} с выбранным уровнем значимости а. Также путем интегрирования функции $p(z|X_{
m ph})$ для каждого источника определяется zConf — стандартная величина достоверности прогноза красного смещения, определяемая как вероятность найти спектральное красное смещение в окрестности $\pm 0.06(1 + z_{\rm ph})$ от наилучшей фотометрической оценки $z_{\rm ph}$.

С помощью системы SRGz для данной работы были отобраны девять рентгеновских источников еРОЗИТА, их рентгеновские свойства описаны в табл. 1. Далее мы более подробно рассмотрим отбор объектов для оптических наблюдений на РТТ-150.

Фотометрический отбор далеких квазаров

Первые семь рентгеновских источников в табл. 1 были отобраны с помощью SRGz как кандидаты в далекие квазары. Их наиболее вероятные оптические партнеры имеют фотометрическую классификацию "квазар" и фотометрическое красное смещение $z_{\rm ph} > 2.7$, измеренное с высокой достоверностью zConf > > 0.7 (табл. 2). За исключением двух объектов, № 3 и № 7 (SRGe J160333.5+565843 и SRGe J151025.1+312803 соответственно), все остальные объекты из данной группы имеют единственного оптического партнера в области 95% ошибки на локализацию рентгеновского источника (рис. 1–7). Для оптических компаньонов источников № 6 и № 7 существуют архивные

Рис. 2. То же, что на рис. 1, но для для источника SRGe J145520.2+242030.

Рис. 3. То же, что на рис. 1, но для для источника SRGe J160333.5+565843.

спектроскопические данные SDSS и LAMOST соответственно. Эти источники были включены в программу наблюдений РТТ-150 для кросс-калибровки.

Для SRGe J160333.5+565843 и SRGe J151025.1+312803 в области локализации рентгеновского источника присутствует второй оптический кандидат, который имеет значительно более низкую вероятность кросс-отождествления с рентгеновским источником: отношения вероятностей *P*_{match} для наиболее вероятного оптического компаньона и второго оптического объекта в области локализации рентгеновского источника составляют 0.76/0.03 (SRGe J160333.5+565843) и 0.99/0.29 (SRGe J151025.1+312803) (табл. 2). У источника SRGe J151025.1+312803 второй оптический объект является звездой Галактики (с надежным измерением параллакса по данным спутника Gaia) более яркой, чем оптический компаньон (рис. 7).

Целью спектроскопических измерений, прове-

Рис. 4. То же, что на рис. 1, но для для источника SRGe J162319.0+583240.

Рис. 5. То же, что на рис. 1, но для для источника SRGe J154228.1+612334.

денных на РТТ-150 для описанной выше группы объектов, было точное определение их красных смещений. Как будет показано далее, сделанные с помощью SRGz фотометрические оценки красных смещений хорошо согласуются с полученными на РТТ-150 спектральными измерениями. Это подтверждает высокую точность и надежность прогнозов системы SRGz при отборе далеких квазаров среди рентгеновских источников еРОЗИТА.

Примеры объектов с высокой неопределенностью измерений SRGz

Любая модель, основанная только на фотометрических данных, может содержать ошибки в силу своей вероятностной природы и недостаточной информативности фотометрических признаков. Таких ошибочных оценок фотометрических красных смещений мы ожидаем около 10% от общего числа прогнозов для точечных рентгеновских источников на внегалактическом небе. Источники

Рис. 6. То же, что на рис. 1, но для источника SRGe J110206.7+585844.

Рис. 7. То же, что на рис. 1, но для источника SRGe J151025.1+312803.

№ 8 и № 9 в табл. 1 (SRGe J134621.4+392445 и SRGe J151252.1+032834) являются примерами таких ошибочных прогнозов. Как подробно обсуждается ниже, для источника № 8 SRGz неверно указала оптический компаньон, для объекта № 9 измерение фотометрического красного смещения содержит большую неопределенность. Это лишь два примера такого рода среди всей массы внегалактических источников еРОЗИТА. Они были включены в программу спектральных наблюдений с целью исследования механизма возникновения подобных ошибок.

У объекта № 8 в области локализации рентгеновского источника находятся 2 оптических объекта — объект 18.5 зв. величины (г-фильтр) из каталога SDSS, который SRGz определила как наиболее верояный компаньон, и близкий (в 2") к нему более слабый оптический источник, найденный только в каталоге DESI LIS (табл. 2 и описание результатов спектроскопических на-

Рис. 8. То же, что на рис. 1, но для источника SRGe J134621.4+392445.

Рис. 9. То же, что на рис. 1, но для источника SRGe J151252.1+032834.

блюдений кандидатов в оптический компаньон SRGe J134621.4+392445 далее).

У объекта SRGe J151252.1+032834 (\mathbb{N} 9) в области локализации рентгеновского источника находится единственный оптический кандидат, детектируемый во всех рассматриваемых фотометрических каталогах SDSS/PanSTARRS/DESI LIS, но имеющий высокую неопределенность в оценке фотометрического красного смещения (68% доверительный интервал имеет ширину $|CI_{68\%}| > 1.5$).

С помощью оптических спектральных наблю-

дений на PTT-150 всех объектов, попадающих в область локализации рентгеновских источников SRGe J134621.4+392445 и SRGe J151252.1+ +032834 (рис. 8 и 9), была прояснена их физическая природа, определены их оптические партнеры и измерены их красные смещения. Детальные спектроскопические исследования таких объектов позволят повысить качество моделей SRGz для оптической идентификации рентгеновских источников и точность оценок фотометрических красных смещений.

N	Название	R.A.	Dec	Дата	$t_{ m exp},$ сек	r, mag	$z_{ m sp}$	Тип
1	SRGe J162803.4+564442	16 28 03.47	+56 44 43.6	26.04.20	3×1800	20.27	4.23	QSO
2	SRGe J145520.2+242030	14 55 19.46	+24 20 34.9	26.04.20	2×1800	19.41	3.47	QSO
3	SRGe J160333.5+565843	16 03 33.23	+56 58 38.7	14.05.20	3×1800	18.56	3.42	QSO
4	SRGe J162319.0+583240	16 23 18.76	+58 32 33.8	11.05.20	3×1800	18.49	3.24	QSO
5	SRGe J154228.1+612334	15 42 27.09	+61 23 29.5	26.04.20	2×1800	18.35	3.02	QSO
6	SRGe J110206.7+585844	11 02 06.85	+58 58 43.8	13.01.20	4×1800	18.00	2.77	QSO
7	SRGe J151025.1+312803	15 10 25.03	+31 28 01.4	21.04.20	3×1800	17.94	2.74	QSO
8	SRGe J134621.4+392445	13 46 21.33	+39 24 39.7	17.04.20	3×1800	20.3*	0.65	Sy2
				18.04.20	3×1800			
9	SRGe J151252.1+032834	15 12 51.74	+03 28 33.1	16.04.20	3×1800	19.18	0.61	Sy1

Таблица 3. Журнал наблюдений и полученные спектроскопические красные смещения. Объекты расположены в порядке уменьшения z

Примечание. R.A., Dec — оптические координаты источника из каталога GAIA DR2 (Gaia Collaboration, 2018); t_{exp} — количество и длительность экспозиций; г — звездная величина объекта в полосе г из архива SDSS DR14 (Аболфати и др., 2018); * — оценка звездной величины источника SRGe J134621.4+392445, выполненная по снимкам PTT-150 без фильтра при спектроскопических наблюдениях; z_{sp} — красное смещение, определенное по спектрам PTT-150; Тип — класссификация объекта (квазар, сейфертовская галактика типа 1 и 2).

СПЕКТРОСКОПИЯ АКТИВНЫХ ЯДЕР ГАЛАКТИК ИЗ ОБЗОРОВ СРГ/еРОЗИТА НА ТЕЛЕСКОПЕ РТТ-150

Спектральные наблюдения

Спектроскопические наблюдения кандидатов в далекие рентгеновские квазары, зарегистрированных телескопом СРГ/еРОЗИТА и выявленных с помощью системы SRGz, были выполнены на 1.5-м Российско-Турецком телескопе в квоте времени Казанского федерального университета в периоды, близкие к фазам новолуния в апреле-мае 2020 г. Дополнительные наблюдения в области Дыры Локмана выполнялись в январе 2020 г. в период фазы полнолуния.

В наблюдениях использовался прибор ТФОСК, оснащенный в 2019 г. новой высокочувствительной матрицей фирмы ANDOR с чипом DZ936_BR, DD¹ формата 2048 × 2048 пикселей размером 13.5 мкм, с охлаждением -80°С. Использовалась гризма 15 с входной щелью 0.134 мм (2.4 угл. сек), позволяющяя регистрировать спектр в диапазоне $\lambda 3800-8880$ Å со спектральным разрешением 15 Å. Для каждого объекта получалось по 2–3 спектра с экспозициями по 1800 сек каждый. В ряде сложных случаев (фон Луны, близкий оптический компаньон на луче зрения) получалось по четыре спектра с экспозицией по 1800 сек для каждого объекта. Детали наблюдений приведены в табл. 3.

Спектроскопическая обработка была выполнена с помощью пакета программ IRAF. Были проведены все необходимые процедуры обработки — вычитание тока смещения (байес), чистка спектральных изображений от следов космических частиц (использовался алгоритм LAcosmic (ван Доккум, 2001), построение дисперсионной кривой с использованием спектра лампы полого катода FeAr, экстрагирование одномерного спектра с параллельным вычитанием спектра фона неба. Отдельные спектры суммировались. Для увеличения отношения сигнал/шум суммарные спектры сглаживались скользящим средним по семи точкам. Итоговое спектральное разрешение составляет 19 Å. Для получения потоков в энергети-

¹ https://andor.oxinst.com/products/

ikon-xl-and-ikon-large-ccd-series/ikon-l-936

Rest λ, Å 800 1000 1200 1400 1600 Lyα SRGe J162803.4+564442 1.5 z = 4.23 $F_{\lambda}, 10^{-16} \text{ erg/s/sm}^2/\text{\AA}$ 5.0 0.1 0.1 ΝV C IV Lyβ Si IV O I 0 5000 7000 8000 9000 4000 6000 Observed λ , Å

Рис. 10. Спектр квазара SRGe J162803.4+564442.

ческих единицах каждую ясную фотометрическую ночь получались спектры спектрофотометрического стандарта — звезды солнечного типа с большим дефицитом металлов *HD* 84937. Выбор в качестве спектрофотометрического стандарта холодной звезды обусловлен тем, что гризма 15 в комплекте приборов серии ФОСК имеет второй порядок дифракции, который искажает спектр в красной области (>7000 Å), если наблюдать горячие звезды из списка белых карликов Оука. Холодная звезда *HD* 84937 не имеет значительного потока в ультрафиолетовой части спектра, поэтому не возникает искажений регистрируемого спектрального распределения в красной и ближней инфракрасной областях спектра.

Результаты спектроскопических наблюдений на РТТ-150

В табл. З приведены результаты спектроскопических определений красных смещений по данным РТТ-150 и классификация источников. Для того, чтобы наши измерения z были в одной системе с каталогами квазаров в проектах SDSS (Парис и др., 2018) и LAMOST (Яо и др., 2019), красные смещения определялись по линии C IV 1549 Å для квазаров (z = 2.7-4.2) и по линии Mg II 2800 Å для сейфертовских галактик (z = 0.6-0.7).

На рис. 10-19 приведены спектры РТТ-150 в энергетических единицах.

SRGe J134621.4+392445

Рентгеновский источник SRGe J134621.4+ +392445 система SRGz отождествила с более ярким оптическим объектом — звездой, имеющей звездную величину r = 18.5 mag. По данным спутника Gaia (DR2), эта звезда имеет параллакс

Rest λ , Å 800 1000 1200 1400 1600 1800 2000 7 Lyα SRGe J145520.2+242030 6 $F_{\lambda}, 10^{-16} \,\mathrm{erg/s/sm^2/\AA}$ z = 3.475 4 3 NV Lyβ C IV O I 2 0 VI C III Si IV 1 0 4000 5000 6000 7000 8000 9000 Observed λ , Å

Рис. 11. Спектр квазара SRGe J145520.2+242030.

 $\pi = 0.559 \pm 0.176$ тав, т.е. расположена на расстоянии около 1.8 кпк. Спектроскопические наблюдения на РТТ-150 (рис. 18) и предварительное моделирование спектра показали, что звезда имеет дефицит металлов ([Fe/H] = -1) с параметрами атмосферы $T_{\rm eff} = 5200$ K, $\log g = 4.5$, т.е. это карликовая звезда старой подсистемы Галактики раннего спектрального класса К. Используя цвет $B - V \approx 0.7$, ожидаемый для звезды с такими параметрами (Уорти & Ли, 2011), и калибровочные соотношения для фильтров SDSS (Джестер и др., 2005), мы оценили звездную величину объекта в фильтре $V \approx 18.7$ и отношение F_X/F_V , согласно формуле (Маккакаро и др., 1988):

$$\log(F_X/F_V) = \log(F_X) + 0.4V + 5.37.$$
 (1)

Полученное значение $\log(F_X/F_V) \approx -0.56$ заметно превышает более чем на 2σ верхнюю границу значений $\log(F_X/F_V)$ наблюдаемых у звезд спектрального класса К ($\log(F_X/F_V) \lesssim -1.57$) (Агуэрос и др., 2009), поэтому ассоциация рентгенов-

Рис. 12. Спектр квазара SRGe J160333.5+565843.

Рис. 13. Спектр квазара SRGe J162319.0+583240.

Рис. 14. Спектр квазара SRGe J154228.1+612334.

ского источника со звездой достаточно маловероятна.

С другой стороны, на расстоянии в ≈ 2 угл. сек от этой звезды и ≈0.6 угл. сек от рентгеновского источника находится более слабый оптический объект яркостью 20.3 звездной величины. Система SRGz оценила его фотометрическое красное смещение как $z_{\rm ph} = 0.49^{+0.56}_{-0.10}$ (табл. 2). Оптический спектр этого источника, полученный на РТТ-150 (рис. 17), является характерным для поглощенных сейфертовских галактик второго типа. Таким образом, мы полагаем, что оптическим двойником рентгеновского источника SRGe J134621.4+392445 является более слабый оптический объект яркостью r = 20.3 mag, а сам рентгеновский источник SRGe J134621.4+392445 является поглощенной сейфертовской галактикой, расположенной на z = = 0.65.

Рис. 15. Спектр квазара SRGe J110206.7+585844.

Рис. 16. Спектр квазара SRGe J151025.1+312803.

ЗАКЛЮЧЕНИЕ

В данной работе выполнена спектроскопия девяти оптических компаньонов рентгеновских источников из обзора неба СРГ/еРОЗИТА: семь кандидатов в далекие квазары (z > 2.75), выделенных системой SRGz среди многочисленных слабых рентгеновских источников, и два источника, характеризующиеся большой погрешностью фотометрической оценки красного смещения.

Семь источников, имеющих высокую достоверность определения фотометрического красного смещения (zConf > 0.7), спектроскопически подтверждены как квазары на z = 2.7-4.2. Фотометрические оценки красных смещений в пределах ошибок хорошо согласуются со спектральными измерениями, что подтверждает высокую точность и надежность прогнозов SRGz при отборе далеких квазаров. Более подробное сравнение спектроскопических и фотометрических красных смещений и количественная характеризация точности последних будут произведены на основании более широкой выборки во второй статье этой серии.

Рис. 17. Спектр сейфертовской галактики 2-го типа SRGe J134621.4+392445.

Рис. 18. Спектр звезды вблизи сейфертовской галактики 2-го типа SRGe J134621.4+392445.

Рис. 19. Спектр сейфертовской галактики 1-го типа SRGe J151252.1+032834.

Были получены спектры двух оптических компаньонов рентгеновских источников, для которых фотометрические оценки красных смещений характеризуются большой неопределенностью. Данные объекты оказались сейфертовскими галактиками на $z \approx 0.61$ и $z \approx 0.65$. Полученные спектроскопические данные позволят в будущем улучшить качество оптической идентификации и точность измерения photo-z для подобных объектов.

Полученные результаты демонстрируют, что созданная в ИКИ РАН в рабочей группе по составлению каталога источников СРГ/еРОЗИТА система SRGz обеспечивает высокую точность при поиске далеких рентгеновских квазаров среди источников СРГ/еРОЗИТА и может в дальнейшем применяться при отборе кандидатов для последующей оптической спектроскопии.

На 1.5-м Российско-Турецком телескопе (РТТ-150) возможно выполнение программы оптических отождествлений и спектроскопии далеких рентгеновских квазаров (открываемых космической обсерваторией СРГ), имеющих оптический блеск до 20-й звездной величины в полосе і, и красное смещение до z = 4.5.

Работа выполнена за счет средств субсидии (проект № 0671-2020-0052), выделенной Казанскому федеральному университету, для выполнения государственного задания в сфере научной деятельности. Авторы благодарны ТЮБИТАК, ИКИ, КФУ и АН РТ за частичную поддержку в использовании РТТ-150 (Российско-Турецкий 1.5-м телескоп в Анталии). Расчет измерений принудительной фотометрии по данным обзора WISE для объектов из обзора Pan-STARRS и подготовка этих данных для использования в алгоритме SRGz были выполнены при поддержке гранта РНФ 18-12-00520.

Это исследование основано на наблюдениях телескопа еРОЗИТА на борту обсерватории СРГ. Обсерватория СРГ изготовлена Роскосмосом в интересах Российской академии наук в лице Института космических исследований (ИКИ) в рамках Российской федеральной научной программы с участием Германского центра авиации и космонавтики (DLR). Рентгеновский телескоп СРГ/еРОЗИТА изготовлен консорциумом германских институтов во главе с Институтом внеземной астрофизики Общества им. Макса Планка (MPE) при поддержке DLR. Космический аппарат СРГ спроектирован, изготовлен, запущен и управляется НПО им. Лавочкина и его субподрядчиками. Прием научных данных осуществляется комплексом антенн дальней космической связи в Медвежьих озерах, Уссурийске и Байконуре и финансируется Роскосмосом. Использованные в настоящей работе данные телескопа еРОЗИТА обработаны с помощью программного обеспечения eSASS, разработанного германским консорциумом ePO3ИTA и программного обеспечения, разработанного российским консорциумом телескопа CPГ/ePO3ИTA. Система SRGz создана в рабочей группе по поиску рентгеновских источников, их отождествлению и составлению каталога по данным телескопа ePO3ИTA в отделе астрофизики высоких энергий ИКИ РАН.

Оптические координаты исследованных источников из каталога GAIA DR2 миссии GAIA Европейского космического агентства (https:// www.cosmos.esa.int/gaia), получены с использованием системы Aladin Sky Atlas, разработанной в Страсбургском Центре данных, Стасбургская обсерватория, Франция.

СПИСОК ЛИТЕРАТУРЫ

- Аболфати и др. (B. Abolfathi, D.S. Aguado, G. Aguilar, P. Allende, A. Almeida, T.T. Ananna, F. Anders, S.F. Anderson, et al.), Astrophys. J. Suppl. Ser. 235, 42 (2018).
- 2. Агуэрос и др. (М.А. Agüeros, S.F. Anderson, K.R. Covey, S.L. Hawley, B. Margon, E.R. Newsom, B. Posselt, N.M. Silvestri, et al.), Astrophys. J. Suppl. Ser. **181**, 444 (2009).
- Ахумада и др. (R. Ahumada, P. Allende, A. Almeida, F. Anders, S.F. Anderson, B.H. Andrews, B. Anguiano, R. Arcodia, et al.), принята в печать ApJS (2019). arXiv e-prints arXiv:1912.02905, (2019).
- 4. Буренин (Р.А. Буренин и др.), готовится к печати (2020).
- 5. ван Доккум (P.G. van Dokkum), PASP 113, 1420 (2001).
- Gaia Collaboration (A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, C.A.L. Bailer-Jones, M. Biermann, D.W. Evans, et al.), Astron. Astrophys. 616, 1 (2018).
- 7. Дей и др. (A. Dey, D.J. Schlegel, D. Lang, R. Blum, K. Burleigh, X. Fan, J.R. Findlay, D. Finkbeiner, et al.), Astron. J. **157**, 168 (2019).
- 8. Джестер и др. (S. Jester, D.P. Schneider, G.T. Richards, R.F. Green, M. Schmidt, P.B. Hall, M.A. Strauss, D.E. Vanden Berk, et al.), Astron. J. 130, 873 (2005).
- Додин и др. (А.В. Додин, С.А. Потанин, Н.И. Шатский, А.А. Белинский, К.Е. Атапин, М.А. Бурлак, О.В. Егоров, А.М. Татарников и др.), Письма в Астрон. журн. 46, 459 (2020) [А.V. Dodin et al., Astron. Lett. 46, 429 (2020)].

- 10. Зоу и др. (Н. Zou, X. Zhou, X. Fan, T. Zhang, Z. Zhou, X. Peng, J. Nie, L. Jiang, et al.), Astrophys. J. Suppl. Ser. **245**, 4 (2019).
- 11. Колодзиг и др. (A. Kolodzig, M. Gilfanov, R. Sunyaev, S. Sazonov, and M. Brusa), Astron. Astrophys. **558**, A89 (2013a).
- 12. Колодзиг и др. (A. Kolodzig, M. Gilfanov, G. Hütsi, R. Sunyaev), Astron. Astrophys. **558**, A90 (2013b).
- 13. Лэнг и др. (D. Lang, D. Hogg, and D. Schlegel), Astron. J. **151**, 36 (2016).
- 14. Маккакаро и др. (Т. Maccacaro, I.M. Gioia, A. Wolter, G. Zamorani, and J. T. Stocke), Astrophys. J. **326**, 680 (1988).
- 15. Медведев и др. (Р. Medvedev, S. Sazonov, M. Gilfanov, R. Burenin, G. Khorunzhev, A. Meshcheryakov, R. Sunyaev, I. Bikmaev, and E. Irtuganov), MNRAS **497**, 1842 (2020).
- Мещеряков и др. (А. Мещеряков, В. Глазкова, С. Герасимов, И. Машечкин), Письма в Астрон. журн. 44, 801 (2018). [А. Mescheryakov, A.V. Glazkova, S.V. Gersimov, I.V. Mashechkin, Astron. Lett. 44, 735 (2018)].
- 17. Мещеряков (А. Мещеряков), готовится к печати (2020).
- Парис и др. (I. Paris, P. Petitjean, E. Aubourg, A.D. Myers, A. Streblyanska, B.W. Luke, S.F. Anderson, E. Armengaud, et al.), Astron. Astrophys. 613, 51 (2018).
- 19. Предель и др. (P. Predehl et al.), готовится к печати (2020).
- 20. Сюняев и др. (R. Sunyaev et al.), готовится к печати (2020).
- Хорунжев и др. (Г.А. Хорунжев, Р.А. Буренин, А.В. Мещеряков, С.Ю. Сазонов), Письма в Астрон. журн. 42, 313 (2016). [G.A. Khorunzhev, R.A. Burenin, A.V. Meshcheryakov, S.Yu. Sazonov, Astron. Lett. 42, 277 (2016)].
- Хорунжев и др. (Г.А. Хорунжев, А.В. Мещеряков, Р.А. Буренин, А.Р. Ляпин, П.С. Медведев, С.Ю. Сазонов, М.В. Еселевич, Р.А. Сюняев и др.), Письма в Астрон. журн. 46, 155 (2020) [G.A. Khorunzhev et al., Astron. Lett. 46, 149 (2020)].
- 23. Чамберс и др. (К.С. Chambers, E.A. Magnier, N. Metcalfe, H.A. Flewellng, M.E. Huber, C.Z. Waters, L. Denneau, P.W. Draper, и др.), arXiv e-prints arXiv:1612.05560, (2016).
- 24. Уорти, Ли (G. Worthey and H. Lee), Astrophys. J. Suppl. Ser. **193**, 1 (2011).
- 25. Яоидр. (S. Yao, X-B. Wu, Y. L. Ai, J. Yang, Q. Yang, X. Dong, R. Joshi, F. Wang, и др.), Astrophys. J. Suppl. Ser. **240**, 6 (2019).