ПЕРЕМЕННАЯ ТИПА RRab T Men: ИЗМЕНЯЕМОСТЬ ПЕРИОДА И ЭФФЕКТ БЛАЖКО

© 2020 г. Л. Н. Бердников^{1*}, А. Ю. Князев^{1,2,3}, А. К. Дамбис¹, В. В. Кравцов¹

¹ Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

²Южно-Африканская астрономическая обсерватория, Кейптаун, ЮАР ³Южный Африканский Большой телескоп, Кейптаун, ЮАР

Поступила в редакцию 25.08.2020 г.

После доработки 21.09.2020 г.; принята к публикации 22.09.2020 г.

Для лириды Т Меп на 76-см телескопе Южно-Африканской астрономической обсерватории (SAAO, ЮАР) и на 1-м телескопах Las Cumbres Observatory Global Telescope (LCOGT) в 2012–2014 гг. было получено 3296 ПЗС-кадров в фотометрической системе BVI_c . Наши наблюдения показали несколько повышенный разброс точек на кривой блеска, что позволило обнаружить эффект Блажко с периодом ~18⁴49. Для изучения изменяемости пульсационного периода мы использовали все имеющиеся наблюдения, в том числе 1325 оценок блеска из оцифрованной фототеки обсерватории Гарвардского университета (проект DASCH), что позволило нам построить O - C диаграмму, охватывающую временной интервал 125 лет, и впервые обнаружить по меньшей мере три скачкообразных изменения периода пульсаций.

Ключевые слова: звезды типа RR Лиры, эффект Блажко, изменяемость периодов пульсаций, фотометрия.

DOI: 10.31857/S0320010820100034

ВВЕДЕНИЕ

Звезды типа RR Лиры, в силу их высокой светимости и большого возраста, являются идеальными индикаторами расстояний для изучения структуры и кинематики старых подсистем Галактики — гало и толстого диска. Однако к 2010 г. число лирид с высокоточной многоцветной фотометрией в оптическом диапазоне было невелико — всего около 300 (Бирс, 2000; Дамбис и др., 2009). Поэтому мы начали программу фотометрических наблюдений как можно бо́льшего числа лирид, включая T Men.

Наши первые наблюдения лирид (Бердников и др., 2012) показали повышенный разброс точек на кривых блеска десятка звезд, что заставило заподозрить наличие эффекта Блажко (1907), для изучения которого мы продолжили наблюдения этих объектов. Результаты исследований двух лирид уже опубликованы: SW Dor (Бердников и др., 2016) и DU Mon (Бердников и др., 2017). В данной работе мы изучаем T Men. ПЗС-наблюдения Т Меп проводились в течение четырех наблюдательных сезонов с декабря 2010 г. по январь 2014 г. (интервал JD 2455533—56676) на 76-см телескопе Южно-Африканской астрономической обсерватории (SAAO) в ЮАР, где использовалась камера SBIG CCD ST-10XME, оснащенная фильтрами *BVI*_c системы Крона—Казинса (Казинс, 1976). Методика наблюдений и обработки описана в работе Бердникова и др. (2012), где были опубликованы 322 наблюдения, полученные в первый наблюдательный сезон. В течение следующих трех сезонов были получены 2722 ПЗС-кадра; ошибки фотометрии близки к 0^m01.

Кроме того, мы использовали Las Cumbres Observatory Global Telescope (LCOGT) Network (Браун и др., 2013), где в интервале JD 2456635–56687 были получены 574 ПЗС-снимка в фильтрах BVI_c . Для обработки LCOGT-наблюдений применялась дифференциальная фотометрия относительно вторичных стандартов, величины которых были определены по наблюдениям в SAAO; ошиб-ки фотометрии здесь близки к 0^m02.

НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

^{*}Электронный адрес: lberdnikov@yandex.ru

T Men Max JDH = 2456287.4765 + 0.4097892 E

Рис. 1. Кривые изменения блеска лириды Т Меп в фильтрах *B*, *V* и *I*_c. Несколько повышенный разброс точек обусловлен эффектом Блажко.

Рис. 2. *О* – *С* диаграмма Т Меп.

Таблица 1. Наблюдательный материал для Т Меп

Источник данных	Число наблюдений	Тип наблюдений	Интервал JD
DASCH	1325	Фотографические (pg)	2411298-2447773
Гецшпрунг (1929)	46	Фотографические (pg)	2423756-2423799
ASAS-3	517	V	2451868-2455166
ASAS-SN	4383	V,g'	2456776-2458871
OGLE	801	V, I_c	2455260-2457507
Бердников и др. (2012)	322	BVI_c	2455533-2455564
Бердников и др. (2020)	3296	BVI_c	2455896-2456687

Все наши новые наблюдения опубликованы в статье Бердникова и др. (2020). Кривая блеска, построенная с элементами

 $Max HJD = 2456287.4765 + 0.4097892 E, \quad (1)$

изображена на рис. 1, который подтверждает наличие эффекта Блажко, заподозренного нами ранее (Бердников и др., 2012).

Для исследования изменяемости периода, кроме наших наблюдений, мы использовали фотографические наблюдения из базы данных оцифрованных фотопластинок Гарвардского университета DASCH (Гриндлей, 2009) и фотографические наблюдения из работы Герцшпрунга (1929), а также ПЗС-наблюдения из обзоров ASAS-3 (Поймански, 2002), ASAS-SN (Яясингхе и др., 2019) и OGLE (Сошински и др., 2016).

Сведения о количестве использованных наблюдений приведены в табл. 1. Самая старая фотопластинка с изображением Т Меп, хранящаяся в гарвардской фототеке, была получена в 1895 г., а последний ПЗС-снимок — в 2020 г. Следовательно, наши данные охватывают временной интервал 125 лет.

ИЗМЕНЯЕМОСТЬ ПУСАЦИОННОГО ПЕРИОДА

Для изучения изменяемости периода пульсаций Т Меп мы используем общепринятую методику анализа *О* – *С* диаграмм. Самым точным методом определения остатков *О* – *С* является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992).

Результаты обработки сезонных кривых Т Меп методом Герцшпрунга приведены в табл. 2. В первом и втором столбцах даны моменты максимального блеска и ошибки их определения, в третьем —

тип используемых наблюдений (см. табл. 1), в четвертом и пятом — номер эпохи E и значение остатка O - C, а в шестом и седьмом — число наблюдений N и источник данных. Данные из табл. 2 изображены на O - C диаграмме (рис. 2) квадратиками (фотографические наблюдения) и кружками (все остальные) с вертикальными черточками, указывающими пределы ошибок определения остатков O - C, вычисленных относительно средних элементов для фотографических наблюдений:

Max HJD = 2430438.1701 + 0.40984169 E. (2)

Из-за отсутствия наблюдений в трех больших прогалах в окрестностях JD 2420000, 2440000 и 2450000 возможны просчеты эпох Е, поэтому при построении O - C диаграммы мы дополнительно изобразили точками моменты поярчаний, т.е. юлианские даты фотографических пластинок, на которых яркость Т Меп близка к максимальной. Отметим, что теперь в окрестности JD 2420000 просчета эпохи нет, однако, в двух других — просчет возможен.

O-C диаграмму можно представить отрезками прямых линий, что указывает на серию скачкообразных изменений периода. На O-C диаграмме для ПЗС-наблюдений (рис. 3), построенной с элементами (1), видны два скачка периода, т.е. существуют еще два интервала JD (до и после наших наблюдений), где действуют другие элементы, которые вместе с элементами (1) и (2) помещены в табл. 3. В последней строке табл. 3 приведены текущие элементы.

По ПЗС-наблюдениям было найдено, что максимумы в фильтре B наступают раньше на 0⁴0005, чем в фильтре V, а в фильтрах I_c и g' — позже на 0⁴0039 и 0⁴0013 соответственно. Эти поправки учитывалась при построении рис. 2 и рис. 3 и

Таблица 2. Моменты максимального блеска Т Меп

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2414094.5058	0.0064	pg	-39878	0.0030	23	DASCH
2417024.1193	0.0041	pg	-32730	0.0681	22	DASCH
2423779.4969	0.0028	pg	-16247	0.0252	46	Герцшпрунг (1929)
2424020.0707	0.0068	pg	-15660	0.0219	30	DASCH
2425454.0830	0.0018	pg	-12161	-0.0019	60	DASCH
2426629.8846	0.0022	pg	-9292	-0.0361	84	DASCH
2427781.5622	0.0014	pg	-6482	-0.0136	140	DASCH
2428934.8575	0.0016	pg	-3668	-0.0128	151	DASCH
2429765.5765	0.0016	pg	-1641	-0.0429	113	DASCH
2430490.9863	0.0009	pg	129	-0.0529	126	DASCH
2431241.8720	0.0012	pg	1961	0.0028	136	DASCH
2431832.8506	0.0011	pg	3403	-0.0103	189	DASCH
2432572.2206	0.0015	pg	5207	0.0053	132	DASCH
2433513.6345	0.0023	pg	7504	0.0128	60	DASCH
2443984.3315	0.0137	pg	33052	0.0744	29	DASCH
2446781.4163	0.0071	pg	39877	-0.0104	30	DASCH
2452241.4391	0.0016	V	53200	-0.3089	129	ASAS-3
2453123.3663	0.0020	V	55352	-0.3610	125	ASAS-3
2453928.2369	0.0016	V	57316	-0.4195	129	ASAS-3
2454638.8317	0.0015	V	59050	-0.4902	134	ASAS-3
2455535.9284	0.0011	I_c	61239	-0.5408	242	OGLE
2455545.3443	0.0004	В	61262	-0.5470	115	Бердников и др. (2012)
2455545.3485	0.0005	I_c	61262	-0.5471	103	Бердников и др. (2012)
2455545.7545	0.0004	V	61263	-0.5470	104	Бердников и др. (2012)
2455554.3615	0.0007	V	61284	-0.5468	79	OGLE
2455919.4903	0.0003	I_c	62175	-0.5907	388	Бердников и др. (2020)
2455920.3059	0.0003	V	62177	-0.5910	462	Бердников и др. (2020)
2455922.3527	0.0003	В	62182	-0.5929	332	Бердников и др. (2020)
2455934.2433	0.0006	I_c	62211	-0.5920	230	OGLE
2456196.5045	0.0011	V	62851	-0.6256	39	OGLE
2456252.2344	0.0010	I_c	62987	-0.6380	83	OGLE
2456298.1296	0.0003	В	63099	-0.6408	271	Бердников и др. (2020)
2456298.5397	0.0003	V	63100	-0.6411	271	Бердников и др. (2020)

Таблица 2. Окончание

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2456298.5435	0.0004	I_c	63100	-0.6411	269	Бердников и др. (2020)
2456642.7648	0.0004	V	63940	-0.6829	245	Бердников и др. (2020)
2456642.7687	0.0005	I_c	63940	-0.6829	242	Бердников и др. (2020)
2456643.1737	0.0003	В	63941	-0.6834	242	Бердников и др. (2020)
2456647.2766	0.0004	I_c	63951	-0.6833	256	Бердников и др. (2020)
2456655.4661	0.0004	V	63971	-0.6868	157	Бердников и др. (2020)
2456655.4664	0.0004	В	63971	-0.6860	161	Бердников и др. (2020)
2456874.7043	0.0008	I_c	64506	-0.7177	72	OGLE
2456933.2936	0.0006	V	64649	-0.7319	185	ASAS-SN
2456962.7997	0.0006	V	64721	-0.7344	201	ASAS-SN
2457093.9423	0.0005	V	65041	-0.7412	202	ASAS-SN
2457097.6310	0.0005	V	65050	-0.7410	209	ASAS-SN
2457307.8642	0.0006	V	65563	-0.7566	152	ASAS-SN
2457402.5224	0.0006	I_c	65794	-0.7757	56	OGLE
2457432.0205	0.0007	V	65866	-0.7823	150	ASAS-SN
2457651.2504	0.0006	V	66401	-0.8177	145	ASAS-SN
2457797.9557	0.0005	V	66759	-0.8357	165	ASAS-SN
2458012.6959	0.0006	V	67283	-0.8526	172	ASAS-SN
2458108.5880	0.0004	g'	67517	-0.8648	221	ASAS-SN
2458125.3882	0.0005	V	67558	-0.8668	171	ASAS-SN
2458186.0402	0.0006	g'	67706	-0.8727	187	ASAS-SN
2458200.3832	0.0004	g'	67741	-0.8741	221	ASAS-SN
2458214.7266	0.0005	g'	67776	-0.8752	205	ASAS-SN
2458353.6561	0.0006	V	68115	-0.8808	118	ASAS-SN
2458446.6815	0.0004	g'	68342	-0.8907	250	ASAS-SN
2458460.6110	0.0005	g'	68376	-0.8957	158	ASAS-SN
2458470.0339	0.0005	g'	68399	-0.8992	231	ASAS-SN
2458544.2052	0.0005	g'	68580	-0.9093	267	ASAS-SN
2458789.6549	0.0006	g'	69179	-0.9548	158	ASAS-SN
2458808.5070	0.0005	g'	69225	-0.9554	214	ASAS-SN
2458851.5377	0.0007	g'	69330	-0.9581	251	ASAS-SN
2458879.8150	0.0008	g'	69399	-0.9599	150	ASAS-SN

БЕРДНИКОВ и др.

Рис. 3. *О* – *С* диаграмма Т Меп для ПЗС-наблюдений. Данные ASAS, ASAS-SN и OGLE обозначены заполненными кружками, точками и пустыми квадратиками соответственно, а наши данные обозначены пустыми кружками.

Габлица 3. Эле	менты изменения	блеска	Т	Men
----------------	-----------------	--------	---	-----

Интервал JD	Начальная эпоха (JD)	Период, сут
2411298-2447773	2430438.1701 ± 0.0226	$0.40984169 \pm 0.00000984$
2452000-2455600	2453893.3944 ± 0.0041	$0.40981109 \pm 0.00000146$
2455600-2456700	2456287.4765 ± 0.0022	$0.40978920 \pm 0.00000118$
2456700-2459600	2457877.0548 ± 0.0014	$0.40979317 \pm 0.00000091$

определении элементов, которые таким образом относятся к системе V.

Отметим, что полученные здесь результаты по изменяемости периода основаны на конкретных стандартных кривых, которые опубликованы в работе Бердникова и др. (2020).

ЭФФЕКТ БЛАЖКО

Для поиска периода эффекта Блажко мы использовали метод Горанского (1976), который заключается в следующем. Для каждого пробного значения периода Блажко *P*_{Bl} все наблюдения делятся по фазам *P*_{Bl} (в нашем случае) на 10 равных интервалов, внутри которых проводится сортировка по фазам основного периода. Затем вычисляется суммарный параметр рассеяния S_N , который представляет собой нормализованную сумму квадратов уклонений каждой последующей точки составной кривой блеска от предыдущей по фазе точки. Для реального значения P_{Bl} в каждом из 10 интервалов (рис. 4) почти не содержится рассеяния наблюдений, вызванного самим эффектом Блажко, поэтому величина параметра рассеяния S_N будет минимальная (рис. 5).

К сожалению, низкая точность фотографических и ПЗС-наблюдений из каталога ASAS-3 (где Т Меп близка к пределу, почему эффект Блажко и не был обнаружен Щигелем и Фабрицки (2007), которые исследовали все лириды из каталога ASAS-3) не позволила определить *P*_{Bl}. Кроме того, после JD 2456800 пульсационный период ис-

Рис. 4. Фазовая кривая блеска Т Меп в фильтре *B* в 10 последовательных узких интервалах фаз *NF*_{Bl} периода эффекта Блажко (*P*_{Bl} = 18^d:49).

Рис. 5. Зависимость нормированного параметра рассеяния S_N от пробного значения F_{Bl} частоты эффекта Блажко для наблюдений Т Меп в фильтре *B*. Параметр рассеяния S_N достигает минимума при $F_{Bl} = 0.054072 (P_{Bl} = 18^{d}49)$.

Рис. 6. Зависимость амплитуд A из табл. 4 в фильтрах B (пустые кружки), V (заполненные квадратики) и I_c (пустые квадратики) от порядка гармоники $N(f_0)$. Амплитуды гармоник изображены большими, а амплитуды левых и правых компонентов триплетов изображены маленькими значками.

Рис. 7. Кривые блеска Т Меп в фильтрах *B*, *V* и *I*_c в узких интервалах фаз *P*_{Bl}, соответствующих максимальной и минимальной амплитуде (по наблюдениям, полученным в данной работе).

Рис. 8. Кривые блеска Т Меп в узких интервалах фаз P_{Bl} , соответствующих максимальной и минимальной амплитуде, в фильтрах V и g' (ASAS-SN) и в фильтре I_c (OGLE).

пытывает значительные изменения (рис. 3), что затрудняет поиск *P*_{Bl} по данным ASAS-SN и OGLE. Поэтому мы вынуждены были ограничиться только нашими ПЗС-наблюдениями.

Минимальные значения параметра рассеяния для наблюдений в фильтрах B, V и I_c соответствуют величине P_{Bl} 18.494, 18.498 и 18.482 соответственно.

Используя программу PERIOD04 (Ленц, Брегер, 2004), мы посчитали спектр мощности для наблюдений в трех фильтрах. В табл. 4 приведены наиболее надежные частоты триплетов гармоник пульсационного периода; разность частот компонентов и соответствующей гармоники и дает частоту эффекта Блажко. Зависимость амплитуд триплетов от порядка гармоник, показанная на рис. 6, согласуется с результатами, полученными для других лирид с эффектом Блажко (Коленберг, 2009, 2011).

23 компонента триплетов гармоник дают среднюю частоту эффекта Блажко 0.054081 d^{-1} , что соответствует периоду 18^d491. Среднее значение периода эффекта Блажко по двум методам $P_{Bl} =$ = 18^d49 ± 0^d02.

На рис. 7 приведены кривые блеска Т Меп в фильтрах B, V и I_c , свернутые с пульсационным периодом в узких интервалах фаз P_{Bl} , соответствующих максимальной и минимальной амплитуде.

По данным табл. 2 были учтены смещения сезонных кривых для наблюдений из каталогов

БЕРДНИКОВ и др.

Фильтр	Комбинация частот	Частота (d^{-1})	Амплитуда (<i>mag</i>)	Фаза ($rad/2\pi$)
В	$f_0 - f_{Bl}$	2.3861337 ± 0.0000518	0.0142 ± 0.0017	0.8088 ± 0.0172
I_c	$f_0 - f_{Bl}$	2.3861884 ± 0.0002113	0.0028 ± 0.0012	0.6705 ± 0.0704
V	f_0	2.4402845 ± 0.0000021	0.3554 ± 0.0018	0.2053 ± 0.0007
В	f_0	2.4402852 ± 0.0000015	0.4805 ± 0.0020	0.1745 ± 0.0005
I_c	f_0	2.4402854 ± 0.0000029	0.2085 ± 0.0012	0.1316 ± 0.0009
V	$f_0 + f_{Bl}$	2.4943508 ± 0.0000458	0.0166 ± 0.0017	0.7727 ± 0.0152
I_c	$f_0 + f_{Bl}$	2.4944276 ± 0.0000602	0.0100 ± 0.0012	0.4548 ± 0.0200
В	$f_0 + f_{Bl}$	2.4944179 ± 0.0000371	0.0198 ± 0.0017	0.0468 ± 0.0123
V	$2f_0 - f_{Bl}$	4.8263329 ± 0.0000664	0.0115 ± 0.0017	0.2837 ± 0.0221
I_c	$2f_0$	4.8805582 ± 0.0000059	0.1024 ± 0.0012	0.3635 ± 0.0019
V	$2f_0$	4.8805600 ± 0.0000045	0.1673 ± 0.0018	0.2670 ± 0.0015
В	$2f_0$	4.8805677 ± 0.0000032	0.2261 ± 0.0021	0.8351 ± 0.0010
I_c	$2f_0 + f_{Bl}$	4.9346037 ± 0.0000645	0.0093 ± 0.0012	0.1579 ± 0.0215
В	$2f_0 + f_{Bl}$	4.9347214 ± 0.0000277	0.0265 ± 0.0018	0.5551 ± 0.0092
V	$2f_0 + f_{Bl}$	4.9347854 ± 0.0000546	0.0139 ± 0.0018	0.9419 ± 0.0182
I_c	$3f_0 - f_{Bl}$	7.2667908 ± 0.0000925	0.0065 ± 0.0012	0.1191 ± 0.0308
V	$3f_0 - f_{Bl}$	7.2668161 ± 0.0000655	0.0116 ± 0.0018	0.7248 ± 0.0218
В	$3f_0$	7.3208032 ± 0.0000056	0.1297 ± 0.0019	0.2502 ± 0.0018
I_c	$3f_0$	7.3208287 ± 0.0000100	0.0604 ± 0.0012	0.7926 ± 0.0033
V	$3f_0$	7.3208309 ± 0.0000000	0.0947 ± 0.0017	0.6839 ± 0.0026
В	$3f_0 + f_{Bl}$	7.3747541 ± 0.0000429	0.0171 ± 0.0018	0.3658 ± 0.0143
V	$3f_0 + f_{Bl}$	7.3749567 ± 0.0000540	0.0141 ± 0.0018	0.9339 ± 0.0180
I_c	$3f_0 + f_{Bl}$	7.3750184 ± 0.0000643	0.0094 ± 0.0012	0.4204 ± 0.0214
V	$4f_0 - f_{Bl}$	9.7070023 ± 0.0000843	0.0090 ± 0.0017	0.9179 ± 0.0281
I_c	$4f_0 - f_{Bl}$	9.7070864 ± 0.0001067	0.0056 ± 0.0012	0.1212 ± 0.0355
В	$4f_0$	9.7610907 ± 0.0000109	0.0675 ± 0.0018	0.7256 ± 0.0036
I_c	$4f_0$	9.7610964 ± 0.0000170	0.0354 ± 0.0012	0.4088 ± 0.0056
V	$4f_0$	9.7610974 ± 0.0000141	0.0538 ± 0.0018	0.3486 ± 0.0047
В	$4f_0 + f_{Bl}$	9.8152016 ± 0.0000577	0.0127 ± 0.0017	0.7555 ± 0.0192
V	$4f_0 + f_{Bl}$	9.8152147 ± 0.0000596	0.0128 ± 0.0018	0.0424 ± 0.0198
I_c	$4f_0 + f_{Bl}$	9.8155805 ± 0.0002427	0.0024 ± 0.0012	0.4182 ± 0.0809

Таблица 4. Амплитуды и фазы компонентов пульсационных и модуляционных колебаний Т Меп

Таблица 4. Окончание

Фильтр	Комбинация частот	Частота (d^{-1})	Амплитуда (<i>mag</i>)	Φ аза ($rad/2\pi$)
В	$5f_{0}$	12.2013623 ± 0.0000196	0.0374 ± 0.0018	0.1339 ± 0.0065
V	$5f_0$	12.2013782 ± 0.0000255	0.0298 ± 0.0018	0.2184 ± 0.0085
I_c	$5f_0$	12.2014049 ± 0.0000358	0.0169 ± 0.0012	0.7086 ± 0.0119
V	$5f_0 + f_{Bl}$	12.2553786 ± 0.0000699	0.0109 ± 0.0018	0.4770 ± 0.0233
I_c	$5f_0 + f_{Bl}$	12.2554156 ± 0.0000818	0.0073 ± 0.0012	0.3632 ± 0.0272
I_c	$6f_0$	14.6415756 ± 0.0000620	0.0097 ± 0.0012	0.7673 ± 0.0206
В	$6f_0$	14.6416413 ± 0.0000278	0.0265 ± 0.0017	0.1112 ± 0.0092
V	$6f_0$	14.6417000 ± 0.0000615	0.0124 ± 0.0023	0.7890 ± 0.0205
I_c	$6f_0 + f_{Bl}$	14.6956327 ± 0.0000898	0.0067 ± 0.0012	0.9247 ± 0.0299
V	$6f_0 + f_{Bl}$	14.6956457 ± 0.0000911	0.0083 ± 0.0017	0.1881 ± 0.0303
I_c	$7f_0$	17.0820044 ± 0.0000812	0.0074 ± 0.0012	0.3322 ± 0.0270
V	$7f_0$	17.0820528 ± 0.0000725	0.0105 ± 0.0017	0.6230 ± 0.0241
В	$8f_0$	19.5221327 ± 0.0000510	0.0144 ± 0.0016	0.7848 ± 0.0170

ASAS-SN и OGLE, и на рис. 8 показаны кривые блеска Т Меп в фильтрах V, g' и I_c , свернутые с пульсационным периодом в узких интервалах фаз $P_{Bl} = 18.49$, соответствующих максимальной и минимальной амплитуде. Рисунок 8 подтверждает реальность найденного значения: P_{Bl} .

ЗАКЛЮЧЕНИЕ

1. Получено 3618 ПЗС-кадров в системе BVI_c для лириды Т Меп. Наши наблюдения позволили впервые обнаружить эффект Блажко у этой звезды и определить его период: $P_{Bl} = 18^{d}.49 \pm 0.402$.

3. Построена *O* – *C* диаграмма для T Men, которая, благодаря фотографическим наблюдениям по Гарвардским фотопластинкам, охватывает временной интервал в 125 лет, что позволило впервые обнаружить по меньшей мере три скачкообразных изменения периода пульсаций.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (гранты 18-02-00890 и 19-02-00611) и Национального Исследовательского Фонда (National Research Foundation) ЮАР. В данном исследовании использованы данные наблюдений Глобальной сети телескопов обсерватории Лас Кумбрес (Las Cumbres Observatory Global Telescope Network, LCOGT) и наблюдений, выполненных на Южноафриканской астрономической обсерватории (SAAO).

СПИСОК ЛИТЕРАТУРЫ

- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- Бердников и др. (Бердников Л.Н., Возякова О.В., Князев А.Ю., Кравцов В.В., Дамбис А.К., Жуйко С.В.), Астрон. журн. 89, 328 (2012) [L.N. Berdnikov, O.V. Vosyakova, A.Yu. Kniazev, V.V. Kravtsov, A.K. Dambis, and S.V. Zhuiko, Astron. Rep. 56, 290 (2012)].
- Бердников и др. (L.N. Berdnikov, A.Yu. Kniazev, A.K. Dambis, and V.V. Kravtsov), Variable Stars 40, No.5 (2020).
- Бердников и др. (Бердников Л.Н., Князев А.Ю., Дамбис А.К., Кравцов В.В., Пастухова Е.Н.), Письма в Астрон. журн. 43, 538 (2017) [L.N. Berdnikov, А.Yu. Kniazev, А.K. Dambis, V.V. Kravtsov, and E.N. Pastukhova, Astron. Lett. 43, 489 (2017)].
- 5. Бердников и др. (L.N. Berdnikov, A.Yu. Kniazev, A.K. Dambis, V.V. Kravtsov, and R. Sefako), Astrophys. Space Sci. **361**, id. 320, 9 (2016).
- 6. Бирс и др. (T.C. Beers, M. Chiba, Y. Yoshii, I. Platais, R. Hanson, B. Fuchs, and S. Rossi), Astron. J. **119**, 2866 (2000).
- 7. Блажко (S. Blazhko), Astron. Nachr. **175**, 325 (1907).
- 8. Браун и др. (Т.М. Brown, N. Baliber, F.B. Bianco, M. Bowman, B. Burleson, P. Conway, M. Crellin, and E. Depagne), Publ. Astron. Soc. Pacific **125**, 1031 (2013).

- 9. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).
- Горанский В.П., Переменные звезды. Приложение 2, 323 (1976).
- 11. Гриндлей и др. (J. Grindlay, S. Tang, R. Simcoe, S. Laycock, E. Los, D. Mink, A. Doane, and G. Champine), ASP Conf. Ser. **410**, 101 (2009).
- 12. Дамбис (A. Dambis), MNRAS **396**, 553 (2009).
- 13. Казинс (A.W.J. Cousins), MmRAS 81, 25 (1976).
- 14. Коленберг и др. (K. Kolenberg, S. Bryson, R. Szabo, D.W. Kurtz, R. Smolec, J.M. Nemec, E. Guggenbreger, P. Moskalik, et al.), MNRAS 411, 878 (2011).
- 15. Коленберг и др. (К. Kolenberg, E. Guggenberger, T. Medupe, P. Lenz, L. Schmitzberger, R.R. Shobbrook, P. Beck, B. Ngwato, et al.), MNRAS **396**, 263 (2009).

- 16. Летц, Брегер (P. Lenz and M. Breger), Proceed. IAU Symp. 224, 786 (2004).
- 17. Поймански (G. Pojmanski), Acta Astron. 52, 397 (2002).
- Сошински и др. (I. Soszynski, A. Udalski, M.K. Szymanski, L. Wyrzykowski, K. Ulaczyk, R. Poleski, P. Pietrukowicz, S. Kozlowski, et al.), Acta Astron. 66, 131 (2016).
- 19. Щигель, Фабрицки (D.M. Szczygiel and D.C. Fabrycky), MNRAS **377**, 1263 (2007).
- 20. Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Dong Subo, et al.), MNRAS **485**, 961 (2019).