BVIcg'r'i НАБЛЮДЕНИЯ И ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДА ЦЕФЕИДЫ V1467 Суд

© 2020 г. Л. Н. Бердников^{1*}, А. А. Белинский¹, Е. Н. Пастухова², М. А. Бурлак¹, Н. П. Иконникова¹, Е. О. Мишин¹

¹ Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

> ²Институт астрономии РАН, Москва, Россия Поступила в редакцию 20.02.2020 г. После доработки 20.02.2020 г.; принята к публикации 25.02.2020 г.

На 60-см телескопе Кавказской Горной Обсерватории ГАИШ МГУ получены $BVI_cg'r'i'$ наблюдения классической цефеиды V1467 Суg. Привлечение всей доступной фотометрии позволило построить O-C диаграмму, охватывающую временной интервал 107 лет. Это позволило впервые вычислить скорость эволюционного уменьшения периода V1467 Суg $dP/dt = -431.5 ~(\pm 8.2) ~c/$ год, что согласуется с результатами модельных расчетов для второго пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность эволюционных изменений периода.

Ключевые слова: цефеиды, изменяемость периодов, эволюция звезд.

DOI: 10.31857/S0320010820030018

ВВЕДЕНИЕ

Согласно теории, О-С диаграммы цефеид за время пересечения полосы нестабильности могут быть аппроксимированы многочленом степени три или выше (Ферни 1990), которые на типично наблюдаемом интервале времени (порядка столетия) выглядят как параболы или, в редких случаях, кубические параболы. Обнаружение парабол на О-С диаграммах позволяет вычислить скорости наблюдаемых эволюционных изменений периодов. Сравнение их с модельными расчетами для разных пересечений полосы нестабильности позволяет идентифицировать номер пересечения, что, в перспективе, даст возможность построить зависимость период-светимость отдельно для каждого пересечения, что, в свою очередь, приведет к более точному определению расстояний цефеид.

Согласно теории звездной эволюции, чем больше масса (а значит, и период) цефеиды, тем быстрее она эволюционирует и тем легче обнаружить параболу на ее O-C диаграмме; в частности, для цефеид с периодами больше 30 дней параболы должны быть обнаружимы уже на 30-летнем интервале времени (Ферни, 1990; Фадеев, 2014). Мы изучили стабильность пульсаций 11 таких цефеид, и оказалось, что случайные флуктуации перидов шести из них искажают их O-C диаграммы настолько, что их параболическая форма становится обнаружимой только на интервале времени порядка столетия, а для двух цефеид (EV Aql и V1496 Aql) не заметна вообще. Чтобы понять причину такого несоответствия, необходимо увеличить статистику. Поэтому в данной работе мы исследуем поведение пульсаций цефеиды V1467 Cyg, период изменения блеска которой составляет 48.6.

МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа O-C диаграмм, а самым точным методом определения остатков O-C является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992а). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

^{*}Электронный адрес: berdnik@sai.msu.ru

Таблица 1. ПЗС-наблюдения V1467 Суд

HJD, 2400000+	Фильтр	Блеск	HJD, 2400000+	Фильтр	Блеск	HJD, 2400000+	Фильтр	Блеск
58719.386	i'	11.397	58719.386	r'	12.611	58719.387	g'	14.833
58719.388	I_c	10.785	58719.389	В	16.191	58719.390	V	13.697
58723.371	i'	11.037	58723.371	r'	12.138	58723.372	g'	14.123
58723.373	I_c	10.425	58723.375	В	15.377	58723.378	V	13.110
58723.378	i'	11.023	58723.379	r'	12.139	58723.380	g'	14.133
58724.352	i'	10.981	58724.352	r'	12.089	58724.353	g'	14.071
58724.354	I_c	10.381	58724.356	В	15.296	58724.359	i'	10.967
58724.359	r'	12.097	58724.360	g'	14.079	58724.361	I_c	10.387
58724.363	В	15.300	58724.366	V	13.066	58724.366	i'	10.990
58724.367	r'	12.085	58724.368	g'	14.075	58724.368	I_c	10.356
58724.370	В	15.312	58724.373	V	13.066	58727.347	i'	10.959
58727.348	r'	12.075	58727.348	g'	14.082	58727.349	I_c	10.355
58727.351	В	15.351	58727.354	V	13.071	58727.355	i'	10.984
58727.355	r'	12.088	58727.356	g'	14.099	58727.357	I_c	10.345
58727.359	В	15.350	58727.361	V	13.069	58727.362	i'	10.961
58727.362	r'	12.082	58727.363	g'	14.097	58727.364	I_c	10.358
58727.366	В	15.348	58727.368	V	13.073	58729.292	i'	10.968
58729.292	r'	12.096	58729.293	g'	14.132	58729.294	I_c	10.359
58729.296	В	15.432	58729.299	i'	10.978	58729.300	r'	12.107
58729.300	g'	14.119	58729.301	I_c	10.349	58729.303	В	15.422
58729.307	i'	10.974	58729.307	r'	12.104	58729.308	g'	14.135
58729.309	I_c	10.355	58729.310	В	15.428	58730.274	i'	10.973
58730.274	r'	12.120	58730.275	g'	14.194	58730.276	I_c	10.369

Переменность V1467 Суд открыли Пинто и Романо (1972) и классифицировали ее как классическую цефеиду с периодом 48^d6. Бердников (1994), добавив к фотографическим данным Пинто и Романо (1972), полученные им фотоэлектрические наблюдения (Бердников, 1986,1987,19926-е,1993),

сделал попытку поиска эволюционных изменений периода V1467 Cyg. Но из-за небольшого интервала времени, охваченного наблюдениями, и низкой точности моментов максимального блеска, определенных по единичным фотографическим поярчаниям, парабола на *O*-*C* диаграмме была практически не видна. Поэтому был сделан вывод о

Рис. 1. ПЗС-наблюдения V1467 Суд в фильтрах BVIcg'r'i', свернутые с текущими элементами (1).

необходимости получения нового наблюдательного материала, особенно по старым фотопластинкам.

Для нового изучения периода V1467 Суд мы использовали дополнительные фотоэлектрические наблюдения (Бердников и др., 1997,1998; Игнатова и Возякова, 2000), данные проекта DASCH (Гриндлей, 2009), полученные на оцифрованных старых фотографических пластинках университета Гарварда (США), сделанные нами глазомерные оценки блеска на фотопластинках ГАИШ МГУ (РФ), а также ПЗС наблюдения из обзоров NSVS (Возниак и др., 2004), ASAS–SN (Яясингхе и др., 2018) и ZTF (Маски и др., 2019), полученные в полосах, близких к V, g' и r'. Кроме того, на 60-см телескопе Кавказской Горной Обсерватории (КГО) (Бердников и др., 2020) нами были получены ПЗС наблюдения в системе BVI_c (Казинс, 1976) и в системе g'r'i' обзора ZTF (Маски

Источник данных	Число наблюдений	Полоса наблюдений	Интервал JD
DASCH	40	PG	2419756-2434366
Данная работа (ГАИШ)	138	PG	2433129-2450284
Литература	297	В	2445174-2451042
Литература	388	V	2445174-2451042
Данная работа (Табл. 1)	190	В	2458719-2458828
Данная работа (Табл. 1)	181	V	2458719-2458828
Данная работа (Табл. 1)	188	g'	2458719-2458825
Данная работа (Табл. 1)	192	r'	2458719-2458825
NSVS	55	r'	2451328-2451600
ASAS-SN	645	V	2457069-2458445
ASAS-SN	600	g'	2458220-2458815
ZTF	177	g'	2458206-2458663

Таблица 2. Наблюдательный материал цефеиды V1467 Суд

и др., 2019), которая привязана к системе Pan-STARRS1 (Флевеллинг и др., 2019).

Хорошо известно, что для пульсирующих переменных максимумы блеска наступают позже с ростом эффективной длины волны фотометрической полосы. Поэтому, когда используются данные, полученные в разных полосах, надо выбрать основную (в нашем случае это V) и по одновременным наблюдениям определить величины сдвига моментов максимального блеска в других полосах. Одновременно никто не наблюдал V1467 Суд в системах АВ и Джонсона-Казинса, поэтому мы провели такие наблюдения в полосах g'r'i' и BVI_c .

Мы наблюдали V1467 Суд с 22 августа по 18 декабря 2019 г. (интервал JD 2458719-825), и был сделан 751 ПЗС-кадр. Методика обработки наблюдений описана нами ранее (Бердников и др., 2020). Результаты обработки всех наблюдений помещены в табл. 1. Здесь приведен лишь фрагмент таблицы, а полностью она представлена в электронном виде (http://cdsarc.ustrasbg.fr/vizbin/Cat). Полученные кривые изменения блеска приведены на рис. 1, для построения которого использовались определенные нами текущие элементы:

 $\max HJD = 2457995.57 + 48.64555E.$ (1)

Рассеяние точек на кривых блеска говорит о том, что ошибки наблюдений близки к 0^m01.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Сведения о количестве использованных наблюдений приведены в табл. 2. Самая старая фотопластинка с изображением V1467 Суд, хранящаяся в Гарварде, была получена в 1912 г., а последние ПЗС наблюдения были сделаны в 2019 г. Следовательно, наши данные охватывают временной интервал 107 лет.

Результаты обработки сезонных кривых V1467 Суд приведены в табл. З. В первой и второй колонке даны моменты максимального блеска и ошибки их определения, в третьей — тип используемых наблюдений, в четвертой и пятой — номер эпохи Eи значение остатка O-C, а в шестой и седьмой число наблюдений N и источник данных. Прочерк во второй колонке означает, что используется не момент максимума, а эпоха фотопластинки, на которой яркость звезды близка к максимальной. Данные табл. З изображены на O-C диаграмме (рис. 2) пустыми и заполненными квадратиками для фотографических наблюдений Гарварда и ГАИШ

Таблица 3. Моменты максимума блеска V1467 Суд

		-				
Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2420286.814	_	PG	-361	-76.736	1	DASCH
2422985.004	0.532	PG	-306	-51.547	9	DASCH
2426162.783	_	PG	-241	-32.768	1	DASCH
2430991.438	1.193	PG	-142	-15.513	40	DASCH
2432212.761	2.013	PG	-117	-9.190	14	DASCH
2432357.759	_	PG	-114	-9.991	1	DASCH
2432412.725	_	PG	-113	-3.626	1	DASCH
2432504.475	_	PG	-111	-9.075	1	DASCH
2434205.333	0.715	PG	-76	-9.218	18	DASCH
2434310.543	_	PG	-74	-1.208	1	DASCH
2436841.300	_	PG	-22	2.349	1	Пинто и Романо (1972)
2437226.300	_	PG	-14	-1.451	1	Пинто и Романо (1972)
2437519.322	1.352	PG	-8	-0.028	11	Данная работа
2437519.400	_	PG	-8	0.049	1	Пинто и Романо (1972)
2437908.400	_	PG	0	0.249	1	Пинто и Романо (1972)
2437957.200	_	PG	1	0.449	1	Пинто и Романо (1972)
2440093.300	_	PG	45	-1.851	1	Пинто и Романо (1972)
2445186.324	0.066	В	150	-11.827	35	Бердников (1986)
2445186.615	0.062	V	150	-11.785	35	Бердников (1986)
2445817.096	0.084	V	163	-13.104	26	Бердников (1986)
2445864.945	0.089	В	164	-13.606	20	Бердников (1986)
2446253.633	0.062	В	172	-13.718	42	Бердников (1987)
2446253.840	0.052	V	172	-13.760	46	Бердников (1987)
2446642.527	0.115	В	180	-13.623	26	Бердников (1992б)
2446642.820	0.078	V	180	-13.580	30	Бердников (1992б)
2447030.576	0.108	V	188	-14.624	18	Бердников (1992в)
2447418.942	0.093	В	196	-14.808	27	Бердников (1992г)
2447419.197	0.075	V	196	-14.803	30	Бердников (1992г)
2447756.164	0.355	PG	203	-17.787	59	Данная работа
2447757.926	0.075	В	203	-16.025	34	Бердников (1992д)
2447758.131	0.079	V	203	-16.069	41	Бердников (1992д)
2448532.436	0.097	V	219	-19.364	21	Бердников (1992е)

Таблица 3. Окончание

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2448532.989	0.155	В	219	-18.562	18	Бердников (1992е)
2448824.214	0.257	PG	225	-18.937	68	Данная работа
2448873.555	0.173	В	226	-18.195	25	Бердников (1993)
2448873.624	0.148	V	226	-18.376	27	Бердников (1993)
2449940.523	0.098	V	248	-20.677	33	Бердников и др. (1997)
2450329.552	0.106	В	256	-20.198	30	Бердников и др. (1998)
2450329.735	0.090	V	256	-20.265	35	Бердников и др. (1998)
2450814.525	0.303	В	266	-21.225	40	Игнатова и Возякова (2000)
2450815.334	0.228	V	266	-20.666	46	Игнатова и Возякова (2000)
2451447.583	0.250	r'	279	-20.643	55	NSVS
2457217.088	0.187	V	397	14.488	138	ASAS-SN
2457606.928	0.214	V	405	15.528	180	ASAS-SN
2457946.618	0.168	V	412	15.018	186	ASAS-SN
2458335.913	0.042	g'	420	15.593	141	ZTF
2458336.507	0.256	V	420	16.107	141	ASAS-SN
2458529.616	0.198	g'	424	14.897	368	ASAS-SN
2458627.655	0.099	g'	426	15.736	36	ZTF
2458676.530	0.208	g'	427	16.010	232	ASAS-SN
2458773.825	0.015	В	429	16.274	190	Данная работа
2458774.015	0.017	g'	429	16.295	188	Данная работа
2458774.095	0.026	V	429	16.295	181	Данная работа
2458774.522	0.025	r'	429	16.295	192	Данная работа

соответственно и кружками для остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков *O*-*C*.

По моментам максимального блеска из табл. З получены кубические элементы изменения блеска цефеиды V1467 Cyg:

 $\max HJD = 2439557.619(\pm 0.409) + (2)$ $+ 48^{4}564601767(\pm 0.00272)E -$ $- 0.332001 10^{-3} (\pm 0.636 10^{-5})E^{2} +$ $+ 0.58194833 10^{-6} (\pm 0.238 10^{-7})E^{3},$

линейная часть которых использована для вычислений остатков O-C в пятом столбце табл. 3. Элементы (2) использовались для проведения кубической параболы на верхней части рис. 2, на нижней части которого показаны отклонения от этой параболы.

По фотоэлектрическим и ПЗС наблюдениям было найдено, что максимумы в фильтре B и g' наступают раньше, чем в фильтре V, на 0^d249 и 0^d045 соответственно, а в фильтре r' — на 0^d831 позже. Эти поправки учитывались при построении рис. 2 и определении элементов (2), которые, таким образом, относятся к системе V.

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для это-

Рис. 2. *О*-*С* диаграмма для цефеиды V1467 Суд относительно линейных (вверху) и кубических (внизу) элементов (2). Линия — кубическая парабола, соответствующая элементам (2).

Рис. 3. Зависимость $D_i = ((O-C)_{i+1} - (O-C)_i)/(E_{i+1}-E_i)$ от $E'_i = (E_i + E_{i+1})/2$. Линия (аппроксимация многочленом четвертой степени) соответствует поведению остатков O-C на рис. 2.

Taominga I. Chandaphible Aphible VIIO Gyg b whilibipar D, V, Y HV
--

Phase	В	V	g'	r'	Phase	В	V	g'	r'
0.000	15.278	13.032	14.042	12.056	0.500	16.315	13.637	14.853	12.523
0.005	15.280	13.033	14.043	12.057	0.505	16.323	13.644	14.861	12.530
0.010	15.283	13.035	14.046	12.058	0.510	16.331	13.650	14.868	12.536
0.015	15.288	13.038	14.050	12.061	0.515	16.340	13.657	14.877	12.543
0.020	15.295	13.042	14.055	12.064	0.520	16.348	13.664	14.885	12.550
0.025	15.304	13.047	14.062	12.068	0.525	16.358	13.671	14.893	12.556
0.030	15.314	13.052	14.069	12.072	0.530	16.367	13.678	14.902	12.563
0.035	15.324	13.058	14.077	12.077	0.535	16.376	13.686	14.911	12.570
0.040	15.335	13.064	14.086	12.082	0.540	16.386	13.694	14.920	12.577
0.045	15.347	13.070	14.095	12.087	0.545	16.396	13.702	14.929	12.584
0.050	15.359	13.077	14.104	12.092	0.550	16.406	13.710	14.939	12.591
0.055	15.371	13.083	14.113	12.098	0.555	16.416	13.719	14.949	12.598
0.060	15.384	13.090	14.122	12.103	0.560	16.426	13.727	14.958	12.605
0.065	15.396	13.096	14.131	12.108	0.565	16.437	13.736	14.968	12.612
0.070	15.409	13.103	14.140	12.113	0.570	16.447	13.745	14.978	12.619
0.075	15.421	13.109	14.149	12.118	0.575	16.458	13.755	14.988	12.627
0.080	15.434	13.115	14.158	12.123	0.580	16.468	13.764	14.997	12.634
0.085	15.446	13.121	14.167	12.127	0.585	16.478	13.773	15.007	12.641
0.090	15.458	13.127	14.175	12.131	0.590	16.489	13.782	15.016	12.648
0.095	15.470	13.133	14.184	12.135	0.595	16.498	13.791	15.026	12.656
0.100	15.483	13.139	14.192	12.139	0.600	16.508	13.800	15.035	12.663
0.105	15.495	13.145	14.200	12.142	0.605	16.518	13.809	15.044	12.670
0.110	15.507	13.151	14.208	12.145	0.610	16.527	13.818	15.052	12.677
0.115	15.519	13.156	14.216	12.148	0.615	16.536	13.827	15.061	12.685
0.120	15.531	13.162	14.224	12.151	0.620	16.544	13.836	15.070	12.692
0.125	15.543	13.168	14.233	12.154	0.625	16.553	13.844	15.078	12.700
0.130	15.555	13.173	14.241	12.156	0.630	16.561	13.852	15.086	12.707
0.135	15.567	13.179	14.249	12.158	0.635	16.568	13.861	15.094	12.715
0.140	15.579	13.185	14.257	12.161	0.640	16.576	13.869	15.102	12.722
0.145	15.591	13.190	14.266	12.163	0.645	16.583	13.877	15.110	12.730
0.150	15.603	13.196	14.274	12.166	0.650	16.591	13.885	15.118	12.738
0.155	15.615	13.201	14.283	12.168	0.655	16.598	13.893	15.125	12.746
0.160	15.627	13.207	14.291	12.170	0.660	16.605	13.901	15.133	12.753

Таблица 4. Продолжение

Phase	В	V	g'	r'	Phase	В	V	g'	r'
0.165	15.639	13.213	14.300	12.173	0.665	16.613	13.908	15.141	12.761
0.170	15.651	13.218	14.309	12.176	0.670	16.620	13.916	15.149	12.769
0.175	15.663	13.224	14.317	12.179	0.675	16.628	13.924	15.157	12.778
0.180	15.675	13.230	14.326	12.182	0.680	16.635	13.932	15.165	12.786
0.185	15.688	13.235	14.335	12.185	0.685	16.643	13.941	15.173	12.794
0.190	15.700	13.241	14.343	12.188	0.690	16.651	13.949	15.181	12.802
0.195	15.712	13.246	14.352	12.192	0.695	16.659	13.957	15.189	12.811
0.200	15.724	13.252	14.360	12.196	0.700	16.667	13.966	15.197	12.819
0.205	15.736	13.258	14.369	12.200	0.705	16.675	13.974	15.206	12.827
0.210	15.748	13.263	14.377	12.204	0.710	16.684	13.982	15.214	12.835
0.215	15.760	13.269	14.386	12.208	0.715	16.692	13.991	15.222	12.843
0.220	15.772	13.274	14.394	12.213	0.720	16.700	13.999	15.231	12.851
0.225	15.784	13.280	14.402	12.218	0.725	16.708	14.007	15.239	12.858
0.230	15.796	13.285	14.410	12.223	0.730	16.716	14.015	15.247	12.865
0.235	15.808	13.291	14.418	12.228	0.735	16.724	14.022	15.254	12.871
0.240	15.819	13.297	14.426	12.233	0.740	16.731	14.029	15.262	12.877
0.245	15.831	13.302	14.434	12.238	0.745	16.737	14.035	15.268	12.882
0.250	15.843	13.308	14.442	12.244	0.750	16.743	14.040	15.274	12.886
0.255	15.854	13.314	14.450	12.249	0.755	16.748	14.045	15.279	12.890
0.260	15.865	13.319	14.458	12.255	0.760	16.752	14.049	15.283	12.892
0.265	15.877	13.325	14.466	12.261	0.765	16.755	14.052	15.286	12.893
0.270	15.888	13.331	14.474	12.266	0.770	16.757	14.053	15.288	12.893
0.275	15.899	13.336	14.482	12.272	0.775	16.757	14.054	15.289	12.891
0.280	15.910	13.342	14.490	12.278	0.780	16.756	14.052	15.288	12.888
0.285	15.920	13.349	14.498	12.283	0.785	16.753	14.050	15.285	12.884
0.290	15.931	13.355	14.505	12.289	0.790	16.747	14.045	15.280	12.878
0.295	15.941	13.361	14.514	12.294	0.795	16.740	14.039	15.273	12.870
0.300	15.952	13.368	14.522	12.300	0.800	16.730	14.031	15.264	12.860
0.305	15.962	13.374	14.530	12.305	0.805	16.718	14.021	15.252	12.849
0.310	15.972	13.381	14.538	12.311	0.810	16.703	14.009	15.238	12.835
0.315	15.982	13.388	14.546	12.316	0.815	16.685	13.995	15.221	12.820
0.320	15.992	13.395	14.555	12.321	0.820	16.664	13.979	15.202	12.803
0.325	16.003	13.403	14.563	12.327	0.825	16.641	13.961	15.179	12.784

Таблица 4. Окончание

Phase	В	V	g'	r'	Phase	В	V	g'	r'
0.330	16.012	13.410	14.572	12.332	0.830	16.614	13.940	15.154	12.764
0.335	16.022	13.418	14.580	12.337	0.835	16.583	13.917	15.126	12.742
0.340	16.032	13.425	14.589	12.342	0.840	16.550	13.892	15.096	12.718
0.345	16.042	13.433	14.598	12.348	0.845	16.513	13.865	15.062	12.693
0.350	16.052	13.441	14.607	12.353	0.850	16.473	13.835	15.026	12.666
0.355	16.062	13.449	14.616	12.358	0.855	16.429	13.804	14.988	12.639
0.360	16.071	13.457	14.625	12.363	0.860	16.383	13.771	14.947	12.610
0.365	16.081	13.465	14.635	12.368	0.865	16.334	13.736	14.904	12.580
0.370	16.091	13.473	14.644	12.373	0.870	16.283	13.699	14.860	12.550
0.375	16.100	13.481	14.653	12.378	0.875	16.229	13.661	14.814	12.519
0.380	16.110	13.488	14.663	12.383	0.880	16.174	13.623	14.767	12.488
0.385	16.119	13.496	14.672	12.389	0.885	16.117	13.583	14.718	12.457
0.390	16.129	13.503	14.682	12.394	0.890	16.059	13.543	14.670	12.426
0.395	16.139	13.511	14.691	12.399	0.895	16.000	13.503	14.621	12.396
0.400	16.148	13.518	14.700	12.404	0.900	15.941	13.463	14.572	12.366
0.405	16.157	13.524	14.709	12.410	0.905	15.882	13.424	14.524	12.336
0.410	16.166	13.531	14.718	12.415	0.910	15.825	13.385	14.477	12.308
0.415	16.175	13.538	14.727	12.421	0.915	15.768	13.347	14.431	12.280
0.420	16.184	13.544	14.735	12.426	0.920	15.713	13.311	14.387	12.254
0.425	16.193	13.550	14.743	12.432	0.925	15.661	13.276	14.344	12.229
0.430	16.202	13.556	14.752	12.438	0.930	15.611	13.243	14.304	12.206
0.435	16.211	13.562	14.759	12.443	0.935	15.563	13.212	14.266	12.184
0.440	16.219	13.568	14.767	12.449	0.940	15.519	13.184	14.231	12.164
0.445	16.227	13.574	14.775	12.455	0.945	15.479	13.158	14.199	12.146
0.450	16.236	13.580	14.782	12.461	0.950	15.442	13.134	14.170	12.129
0.455	16.244	13.585	14.789	12.467	0.955	15.409	13.113	14.144	12.114
0.460	16.252	13.591	14.797	12.473	0.960	15.379	13.095	14.121	12.101
0.465	16.260	13.596	14.804	12.479	0.965	15.354	13.079	14.101	12.090
0.470	16.268	13.602	14.811	12.485	0.970	15.333	13.066	14.085	12.080
0.475	16.275	13.608	14.817	12.491	0.975	15.315	13.055	14.071	12.072
0.480	16.283	13.613	14.824	12.498	0.980	15.301	13.046	14.060	12.066
0.485	16.291	13.619	14.831	12.504	0.985	15.291	13.040	14.052	12.062
0.490	16.299	13.625	14.839	12.510	0.990	15.284	13.035	14.046	12.058
0.495	16.307	13.631	14.846	12.517	0.995	15.280	13.033	14.043	12.057

Рис. 4. Стандартные кривые цефеиды V1467 Суд в системе BVg'r'.

го мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из табл. З, $\Delta(O-C)_i = (O-C)_{i+1} - (O-C)_i$, и построили график зависимости $D_i = \Delta(O-C)_i/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ (рис. З). Разности D_i , которые имеют смысл изменений периода в интервале эпох $E_i - E_{i+1}$, соответствуют поведению остатков O-Cна рис. 2.

Квадратичный и кубический члены элементов (2) дают возможность вычислить скорость эволюционного уменьшения периода $dP/dt = -431.5 ~(\pm 8.2)$ с/год, что соответствует теоретическим расчетам для второго пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014).

Следует отметить, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. 4 с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Табл. 4 содержит звездные величины V1467 Суд для фаз от 0 до 0.995 с шагом 0.005 в системе BVg'r'; эти стандартные кривые графически изображены на рис. 4.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода V1467 Суд использовались 178 оценок блеска на старых фотопластинках университета Гарварда (США) и ГАИШ МГУ, а также 751 ПЗС снимок в фильтрах BVg'r', полученных на 60-см телескопе Кавказской Горной Обсерватории ГАИШ МГУ; кроме того, было собрано 2162 опубликованных наблюдений. Все имеющиеся данные были обработаны методом Герцшпрунга (1919), и были определены 54 момента максимального блеска для построения О-С диаграммы, охватывающей временной интервал 107 лет. Это позволило определить кубические элементы изменения блеска (2) и вычислить скорость эволюционного уменьшения периода dP/dt = -431.5 (±8.2) с/год, что согласуется с результатами теоретических расчетов для второго пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014). Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность уменьшения периода.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (проекты номер 18-02-00890 и 19-02-00611). Работа ААБ и ЕОМ поддержана грантом Программы развития Московского государственного университета им. М.В. Ломоносова "Ведущая научная школа "Физика звезд, релятивистских объектов и галактик". Работа ЕОМ частично поддержана грантом РНФ 17-12-01241. Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета им. М.В. Ломоносова.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бердников Л.Н., Переменные Звезды **22**, 369 (1986).
- 2. Бердников Л.Н., Переменные Звезды **22**, 530 (1987).
- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992a) [L.N. Berdnikov, Sov. Astron. 18, 207 (1992a)].
- Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. 2, 1 (19926).
- 5. Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. **2**, 31 (1992в).

- 6. Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. **2**, 43 (1992г).
- 7. Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. 2, 107 (1992д).
- Бердников Л.Н., Письма в Астрон. журн. 18, 325 (1992) [L.N. Berdnikov, Sov. Astron. 18, 130 (1992e)].
- Бердников Л.Н., Письма в Астрон. журн. 19, 210 (1993) [L.N. Berdnikov, Astron. Lett. 19, 84 (1993)].
- Бердников Л.Н., Письма в Астрон. журн. 20, 285 (1994) [L.N. Berdnikov, Astron. Lett. 20, 232 (1994)].
- Бердников Л.Н., Белинский А.А., Шатский Н.И., Бурлак М.А., Иконникова Н.П., Мишин Е.О., Черясов Д.В., Жуйко С.В., Astron. Rep. 97, 284 (2020) [L.N. Berdnikov, A.A. Belinskij, N.I. Shatskij, M.A. Burlak, N.P. Ikonnikova, E.O. Mishin, D.V. Cheryasov, and S.V. Zhuiko, Astron. Rep. 64, 310 (2020)]
- 12. Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 14, 237 (1997).
- Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 17, 87 (1998).
- 14. Возниак и др. (P.R. Wozniak, W.T. Vestrand, C.W. Akerlof, R. Balsano, J. Bloch, D. Casperson, S. Fletcher, G. Gisler, et al.), Astron. J. **127**, 2436 (2004).
- 15. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).

- 16. Гриндлей и др. (J. Grindlay, Sumin Tang, E. Los, and M. Servilla), ASP Conf. Ser. **410**, 101 (2009).
- 17. Игнатова, Возякова (V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. **19**, 133 (2000).
- 18. Казинс (A.W.J. Cousins), Mem. RAS 81, 25 (1976).
- 19. Ломбард, Коен (F. Lombard, and C. Koen), Mon. Not. Roy. Astron. Soc. **263**, 309 (1993).
- 20. Маски и др. (F.J. Masci, R.R. Laher, B. Rusholme, D.L. Shupe, S. Groom, J. Surace, E. Jackson, S. Monkewitz, et al.), Publ. Astron. Soc. Pacific 131:018003 (2019).
- 21. Пинто, Романо (G. Pinto, and G. Romano), Mem. RAS 43, 135 (1972).
- 22. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, and L.N. Berdnikov), Publ. Astron. Soc. **118**, 410 (2006).
- 23. Фадеев Ю.А., Письма Астрон. Журн. **40**, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. **40**, 301 (2014)].
- 24. Ферни (J.D. Fernie), Publ. Astron. Soc. **102**, 905 (1990).
- 25. Флевеллинг и др. (H.A. Flewelling, E.A. Magnier, K.C. Chambers, J.N. Heasley, C. Holmberg, M.E. Huber, W. Sweeney, C.Z. Waters, et al.), arXiv:1612.05243.
- 26. Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Dong Subo, et al.), Mon. Not. Roy. Astron. Soc. **485**, 961 (2019).