# ЭВОЛЮЦИОННЫЕ И ГИДРОДИНАМИЧЕСКИЕ МОДЕЛИ КОРОТКОПЕРИОДИЧЕСКИХ ЦЕФЕИД

© 2020 г. Ю. А. Фадеев1\*

<sup>1</sup> Институт астрономии РАН, Москва, Россия
Поступила в редакцию 16.04.2020 г.
После доработки 26.04.2020 г.; принята к публикации 28.04.2020 г.

Проведены расчеты эволюции звезд населения I с массой на главной последовательности 5  $M_{\odot} \leq M_0 \leq 6.1\,M_{\odot}$  до стадии исчерпания гелия в ядре при начальных содержаниях гелия и более тяжелых элементов  $Y_0=0.28$  и  $Z_0=0.02$ . Отдельные модели эволюционных последовательностей, соответствующие стадии термоядерного горения гелия, были использованы как начальные условия при решении уравнений радиационной гидродинамики и нестационарной конвекции, описывающих радиальные пульсации цефеид. На диаграмме Герцшпрунга—Рессела петли эволюционных треков пересекают красную границу полосы нестабильности при  $M_0>5.1\,M_{\odot}$ . Рассчитана сетка гидродинамических моделей цефеид, находящихся на стадиях второго и третьего пересечений полосы нестабильности. Для каждой эволюционной последовательности цефеид, пульсирующих в первом обертоне, период  $\Pi$  и скорость изменения периода  $\dot{\Pi}$  определены как непрерывные функции времени эволюции. Результаты выполненных расчетов находятся в хорошем согласии с современными наблюдательными оценками  $\dot{\Pi}$  короткопериодических цефеид V532 Суд, BG Сги и RT Aur.

*Ключевые слова*: звездная эволюция, пульсации звезд, цефеиды, звезды — переменные и пекулярные.

DOI: 10.31857/S0320010820050034

### ВВЕДЕНИЕ

К короткопериодическим цефеидам относят пульсирующие переменные звезды населения I с приблизительно симметричными кривыми блеска малой амплитуды ( $\Delta V \leq 0.5$  зв. вел.) и периодами короче 7 сут. В Общем каталоге переменных звезд (Самусь и др., 2017) насчитывается около 50 пульсирующих переменных типа DCEPS, которые удовлетворяют этому критерию. Короткопериодические цефеиды представляют собой группу наименее ярких и наименее массивных цефеид населения I. Предполагается, что пульсации большинства переменных типа DCEPS происходят в первом обертоне.

Звезды промежуточных масс становятся цефеидами на стадии термоядерного горения гелия в ядре, когда эволюционный трек звезды покидает область красных гигантов и описывает на диаграмме Герцшпрунга—Рессела (ГР) петлю, пересекающую полосу пульсационной неустойчивости (Хофмайстер и др., 1964; Ибен, 1966). Уменьшение и последующее увеличение радиуса звезды в течение этой стадии эволюции связаны с изменениями молекулярного веса и непрозрачности звездного вещества в оболочке, окружающей конвективное ядро (Валмсвел и др., 2015). Протяженность петли эволюционного трека на диаграмме ГР убывает с уменьшением массы звезды и в значительно меньшей степени зависит также от химического состава звездного вещества цефеид (см., например, Пиетринферни и др., 2006; Бертелли и др., 2009). Отсутствие уверенной оценки нижнего предела массы цефеид связано с неопределенностями, возникающими при сравнении теоретически рассчитанных значений болометрической светимости Lи эффективной температуры  $T_{
m eff}$  звездной модели с эмпирическими границами полосы неустойчивости, которые выражаются в терминах абсолютной звездной величины  $M_{
m V}$  и показателя цвета (B- $-V)_0$  (Тамман и др., 2003).

История систематических измерений блеска многих цефеид насчитывает около 120 лет. Для звезд с периодами короче 7 сут этот отрезок времени охватывает более  $6\times 10^3$  пульсационных циклов, что позволяет получать на основе анализа O-C диаграмм уверенные наблюдательные оценки скорости векового изменения периода пульсаций  $\dot{\Pi}$  (Тэрнер и др., 2006). Целью данной работы является определение фундаментальных параметров короткопериодических цефеид, для которых в

<sup>\*</sup>Электронный адрес: fadeyev@inasan.ru

последние годы были получены наблюдательные оценки скорости изменения периода П. Решение поставленной задачи основывается на согласованных расчетах звездной эволюции и нелинейных звездных пульсаций. Ранее этот метод был использован автором при определении фундаментальных параметров долгопериодических цефеид (Фадеев, 2018б). Исследование эволюционных и гидродинамических моделей короткопериодических цефеид направлено также на определение нижнего предела массы цефеид.

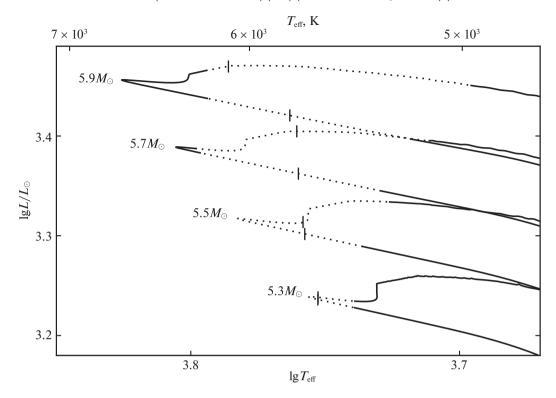
### МЕТОД РАСЧЕТА

В данной работе расчеты звездной эволюции были выполнены с помощью программы MESA версии 12115 (Пакстон и др., 2018). При решении кинетических уравнений нуклеосинтеза использовалась сетка реакций 'pp\_cno\_extras\_o18\_ne22. net', включающая 26 изотопов от водорода  $^1H$  до магния <sup>24</sup>Mg, связанных между собой 81 реакцией. Скорости термоядерных реакций рассчитывались с помощью базы данных JINA Reaclib (Сайбурт и др., 2010). Вычисление скорости потери массы M проводилось по формуле Раймерса (1975) при значении параметра  $\eta_{\rm R} = 0.3$ . Конвективное перемешивание звездного вещества учитывалось в рамках стандартной теории Бём-Витензе (1958) при отношении длины пути конвективного перемешивания к шкале высот по давлению  $lpha_{
m MLT} =$  $= \Lambda/H_{\rm P} = 1.6$ . Дополнительное перемешивание звездного вещества за пределами конвективной зоны вследствие эффекта овершутинга рассчитывалось согласно Хервигу (2000):

$$D_{\rm ov}(z) = D_0 \exp\left(-\frac{2z}{fH_{\rm P}}\right),\tag{1}$$

где  $D_0$  — коэффициент конвективной диффузии (Лангер и др., 1985) в слое внутри конвективной зоны, отстоящем от ее границы на  $0.004H_{\rm P},\,z$  — пространственная координата, которая отсчитывается от границы конвективной неустойчивости, f=0.016 — параметр овершутинга.

В звездах промежуточных масс термоядерное горение гелия происходит внутри конвективного ядра, на внешней границе которого возникает скачок содержания гелия. С течением времени величина этого скачка возрастает вследствие уменьшения содержания гелия в центральной части звезды. Перемещение границы конвективной неустойчивости в сторону поверхности из одной массовой зоны модели в другую сопровождается неравномерным втеканием в конвектитвное ядро звездного вещества из внешних слоев, не затронутых нуклеосинтезом, что является причиной резких возрастаний скорости энерговыделения и появления на эволюционном треке ложных петель. В общем случае


этот эффект является причиной значительного увеличения времени эволюции на стадии термоядерного горения гелия (Константино и др., 2016), а применительно к рассматриваемой в данной работе задаче — большим ошибкам при определении скорости изменения периода пульсаций цефеид. В данной работе для исключения резких изменений содержания гелия в центральной части звезды на стадии термоядерного горения гелия был использован метод, основанный на ограничении потока массы на внешней границе конвективного ядра (Спруит, 2015; Константино и др., 2017). Расчеты этой эволюционной стадии проводились с ограничением шага по времени  $\Delta t \leq 10^2$  лет при числе массовых зон звездной модели  $\approx 1.5 \times 10^4$ .

Отдельные модели эволюционных последовательностей, соответствующие стадии цефеиды, использовались как начальные условия при решении уравнений радиационной гидродинамики и турбулентной конвекции, описывающих радиальные звездные пульсации. Предполагалось, что внутренняя граница гидродинамической модели представляет собой жесткую постоянно излучающую сферу с радиусом  $r_0 = 0.1R$ , где R — радиус звезды. Начальные значения сеточных переменных, необходимые для решения задачи Коши, определялись нелинейным интерполированием значений сеточных переменных эволюционной модели. Описание метода решения задачи Коши приводится в более ранней статье автора (Фадеев, 2015). В расчетах гидродинамических моделей использовалась неравномерная лагранжева сетка с числом массовых зон N = 500. Размер каждого интервала лагранжевой сетки возрастает от поверхности к центру по закону геометрической прогрессии с коэффициентом  $q \approx 1.03$ . Определение периода колебаний каждой гидродинамической модели проводилось с помощью дискретного преобразования Фурье кинетической энергии пульсационных движений  $E_{\rm K}$  (Фадеев, 2018а).

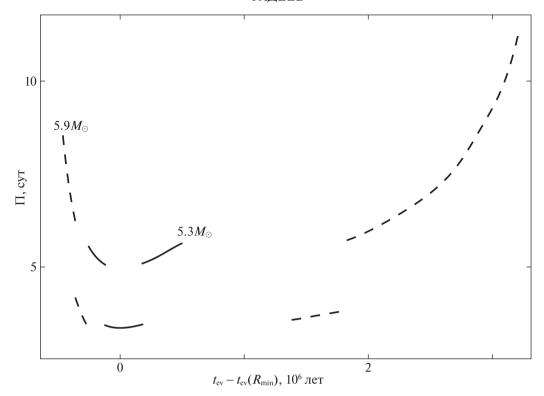
## РЕЗУЛЬТАТЫ РАСЧЕТОВ

В данной работе в качестве начальных условий были рассчитаны 12 эволюционных последовательностей звезд с начальной массой  $5~M_{\odot} \le M_0 \le 6.1~M_{\odot}$ , отстоящих друг от друга по массе на величину  $\Delta M_0 = 0.1~M_{\odot}$ . Предполагалось, что относительные массовые содержания гелия и более тяжелых элементов на начальной главной последовательности ( $t_{\rm ev}=0$ ) составляют  $Y_0=0.28$  и  $Z_0=0.02$  соответственно. Расчеты звездной эволюции завершались при исчерпании гелия в центре звезды ( $Y_{\rm c} \le 10^{-4}$ ).

Результаты согласованных расчетов звездной эволюции и нелинейных звездных пульсаций иллюстрируются на рис. 1, где показаны треки эволюционных последовательностей  $M_0=5.3~M_{\odot}, 5.5~M_{\odot},$ 



**Рис. 1.** Эволюционные треки звезд на диаграмме  $\Gamma P$  в окрестности полосы нестабильности цефеид. Пунктирными линиями показаны участки трека, когда звезда становится неустойчивой относительно радиальных колебаний. Вертикальной чертой на эволюционном треке отмечена точка переключения колебаний между фундаментальной модой и первым обертоном. Числами около кривых указано значение начальной массы  $M_0$ .


 $5.7~M_{\odot}$  и  $5.9~M_{\odot}$  на диаграмме  $\Gamma P$  в окрестности полосы нестабильности цефеид. Пунктирными линиями отмечены этапы эволюции, соответствующие положительным темпам роста кинетической энергии колебаний ( $\eta = \Pi^{-1} d \ln E_{\rm K~max}/dt > > 0$ ), когда в звезде возникают радиальные пульсации. Здесь t — время, связанное с колебаниями,  $E_{\rm K~max}$  — максимум кинетической энергии пульсационных движений. Радиальные пульсации цефеид с хорошей точностью описываются колебаниями типа стоячей волны, поэтому в течение одного периода  $\Pi$  кинетическая энергия  $E_{\rm K}$  дважды достигает своего максимального значения  $E_{\rm K~max}$ .

Возраст звезды  $t_{\rm ev,0}$ , соответствующий границе пульсационной неустойчивости ( $\eta=0$ ), определялся линейным интерполированием между двумя смежными моделями с противоположными знаками темпов роста  $\eta$  (Фадеев, 2013). Для рассмотренных эволюционных последовательностей нижний порог начальной массы цефеиды находится в пределах  $5.1~M_{\odot} < M_0 < 5.2~M_{\odot}$ . В частности, при  $M_0=5.2~M_{\odot}$  точка поворота эволюционного трека соответствует эффективной температуре  $\lg T_{\rm eff}=3.742$  и отстоит от красной границы полосы нестабильности на величину  $\Delta \lg T_{\rm eff}=3.4 \times 10^{-3}$ . В окрестности поворота трека пульсации

происходят в фундаментальной моде с периодом  $\Pi \approx 5.3$  сут.

На графиках, показанных на рис. 1, эволюция звезды протекает вдоль петлеобразного трека по направлению часовой стрелки, а вертикальная черта на треке отмечает переключение моды колебаний. Как и в предшествующей статье автора (Фадеев, 2019), в данной работе предполагалось, что время переключения моды колебаний значительно короче по сравнению со временем ядерной эволюции на стадии цефеиды. Возраст звезды  $t_{\rm ev\,sw}$ , при котором происходит переключение моды, определялся как среднее значение возраста двух смежных моделей эволюционной последовательности, которые пульсируют в разных модах. Колебания в фундаментальной моде характерны для звезд с низкой эффективной температурой около красной границы полосы неустойчивости, тогда как колебания в первом обертоне происходят в более горячих звездах, находящихся ближе к синей границе полосы неустойчивости.

Период пульсаций как функция времени эволюции определялся с помощью кубических интерполяционных сплайнов в пределах отрезка  $t_{\rm ev}$ , где колебания происходят либо в фундаментальной моде, либо в первом обертоне. Графики эволюционного изменения периода цефеид с начальной массой



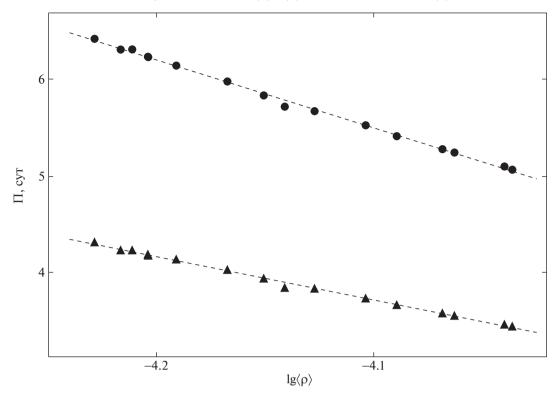
**Рис. 2.** Изменение периода радиальных пульсаций цефеид с начальными массами  $M_0 = 5.3~M_{\odot}$  (сплошные линии), и  $M_0 = 5.9~M_{\odot}$  (штриховые линии), как функция времени эволюции, которое отсчитывается от момента минимального радиуса звезды  $t_{\rm ev}(R_{\rm min})$ .

 $M_0=5.3~M_\odot$  и  $5.9~M_\odot$  показаны на рис. 2, где для удобства графического представления время эволюции отсчитывается от момента минимального радиуса звезды  $t_{\rm ev}(R_{\rm min})$ .

Начальная и конечная точки каждого графика на рис. 2 соответствуют пересечению эволюционным треком красной границы полосы нестабильности, тогда как скачкообразное приблизительно полуторакратное изменение периода связано с переключением моды колебаний. Разрыв зависимости  $\Pi(t_{\rm ev})$  для эволюционной последовательности  $M_0=5.9~M_\odot$  при колебаниях в первом обертоне связан с эволюцией звезды за пределами синей границы полосы неустойчивости. Как видно из приведенных графиков, с увеличением массы цефеиды возрастает отношение  $\Delta t_{\rm ev,3}/\Delta t_{\rm ev,2}$ , где  $\Delta t_{\rm ev,2}$  и  $\Delta t_{\rm ev,3}$  — продолжительности второго и третьего пересечений полосы неустойчивости.

Для рассмотренных эволюционных последовательностей верхний предел радиуса цефеиды, при котором происходит переключение моды колебаний, составляет  $R=52R_{\odot}$ . Переход колебаний из одной моды в другую во время второго и третьего пересечения полосы нестабильности происходит в эволюционных последовательностях  $5.3 \leq M_0 \leq 5.9~M_{\odot}$ , тогда как при  $6.0~M_{\odot} \leq M_0 \leq 6.1~M_{\odot}$  переключение моды происходит только при втором

пересечении, так как во время третьего пересечения радиус звезы превосходит пороговое значение  $52R_{\odot}$ .


Область возбуждения пульсационной неустойчивости цефеид находится в слоях частичной ионизации гелия, и для пульсаций в первом обертоне необходимо, чтобы радиус зоны ионизации гелия всегда оставался больше радиуса узла соответствующей собственной функции. К сожалению, определение условий переключения моды колебаний в общем случае невозможно, поэтому далее в качестве величины, связанной с пороговыми значения периода фундаментальной моды  $\Pi_0$  и первого обертона  $\Pi_1$ , при которых одна мода колебаний переходит в другую, мы используем среднюю плотность вещества звезды  $\langle \rho \rangle = M/(\frac{4}{3}\pi R^3)$ .

Определенные для всех рассмотренных эволюционных последовательностей пороговые значения периодов  $\Pi_0$  и  $\Pi_1$  при переключении моды колебаний с хорошей точностью описываются соотношениями

$$\Pi_0 = -23.486 - 7.065 \lg \langle \rho \rangle,$$
 (2)

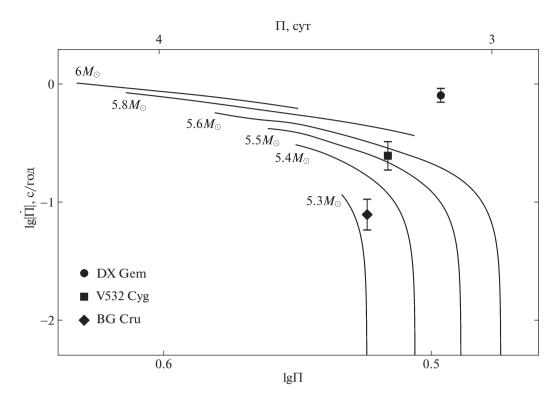
$$\Pi_1 = -14.773 - 4.504 \lg \langle \rho \rangle,$$
 (3)

где  $\Pi_0$  и  $\Pi_1$  выражены в сутках. Значения периодов  $\Pi_0$  и  $\Pi_1$  вместе с соотношениями (2) и (3) показаны на рис. 3.

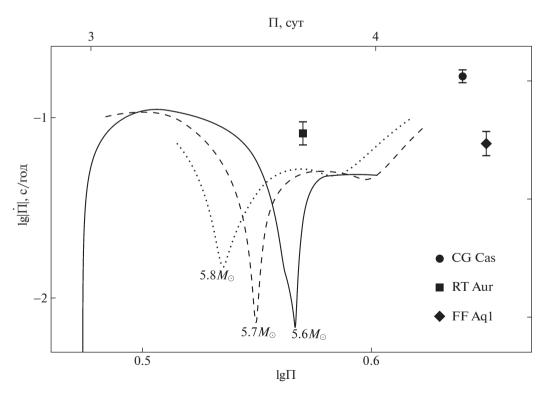


**Рис. 3.** Периоды фундаментальной моды (заполненные кружки) и первого обертона (заполненные треугольники) при переключении моды колебаний. Штриховыми линиями показаны зависимости (2) и (3).

### СРАВНЕНИЕ С НАБЛЮДЕНИЯМИ


Сравнение результатов теоретических расчетов с наблюдениями удобнее всего проводить с помощью диаграммы период — скорость изменения периода (Тэрнер и др., 2006; Фадеев, 2014). Аппроксимация зависимости  $\Pi(t_{\mathrm{ev}})$  кубическими интерполяционными сплайнами позволяет легко вычислить скорость изменения периода как функцию времени эволюции и в конечном счете выразить  $\Pi$ как функцию  $\Pi$ . На рис. 4 показаны графики таких зависимостей для моделей цефеид пульсирующих в первом обертоне на стадии второго пересечения полосы нестабильности ( $\dot{\Pi} < 0$ ). Эволюция звезды протекает слева направо в сторону уменьшения периода. Қаждый график показывает изменение  $\Pi$ от точки переключения моды колебаний до синей границы полосы неустойчивости ( $M_0 \ge 5.8~M_{\odot}$ ) или точки поворота эволюционного трека ( $M_0 \le$  $\leq 5.6 \ M_{\odot}$ ), где  $\Pi_1 = 0$ .

На рис. 4 также приведены современные наблюдательные оценки периода и скорости изменения периода короткопериодических цефеид DX Gem (Бердников, 2019а), V532 Cyg (Бердников, 2019б) и BG Cru (Бердников и др. 2019). Как видно из рисунка, результаты расчетов находятся в хорошем согласии с наблюдениями цефеид V532 Cyg и BG Cru, тогда как наблюдательная оценка П


цефеиды DX Gem оказывается в несколько раз больше значения, предсказываемого теорией. Лучшее согласие теории с наблюдениями DX Gem может быть получено лишь при условии, что синяя граница полосы пульсационной неустойчивости цефеид с массой  $M\approx 6~M_{\odot}$  простирается в сторону более высоких эффективных температур и соответственно более коротких периодов.

Графики зависимостей  $\Pi$  от  $\Pi$  на стадии третьего пересечения полосы нестабильности ( $\dot{\Pi}>0$ ) показаны на рис. 5 для эволюционных последовательностей  $M_0=5.6~M_\odot$ ,  $5.7~M_\odot$  и  $5.8~M_\odot$ . Как видно из рисунка, все приведенные зависимости показывают удовлетворительное согласие с наблюдательной оценкой  $\dot{\Pi}$  цефеиды RT Aur (Тэрнер и др., 2007), которая приблизительно в полтора раза превосходит результаты теоретических расчетов. На рис. 5 также приведены наблюдательные оценки  $\dot{\Pi}$  цефеид CG Cas (Тэрнер и др., 2008) и FF Aql (Бердников и др., 2014). К сожалению, периоды этих цефеид заметно превосходят пороговые значения  $\Pi_1$ , которые были получены в данной работе.

Теоретические оценки фундаментальных параметров короткопериодических цефеид V532 Cyg, BG Сги и RT Аиг, для которых теоретические оценки  $\dot{\Pi}$  не противоречат наблюдениям, приведены в табл. 1.



**Рис. 4.** Скорость изменения периода  $\dot{\Pi}$  как функция периода  $\Pi$  для моделей цефеид, пульсирующих в первом обертоне на стадии второго пересечения полосы нестабильности ( $\dot{\Pi} < 0$ ).



**Рис. 5.** То же, что на рис. 4, но для моделей цефеид на стадии третьего пересечения полосы нестабильности ( $\dot{\Pi}>0$ ).

 $t_{\rm ev}$ ,  $10^6$  лет  $T_{\rm eff}$ , K Цефеиды П, сут  $M/M_{\odot}$  $L/L_{\odot}$  $R/R_{\odot}$ V532 Cvg 3.2836 82.3 5.53 2130 42.8 6000 BG Cru 3.3426 90.0 5.33 1810 42.8 5760 5.77 47.9 6030 RT Aur 3.7182 76.1 2720

Таблица 1. Фундаментальные параметры короткопериодических цефеид

### ЗАКЛЮЧЕНИЕ

Представленные выше результаты дополняют более раннюю работу автора (Фадеев, 2014), посвященную теоретическому объяснению наблюдаемых вековых изменений периодов цефеид, и в которой короткопериодические цефеиды были исследованы недостаточно детально. В частности, результаты данной работы позволяют заключить, что значительный разброс наблюдательных значений  $\Pi$  короткопериодических цефеид связан с обращением скорости изменения периода в нуль в точке поворота эволюционного трека. Таким образом, приблизительно нулевая скорость изменения периода короткопериодической цефеиды может служить грубым индикатором массы звезды. Как видно из рис. 1, поворот эволюционного трека в пределах полосы неустойчивости цефеид происходит при массе звезды  $M < 5.7 \ M_{\odot}$ .

Результаты согласованных расчетов звездной эволюции и нелинейных звездных пульсаций позволяют заключить, что нижний предел массы цефеид, находящихся на эволюционной стадии термоядерного горения гелия в ядре, составляет  $M \approx$  $pprox 5.1~M_{\odot}$ . В звездах с меньшей массой петля эволюционного трека не пересекает красную границу полосы пульсационной неустойчивости, и звезда остается устойчивой относительно радиальных колебаний. Необходимо, однако, заметить, что этот вывод основывается на результатах, полученных при начальных массовых содержаниях гелия и более тяжелых элементов  $Y_0 = 0.28$  и  $Z_0 = 0.02$ . Зависимость эволюционных изменений радиуса звезды и протяженности петли эволюционного трека от среднего молекулярного веса звездного вещества (Валмсвел и др., 2015) заставляет предполагать, что нижний предел массы цефеид определяется также химическим составом звездного вещества.

Из рассмотренных в данной работе шести короткопериодических цефеид с известными наблюдательными оценками  $\dot{\Pi}$  лишь для трех было получено удовлетворительное согласие результатов расчетов с наблюдениями. Периоды CG Cas ( $\Pi=4.3656$  сут) и FF Aql ( $\Pi=4.4709$  сут) заметно превосходят пороговые значения периода первого обертона, при котором происходит переключение колебаний в фундаментальную моду (см. рис. 5).

Зависимость периода переключения моды от средней плотности вещества звезды (см. рис. 3) наводит на мысль, что верхний предел значений периода колебаний в первом обертоне может быть подвержен изменениям в зависимости от химического состава звездного вещества. Таким образом, так же как и при уточнении нижнего предела массы цефеид, устранение противоречия теории с наблюдениями цефеид CG Cas и FF Aql следует искать на основе более обширных сеток эволюционных и гидродинамических моделей цефеид, рассчитанных при различных предположениях относительно начального химического состава звездного вещества.

### СПИСОК ЛИТЕРАТУРЫ

- 1. Бердников Л.Н., Письма в Астрон. журн. **45**, 489 (2019a) [L.N. Berdnikov, Astron. Lett. **45**, 435 (2019a)].
- 2. Бердников Л.Н., Письма в Астрон. журн. **45**, 731 (20196) [L.N. Berdnikov, Astron. Lett. **45**, 677 (2019b)].
- 3. Бердников Л.Н., Тэрнер Д.Г., Хенден А.А., Астрон. журн. **91**, 299 (2014) [L.N. Berdnikov, D.G. Turner, and A.A. Henden, Astron. Rep. **58**, 240 (2014)].
- 4. Бердников Л.Н., Князев А.Ю., Ковтюх В.В., Кравцов В.В., Мишенина Т.В., Пастухова Е.Н., Усенко И.А., Письма в Астрон. журн. 45, 499 (2019) [L.N. Berdnikov, A.Yu. Kniazev, V.V. Kovtyukh, V.V. Kravtsov, T.V. Mishenina, E.N. Pastukhova, and I.A. Usenko, Astron. Lett. 45, 445 (2019)].
- 5. Бертелли и др. (G. Bertelli, E. Nasi, L. Girardi, and P. Marigo), Astron. Astrophys. **508**, 355 (2009).
- 6. Бём—Витензе (Е. Böhm—Vitense), Zeitschrift für Astrophys. **46**, 108 (1958).
- 7. Валмсвел и др. (J.J. Walmswell, J.C.A. Tout, and J.J. Eldridge), MNRAS 447, 2951 (2015).
- 8. Ибен (I. Iben), Astrophys.J. 143, 483 (1966).
- 9. Константино и др. (T. Constantino, S.W. Campbell, W. Simon, J.C. Lattanzio, and A. van Duijneveldt), MNRAS, **456**, 3866 (2016).
- 10. Константино и др. (T. Constantino, S.W. Campbell, and J.C. Lattanzio), MNRAS **472**, 4900 (2017).
- 11. Лангер и др. (N. Langer, M. El Eid and K.J. Fricke), Astron. Astrophys. **145**, 179 (1985).
- 12. Пакстон и др. (B. Paxton, J. Schwab, E.B. Bauer, L. Bildsten, S. Blinnikov, P. Duffell, R. Farmer, J.A. Goldberg, P. Marchant, E. Sorokina, A. Thoul, R.H.D. Townsend, and F.X. Timmes), Astropys. J. Suppl. Ser. 234, 34 (2018).

- 13. Пиетринферни и др. (A. Pietrinferni, S. Cassisi, M. Salaris, and F. Castelli), Astrophys. J. **642**, 797 (2006).
- 14. Раймерс (D. Reimers), *Problems in stellar atmospheres and envelopes* (Ed. B. Baschek, W. H. Kegel, G. Traving, New York: Springer-Verlag, 1975), p. 229.
- 15. Сайбурт и др. (R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.K. Thielemann, and M. Wiescher), Astrophys. J. Suppl. Ser. 189, 240 (2010).
- 16. Самусь Н.Н., Казаровец Е.В., Дурлевич О.В., Киреева Н.Н., Пастухова Е.Н., Астрон. журн. **94**, 87 (2017) [N.N. Samus', E.V. Kazarovets, O.V. Durlevich, N.N. Kireeva, and E.N. Pastukhova, Astron. Rep. **61**, 80 (2017)].
- 17. Спруит (H.C. Spruit), 2015, Astron. Astrophys. **582**, L2 (2015).
- 18. Тамман и др. (G.A. Tammann, A. Sandage, and B. Reindl), Astron. Astrophys. **404**, 423 (2003).
- 19. Тэрнер и др. (D.G. Turner, G. David, M. Abdel—Sabour Abdel—Latif, and L.N. Berdnikov), Publ. Astron, Soc. Pacific **118**, 410 (2006).
- 20. Тэрнер и др. (D.G. Turner, I.S. Bryukhanov, I.I. Balyuk, A.M. Gain, R.A. Grabovsky, V.D. Grigorenko, I.V. Klochko, A. Kosa-Kiss, A.S. Kosinsky, I.J. Kushmar, V.T. Mamedov,

- N.A. Narkevich, A.J. Pogosyants, A.S. Semenyuta, I.M. Sergey, V.V. Schukin, J.B. Strigelsky, V.G. Tamello, D.J. Lane, and D.J. Majaess), Publ. Astron, Soc. Pacific 119, 1247 (2007).
- 21. Тэрнер и др. (D.G. Turner, D. Forbes, D. English, P.J.T. Leonard, J.N. Scrimger, A.W. Wehlau, R.L. Phelps, L.N. Berdnikov, and E.N. Pastukhova), MNRAS 388, 444 (2008).
- 22. Фадеев Ю.А., Письма в Астрон. журн. **39**, 829 (2013) [Yu.A. Fadeyev, Astron. Lett. **39**, 746 (2013)].
- 23. Фадеев Ю.А., Письма в Астрон. журн., **40**, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. **40**, 301 (2014)].
- 24. Фадеев (Yu.A. Fadeyev), MNRAS 449, 1011 (2015).
- 25. Фадеев Ю.А., Письма в Астрон. журн. **44**, 673 (2018a) [Yu.A. Fadeyev, Astron. Lett. **44**, 616 (2018a)].
- 26. Фадеев Ю.А., Письма в Астрон. журн. **44**, 851 (2018б) [Yu.A. Fadeyev, Astron. Lett. **44**, 782 (2018b)].
- 27. Фадеев Ю.А., Письма в Астрон. журн. **45**, 403 (2019) [Yu.A. Fadeyev, Astron. Lett. **45**, 353 (2019)].
- 28. Хервиг (F. Herwig), Astron. Astrophys. **360**, 952 (2000).
- 29. Хофмайстер и др. (E. Hofmeister, R. Kippenhahn, and A. Weigert), Zeitschrift für Astrophys. **60**, 57 (1964).