ОПТИЧЕСКАЯ СПЕКТРОСКОПИЯ ОБЪЕКТОВ СРГ-еРОЗИТА НА 2.5-м ТЕЛЕСКОПЕ КАВКАЗСКОЙ ГОРНОЙ ОБСЕРВАТОРИИ ГАИШ МГУ

© 2020 г. А. В. Додин^{1*}, С. А. Потанин^{1,2}, Н. И. Шатский¹, А. А. Белинский¹, К. Е. Атапин¹, М. А. Бурлак¹, О. В. Егоров¹, А. М. Татарников¹, К. А. Постнов^{1,2,3}, М. И. Бельведерский^{4,5}, Р. А. Буренин⁴, М. Р. Гильфанов^{4,6}, П. С. Медведев⁴, А. В. Мещеряков^{4,3}, С. Ю. Сазонов⁴, Г. А. Хорунжев⁴, Р. А. Сюняев^{4,6}

¹Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия ²Физический факультет Московского государственного университета им. М.В. Ломоносова, Москва, Россия

³ Казанский федеральный университет, Казань, Россия
 ⁴ Институт космических исследований РАН, Москва, Россия
 ⁵ Национальный исследовательский университет "Высшая школа экономики", Москва, Россия
 ⁶ Институт астрофизики общества им. Макса Планка, Гархинг, Германия
 Поступила в редакцию 08.06.2020 г.
 После доработки 16.06.2020 г.; принята к публикации 25.06.2020 г.

По наблюдениям с новым Транзиентным двухлучевым спектрографом (TDS) на 2.5-метровом телескопе КГО ГАИШ МГУ определен тип и найдено красное смещение для 6 новых рентгеновских источников (4 квазара и 2 скопления галактик), обнаруженных космической обсерваторией СРГ во время наблюдений Дыры Локмана на фазе проверочных наблюдений телескопа ePO3ИТА. Показано, что TDS позволяет получать спектры объектов $\sim\!20^m$ за 2 ч наблюдений с отношением сигнал к шуму выше 5 и разрешением $R\sim\!1500$. Типы и красные смещения объектов, определенные по спектральным наблюдениям, хорошо согласуются с предсказаниями по фотометрическим данным с помощью автоматической системы классификации SRGz.

Ключевые слова: активные ядра галактик, скопления галактик, рентгеновские обзоры, спектроскопия, СРГ, Спектр-РГ, еРОЗИТА.

DOI: 10.31857/S0320010820070049

ВВЕДЕНИЕ

Рентгеновская обсерватория СРГ (Сюняев и др., 2020), запущенная 13 июля 2019 г., успешно работает на орбите вокруг точки Лагранжа L2 системы Земля—Солнце. Основная цель обсерватории — обзор всего неба в широком диапазоне энергий 0.2—30 кэВ продолжительностью 4 года. В ходе обзора предполагается открыть около трех миллионов активных ядер галактик (АЯГ), в том числе далеких квазаров (Колодзиг и др., 2013а,b), около ста тысяч скоплений и групп галактик, а также сотни тысяч рентгеновских источников различной природы в нашей Галактике. Ожидается, что чувствительность обзора неба обсерватории СРГ

будет примерно в 25 раз выше в мягком рентгеновском диапазоне (0.5—2 кэВ), чем у предыдущего обзора всего неба спутника ROSAT, который был проведен в начале 90-х годов XX века. Полученные рентгеновские данные помогут решить ряд важнейших задач современной астрофизики и космологии. Среди них — измерение космологических параметров и восстановление истории роста сверхмассивных черных дыр (СМЧД) во Вселенной.

Во время перелета обсерватории СРГ в точку Лагранжа L2 была проведена серия калибровочных и проверочных наблюдений (Calibration and Performance Verification Phase, Cal/PV-фаза) телескопов АРТ-ХС (Павлинский и др., 2020) и еРОЗИТА (Предэль и др., 2020), в ходе которой проверялось функционирование научной аппара-

^{*}Электронный адрес: dodin_nv@mail.ru

туры в различных режимах, уточнялись характеристики телескопов и проводилась отладка математического обеспечения обработки данных. Для проверочных наблюдений были отобраны мишени и участки на небе, представляющие самостоятельный научный интерес. После завершения Cal/PVфазы 8 декабря 2019 г. обсерватория СРГ начала работать в режиме обзора всего неба.

В рамках российской программы PV-фазы телескопа еРОЗИТА 12-14 ноября 2019 г. был проведен глубокий обзор участка неба площадью 18.5 кв. град вокруг Дыры Локмана (Lockman Hole, LH). В этой области лучевая концентрация межзвездного газа и пыли в Галактике минимальна $(N_H \sim 5 \times 10^{19}~{
m cm}^{-2})$, что позволяет находить максимальное количество внегалактических объектов (скоплений галактик и квазаров) в мягком рентгеновском диапазоне энергий. В ходе обзора за время экспозиции 180 000 с была достигнута чувствительность $\sim 4 \times 10^{-15}$ эрг/с/см² в диапазоне энергий 0.5-2 кэВ. Этот обзор стал самым большим по площади рентгеновским обзором области Дыры Локмана, причем все полученные данные принадлежат российским ученым.

Несколько кандидатов в квазары и скопления галактик, обнаруженных в рентгеновском обзоре Дыры Локмана, было решено пронаблюдать на новом 2.5-м телескопе ГАИШ МГУ, чтобы точно установить природу объектов и убедиться в эффективности нового телескопа для решения задач наземной оптической поддержки обзора СРГ. В данной статье представлены результаты спектроскопических наблюдений рентгеновских источников из обзора Дыры Локмана обсерватории СРГ на новом спектрографе 2.5-м телескопа ГАИШ МГУ.

РЕНТГЕНОВСКИЕ ДАННЫЕ И ОТБОР ОПТИЧЕСКИХ КАНДИДАТОВ

С помощью обсерватории СРГ в режиме растрового сканирования были проведены наблюдения площадки $5^{\circ} \times 3.7^{\circ}$ с центром в $\alpha = 10^{\rm h}35'$ и $\delta = +57^{\circ}38'$. Среднее время экспозиции составило около 8 ксек, что позволило достигнуть средней глубины около 4×10^{-15} эрг/с/см² в диапазоне 0.5-2 кэВ. Регистрация источников проводилась с помощью программного обеспечения обработки данных рентгеновского телескопа еРОЗИТА. Всего было обнаружено более 8000 рентгеновских источников.

На первом этапе была проведена кросскорреляция в радиусе 30" всех рентгеновских точечных источников СРГ/еРОЗИТА из обзора Дыры Локмана с каталогом оптических источников SDSS DR14 (Аболфати и др., 2018), для которых

имеются также данные принудительной фотометрии в инфракрасном диапазоне обзора WISE (Лэнг и др., 2016). Выбранный радиус 30" на порядок превышает характерную ошибку локализации источников еРОЗИТЫ в поле Дыры Локмана. что гарантирует попадание оптического партнера в область поиска. Полученный фотометрический каталог возможных оптических партнеров рентгеновских источников был обработан системой SRGz версии 1.8, которая оперирует в области покрытия фотометрического обзора SDSS и в автоматическом режиме анализирует совместные данные широкополосной фотометрии $(X_{
m ph})$ из трех крупнейших оптических обзоров — SDSS (фильтры u, g, r, i, z), DESI Legacy Imaging Survey DR8 (g_{LS} , r_{LS} , z_{LS} ; Дей и др. 2019), PanSTARRS1 $DR2 (g_{PS}, r_{PS}, i_{PS}, z_{PS}, y_{PS};$ Чамберс и др. 2016), а также данные принудительной фотометрии инфракрасного обзора WISE (фильтры w1 и w2).

Система отождествления точечных рентгеновских источников SRGz представляет собой набор программных компонентов, последовательно решающих задачи автоматического поиска (кроссотождествления) наиболее вероятного оптического компаньона, его фотометрической классификации (по схеме звезда/квазар/галактика) и получения фотометрической оценки красного смещения (photo-z). Для каждого оптического кандидата SRGz измеряет вероятность ассоциации $P_{\rm match}$ с рентгеновским источником, в поле которого он находится (при этом учитываются точность локализации рентгеновского объекта, плотность оптических объектов в поле и фотометрическая априорная вероятность для оптического кандидата). Фотометрический классификатор позволяет для выбранного оптического компаньона рентгеновского источника измерить вероятность того, что он является квазаром $P_{
m qso}$ или галактикой $P_{
m gal}$ (или звездой, $P_{
m star}=1-P_{
m qso}-P_{
m gal}$). Фотометрическая оценка красного смещения объекта доступна в SRGz как в виде полного прогноза условного вероятностного распределения $p(z|X_{\rm ph})$, так и в виде точечного прогноза $z_{
m ph}$ и его доверительного интервала CI_{α} с выбранным уровнем значимости α . Также измеряется достоверность прогноза photo-z в виде стандартной величины zConf, представляющей собой вероятность найти спектральное красное смещение в окрестности $\pm 0.06(1+z_{\rm ph})$ от наилучшего прогноза $z_{\rm ph}$.

Система SRGz построена на использовании ансамблевых древовидных алгоритмов машинного обучения (градиентный бустинг и случайный лес деревьев решений, см. Мещеряков и др., 2018), которые обучаются на выборках квазаров, галактик и звезд из спектроскопического каталога SDSS, а также выборки звезд GAIA DR2, ассоциированных

Таблица 1. Рентгеновские свойства объектов

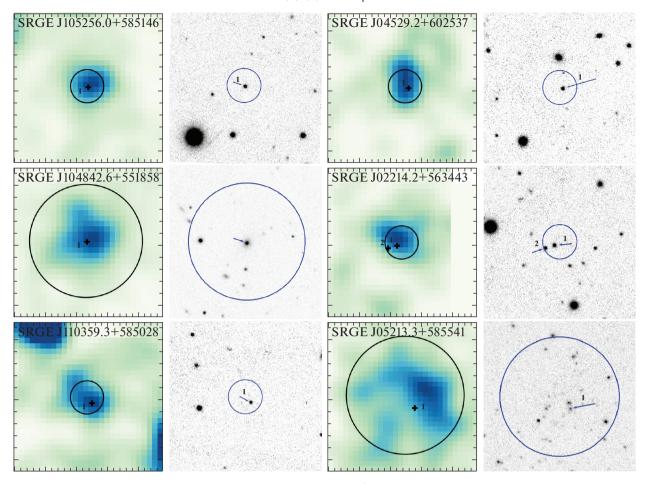
Объект*	R.A.	DEC	pos.err.	ext.	det.like	$F_{0.3-2}, 10^{-14}$	$F_{2-6}, 10^{-14}$
SRGE J102214.2+563443	10:22:14.2	+56:34:43	2.2	0	44	$0.6^{+0.2}_{-0.1}$	$0.9^{+0.8}_{-0.5}$
SRGE J104529.2+602537	10:45:29.2	+60:25:37	3.2	0	15	$0.6^{+0.2}_{-0.1}$	$0.22^{+0.29}_{-0.17}$
SRGE J104842.6+551858	10:48:42.6	+55:18:58	_	34	375	$6.0^{+0.4}_{-0.6}$	$2.7^{+1.4}_{-0.5}$
SRGE J105213.3+585541	10:52:13.3	+58:55:41	_	38	411	$7.5_{-1.0}^{+0.6}$	$8.0_{-3.0}^{+2.2}$
SRGE J105256.0+585146	10:52:56.0	+58:51:46	1.8	0	90	$1.6^{+0.3}_{-0.2}$	$0.9_{-0.3}^{+0.5}$
SRGE J110359.2+585028	11:03:59.2	+58:50:28	3.0	0	19	0.7 ± 0.2	0.4 ± 0.2

^{*} Приведены полные названия источников, далее в статье используются их сокращенные названия в формате Jhhmm ddmm. **Примечание.** pos.err. — Ошибка положения источника (1σ); ext. — протяженность рентгеновского источника; det.like — значимость детектирования; $F_{0.3-2}$, F_{2-6} — рентгеновские потоки (в эрг/с/см²) в энергетических диапазонах 0.3-2 и 2-6 кэВ (без поправки за поглощение), полученные в результате моделирования спектра источника степенной функцией с поглощением. Ошибка соответствует 68% уровню достоверности (1σ).

с источниками из рентгеновского каталога XMM-Newton (3XMM DR8). Подробнее принципы работы SRGz и реализованные в ней алгоритмы будут представлены в отдельной статье (Мещеряков и др., 2020). Дополнительную информацию об отборе для спектроскопии кандидатов в квазары из рентгеновского обзора Дыры Локмана можно найти в статье Хорунжев и др. (2020). Система SRGz была создана в рабочей группе по поиску рентгеновских источников, их отождествлению и составлению каталога по данным телескопа еРОЗИТА в отделе астрофизики высоких энергий ИКИ РАН.

Для пробных наблюдений на 2.5-м телескопе КГО ГАИШ МГУ были отобраны кандидаты в квазары с $i_{PSF} < 20$ в интервале красных смещений $0 < z \lesssim 3$ (по фотометрической оценке), для которых ранее не имелось спектроскопических измерений красного смещения. Наиболее вероятные оптические компаньоны для рентгеновских источников выбирались по значению $P_{\rm match}$.

Скопления галактик на изображениях телескопа еРОЗИТА выглядят как протяженные рентгеновские источники. Отождествление скоплений
галактик проводилось по данным обзоров неба в
оптическом и ИК-диапазонах (SDSS, DESI LIS,
PanSTARRS, WISE). Для этого использовалась
процедура, которая применялась нами ранее в работах по оптическому отождествлению скоплений
галактик среди источников Сюняева—Зельдовича,
обнаруженных в обзоре обсерватории им. Планка
(Сообщество Планка, 2015; Буренин, 2017; Буренин и др., 2018). По фотометрическим данным


обзоров неба в области локализации протяженного рентгеновского источника проводился поиск красной последовательности галактик скопления. Кандидаты для спектроскопии отбирались среди ярчайших галактик красной последовательности. Такая методика позволяет даже по одному спектроскопическому измерению получить надежное и точное измерение красного смещения скопления галактик.

Для пробных наблюдений на 2.5-м телескопе КГО ГАИШ МГУ были отобраны скопления галактик из обзора Дыры Локмана в широком диапазоне красных смещений z=0.2-0.7 (согласно фотометрическим оценкам). Чтобы измерить красные смещения этих скоплений, в них для спектроскопических наблюдений были отобраны ярчайшие галактики красной последовательности.

Рентгеновские свойства отобранных объектов приведены в табл. 1. Их рентгеновские и оптические изображения представлены на рис. 1.

НАБЛЮДЕНИЯ

Наблюдения выполнялись с помощью 2.5-м рефлектора F/8 системы Ричи—Кретьена, установленного на Кавказской горной обсерватории Государственного астрономического института им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова. Обсерватория и астроклимат места наблюдений описаны в статье Корнилов и др. (2014).

Рис. 1. В левом столбце показаны изображения источников СРГ/еРОЗИТА в рентгеновском диапазоне 0.5-2 кэВ, в правом — изображения в фильтре i_{PS} обзора Pan-STARRS их возможных оптических компаньонов. Размер изображений 1.5×1.5 угл. мин. Стрелкой отмечен наиболее вероятный оптический партнер для данного рентгеновского источника, для него снимался спектр с помощью спектрографа TDS 2.5-м телескопа KГО. Окружность радиусом 10 угл. сек обозначает область гарантированной локализации рентгеновского источника. Для предполагаемых скоплений галактик SRGE J104842.6+551858 и SRGE J105213.3+585541 окружность показывает радиус протяженности рентгеновского источника.

Двухлучевой Транзиентный Спектрограф 1 (ТДС) разработан для наблюдений нестационарных и внегалактических источников на 2.5-м телескопе КГО ГАИШ МГУ в оптическом диапазоне с низким спектральным разрешением. Регистрация спектра проводится одновременно в двух каналах: коротковолновом (350-585 нм, дисперсия 1.21 Å/пиксель, разрешающая сила $R \sim 1200$ с рабочей шириной щели 1") и длинноволновом (565-750) нм, дисперсия 0.87 Å/пиксель, $R \sim$ ~ 2200), свет между которыми распределяется дихроичным зеркалом с 50% уровнем пропускания на длине волны 575 нм. Приемниками служат две ПЗС-камеры на основе детекторов E2V 42-10, охлаждаемые до -70° С и имеющие шум считывания менее 3 электронов на рабочей скорости считывания 50 кГц. Длина входной щели 3 угл. мин,

имеются рабочая 1" и спектрофотометрическая 10" щели. В составе спектрографа имеются камера защелевого подсмотра и калибровочный узел, позволяющий снимать линейчатый спектр газоразрядной Ne-Kr-Pb лампы с полым катодом (ЛПК), а также источник с непрерывным спектром ("плоское поле") для учета виньетирования и неравномерности ширины щели. Световая эффективность (пропускание) всего оптического тракта, включая атмосферу, телескоп и спектрограф, но без учета переменных потерь на щели, составляет в максимуме не менее 30%: в "синем" канале 31% и 45% в "красном". Спектрограф постоянно установлен в фокусе Кассегрена телескопа вместе с фотометрической ПЗС-камерой широкого поля, свет в спектрограф подается вводящимся в тракт плоским диагональным зеркалом. Подробно инструмент описан в статье Потанин и др. (2020).

http://lnfm1.sai.msu.ru/kgo/instruments/tds

δ JD 245... $t_{\rm exp}$ N Источник SNR_B SNR_R i_{PSF} q_{PSF} r_{PSF} h m s 0 / // ДНИ сек 19.86 J1022+5634 10 22 14.2 +56 34 42 8911.54 1200 6 5.1 7.7 20.38 19.68 J1045+6025 10 45 28.9 +60 25 36 8853.62 300 8 3.8 5.8 19.63 19.62 19.54 J1048+5518 10 48 42.5 +55 18 57 8854.53 300 8 1.1 6.1 19.94* 18.46* 17.90* J1052+5855 10 52 12.5 +58 55 33 8922.31 1200 4 0.3 2.4 24.59* 20.68* 19.58* 5 2.5 J1052+5851 10 52 55.9 +585145 8852.63 600 2.9 19.78 19.66 19.59 3 J1103+5850 11 03 58.7 +5850258913.59 1200 4.3 5.8 20.32 19.97 19.81

Таблица 2. Оптические свойства объектов и журнал наблюдений

Примечание. JD — юлианская дата середины наблюдений; $t_{\rm exp}$ — время экспозиции, N — число усредняемых кадров; ${\rm SNR_{B,R}}$ — медианное отношение сигнала к шуму в синем и красном каналах для итогового спектра. Видимые звездные величины из каталога SDSS в фильтрах q, r, i приведены в колонках $q_{PSF}, r_{PSF}, i_{PSF}$.

Спектральные наблюдения проводились в январе и марте 2020 г. в ясную погоду до восхода Луны в темное время ночи. Ориентация щели устанавливалась по снимку с камерой широкого поля так, чтобы помимо объекта в щель попадала относительно яркая звезда в ближайших окрестностях. Затем, при переходе системы в спектральный режим, положение щели контролировалось по этой звезде, так как сам объект был не виден в камеру подсмотра спектрографа, а затем поддерживалось автогидирующим устройством телескопа. Непосредственно после измерений каждого объекта выполнялись калибровочные измерения звезды-стандарта из списка ЕЮО https://www.eso.org/sci/observing/tools/standards/ spectra/stanlis.html. Список объектов и выполненных измерений представлен в табл. 2.

Обработка наблюдений

Обработка проводилась с помощью специально созданного пакета программ на языке python и включала в себя следующие этапы:

Вычитание темновых кадров. Наборы темновых кадров для разных времен экспозиций были сняты заранее при той же температуре и тех же настройках приемника, что и во время наблюдений.

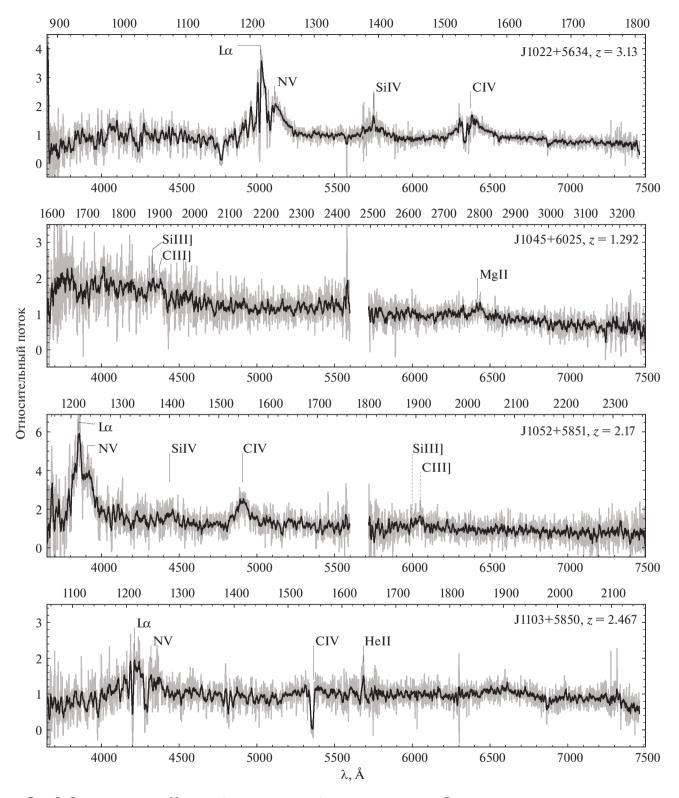
Удаление следов космических лучей проводилось с помощью пакета LAcosmic (ван Док-кум, 2001).

Коррекция кривизны изображения щели и калибровка по длинам волн проводились по

спектру ЛПК. Дисперсионная кривая аппроксимировалась полиномом 5-й степени методом наименьших квадратов с весами, зависящими от ошибки определения положения линий. Положения линий определялись путем аппроксимации их гауссовским профилем. Остаточные отклонения положений индивидуальных линий от полинома не превышают 0.5 Å.

Неравномерность чувствительности вдоль щели исправлялась путем вычисления плоского поля либо по спектру сумеречного неба, либо по спектру источника непрерывного спектра.

Комбинирование кадров отдельных экспозиций в суммарное изображение.


Экстракция спектра. Отсчеты суммировались в апертуре длиной 2"5 за вычетом фона, который определялся как медианное среднее по областям длиной 15"—20" по обеим сторонам от спектра объекта. Шаги до этого включительно выполнялись также для спектро-фотометрических стандартов, по которым определялась кривая реакции всей системы.

Коррекция длин волн по линиям ночного неба. Типичная величина поправки составляла доли Å.

Коррекция за кривую реакции системы выполнялась по найденному отношению экстрагированных спектров стандартов к опубликованным распределениям энергии в их спектрах.

Поскольку наблюдения проводились с узкой щелью, мы приводим спектры только в относительных единицах. Заметим, что и в этом случае

 $^{^*}$ Протяженные в оптике галактики, для которых приведено значение modelMag.

Рис. 2. Спектры квазаров. На нижней оси показаны наблюдаемые длины волн. Верхняя ось соответствует длинам волн в системе отсчета источника. Серая линия — оригинальные наблюдения. Сплошная черная линия — наблюдения, сглаженные скользящим средним. Сплошными вертикальными чертами отмечены положения линий, которые использовались для измерения красного смещения, штриховыми чертами — вычисленные положения линий по найденному красному смещению.

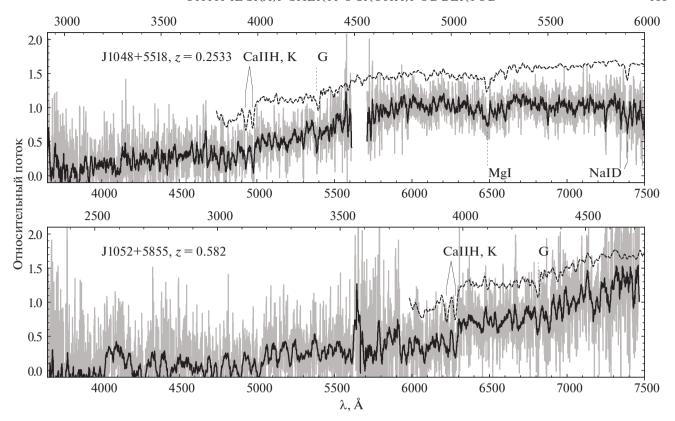


Рис. 3. Спектры ярчайших галактик скоплений. На нижней оси показаны наблюдаемые длины волн. Верхняя ось соответствует длинам волн в системе отсчета источника. Серая линия — оригинальные наблюдения. Сплошная черная линия — наблюдения, сглаженные скользящим средним. Штриховая линия — смещенный для удобства сравнения спектр галактики SDSS J231904.77-082906.3. Сплошными вертикальными чертами отмечены положения линий, которые использовались для измерения красного смещения, штриховыми чертами — вычисленные положения линий по найденному красному смещению.

распределение энергии может быть искажено из-за вариаций спектральной прозрачности атмосферы и зависимости атмосферного дрожания от длины волны, однако для выводов статьи эти эффекты не играют роли.

РЕЗУЛЬТАТЫ

На основе фотометрических данных (SDSS, DESI LIS, PanSTARRS, WISE) из 6 объектов 4 были классифицированы системой SRGz как квазары. С помощью SRGz фотометрические красные смещения были определены и для ярчайших галактик скоплений. Полученные спектральные данные подтвердили результаты классификации SRGz для всех объектов. Спектры квазаров показаны на рис. 2, а ярчайших галактик скоплений — на рис. 3.

Для каждого объекта было определено красное смещение. Полученные спектры имеют избыточное спектральное разрешение для решения этой задачи, но недостаточное отношение сигнала к шуму. Поэтому исходные спектры были сглажены по 10 точкам (в случае J1052+5855 по 20 точкам), что позволило увеличить отношение сигнала к шуму и

провести визуальную идентификацию линий. Для измерения красного смещения z мы использовали линии, отмеченные на рис. 2 и 3. Для каждой линии мы визуально определили интервал длин волн, в котором может находиться центр линии. Середины таких интервалов использовались для оценки z_i каждой линии, а их ширины для определения меры неопределенности δz_i красного смещения z_i . Итоговое красное смещение и его разброс приведены в табл. 3 и определялись как средневзвешенное по всем линиям:

$$z = \sum_{i=1}^{n} w_i z_i / \sum_{i=1}^{n} w_i,$$

$$\sigma_z = t(n) \sqrt{\frac{n}{n-1} \sum_{i=1}^{n} w_i (z_i - z)^2 / \sum_{i=1}^{n} w_i},$$

где $w_i = \delta z_i^{-2}$, а t(n) — коэффициент Стьюдента для доверительной вероятности 0.68, n — число линий. Основными источниками неопределенности δz_i являются ширина линии, степень ее симметричности, блендирование с другими линиями; таким

Таблица 3. Результаты SRGz (на основе фотометрических данных) и спектроскопические измерения, полученные
для оптических компаньонов рентгеновских источников

Источник	Спектроскопия		$L_{X,2-10}$	SRGz				
линготот	Класс $z_{ m spec}$		×10 ⁴⁴ эрг/с	$z_{ m phot}$	zConf	P_{qso}	$P_{ m gal}$	P_{match}
J1022+5634	квазар	3.13 ± 0.01	$4.8^{+1.6}_{-0.8}$	$3.15^{+0.12}_{-0.12}$	0.95	0.98	0.00	0.97
J1045+6025	квазар	1.292 ± 0.004	$0.6^{+0.2}_{-0.1}$	$1.57^{+0.13}_{-0.23}$	0.57	1.00	0.00	1.00
J1048+5518	галактика	0.2533 ± 0.0004	_	$0.27^{+0.02}_{-0.01}$	1.00	0.02	0.98	0.98
J1052+5855	галактика	0.582 ± 0.001	_	$0.61^{+0.04}_{-0.02}$	0.98	0.02	0.98	_
J1052+5851	квазар	2.17 ± 0.01	$5.6^{+1.1}_{-0.7}$	$2.18^{+0.03}_{-0.07}$	0.99	1.00	0.00	1.00
J1103+5850	квазар	2.467 ± 0.003	$3.3^{+0.9}_{-0.9}$	$2.32^{+0.14}_{-0.06}$	0.85	0.99	0.00	0.99

образом, узкие линии правильной формы получали наибольший вес в усреднении. Мы не применяли формальные методы определения центра линий, поскольку линии часто имеют сложную форму и простые методы определения центра могут приводить к систематическим ошибкам не только в z_i , но и в δz_i .

В случае квазаров в качестве центральной лабораторной длины волны сливающихся многокомпонентных линий брались усредненные с весами gf длины волны каждой компоненты, что оправдано в случае оптически тонких линий. Для абсорбционной линии Na I D, наблюдаемой в спектрах галактик, за центральную длину волны бралась средняя длина волны обоих компонент, что оправдано для оптически толстого случая, когда оба компонента имеют практически равные эквивалентные ширины.

Поскольку в случае квазаров в оптический диапазон попадают линии вакуумного ультрафиолета, то при вычислении z все длины волн были приведены к значениям в вакууме.

Спектры обеих ярчайших галактик скоплений имеют изрезанную форму и сильно зашумлены, что осложняет узнаваемость линий. Для проверки правильности идентификации найденных линий Na I и Ca II мы сравнили на рис. З спектры наших объектов со спектром галактики SDSS J231904.77-082906.3, который был выбран из каталога RCSED² (Чилингарян, Золотухин, 2012; Чилингарян и др., 2016) и сдвинут по длинам волн на найденное z (с учетом собственного z выбранной галактики). Видно, что в обоих спектрах совпадают

не только линии, по которым определялось z, но и другие сильные особенности (G полоса, линии Mg I), а также общее распределение энергии, что свидетельствует о правильности идентификации линий. Поскольку эти галактики входят в красные последовательности, измерения красных смещений этих галактик дают также красные смещения соответствующих скоплений.

Для квазаров — точечных рентгеновских источников — в табл. 3 приведено значение рентгеновской светимости в системе отсчета квазара в диапазоне 2-10 кэВ. Светимость получена из наблюдаемого рентгеновского потока в диапазоне 0.3-2 кэВ в предположении, что рентгеновский спектр квазара описывается степенным законом с фотонным инлексом $\Gamma=1.8$.

ОЦЕНКА МАСС СМЧД И ТЕМПОВ АККРЕЦИИ ПО ПАРАМЕТРАМ ЛИНИИ С IV

Объекты J1052+5851 и J1022+5634 имеют в своих спектрах достаточно выразительную эмиссионную линию С IV для того, чтобы можно было применить метод оценки массы СМЧД по ее ширине (Парк и др., 2013). Для измерения ширины линии мы фитировали ее профиль гауссианой, маскируя абсорбционные детали. Инструментальная ширина профиля оценивется по линии неба 5577 Å и дает пренебрежимо малый вклад в общую ширину линий С IV. Для применения метода, помимо ширины линии С IV, необходимо знать монохроматическую светимость в континууме λL_{λ} в районе 1350 Å в системе отсчета источника. В системе отсчета наблюдателя эта длина волны

² http://rcsed.sai.msu.ru

FWHM_{C IV} $1350F_{1350}^{\text{raw}}$ $1350F_{1350}$ $1350L_{1350}$ Источник $\lg M$ чД $/M_{\odot}$ zэрг/с/см 2 9рг/с/см 2 км/с эрг/с 1.38×10^{-13} 1.64×10^{-13} 1.5×10^{46} J1022+5634 3.13 7500 ± 300 9.1 ± 0.5 2.40×10^{-13} J1052+5851 2.17 5600 ± 300 3.16×10^{-13} 9×10^{45} 8.9 ± 0.5

Таблица 4. Оценка масс СМЧД

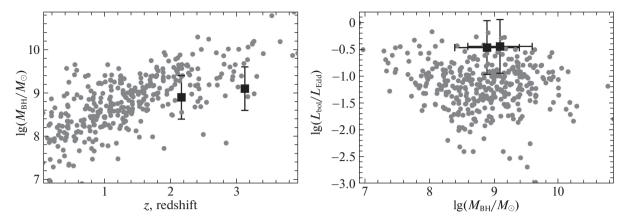
попадает в видимый диапазон, и нужная величина может быть вычислена из наших наблюдений. Поскольку спектры были получены с узкой щелью, мы скорректировали наблюдаемые потоки $F_{1350}^{\rm raw}$, используя фотометрию SDSS. Величина коррекции составляла около 20%. Для расчета фотометрического расстояния по красному смещению мы использовали космологический калькулятор (Райт, 2006) для параметров $H_0=69.6$, км/с/Мпк, $\Omega_{\rm M}=0.286$ и $\Omega_{\rm vac}=0.714$. Полученные величины λL_{λ} и FWHM $_{\rm C\,IV}$ собраны в табл. 4.

Соотношение, связывающее ширину линии в системе отсчета квазара (FWHM_{C IV}) и монохроматическую светимость континуума L_{1350} с массой СМЧД, взято из статьи Парк и др. (2013):

$$\lg \frac{M_{\rm BH}}{M_{\odot}} = \alpha + \beta \lg \frac{1350L_{1350}}{10^{44} \text{pd}/\text{c}} + \gamma \lg \frac{\text{FWHM}_{\text{C IV}}}{1000 \, \text{km/c}},$$

где $\alpha=7.48\pm0.24$, $\beta=0.52\pm0.09$ и $\gamma=0.56\pm0.48$. Для обоих объектов получившиеся значения масс составляют $10^9~M_{\odot}$ с точностью до фактора 3 (см. табл. 4). Заметим, что невысокая точность оценки определяется не качеством наблюдений, а неопределенностью коэффициентов α , β и γ .

Используя полученные значения L_{1350} , можно оценить болометрическую светимость квазаров J1022+5634 и J1052+5851: $L_{\rm bol}=3.81 \times 1350L_{1350}$. Это соотношение взято из работы Даи и др. (2014) и основано на усредненном спектральном распределении энергии квазаров 1-го типа из работы Ричардс и др. (2006). На основе полученных оценок масс СМЧД, в свою очередь, можно оценить эддингтоновские светимости обоих объектов: $L_{\rm Edd}=1.26\times 10^{38}(M_{BH}/M_{\odot})$ эрг/с. В итоге для обоих квазаров получается $L_{\rm bol}/L_{\rm Edd}\approx 0.3$ (от ~ 0.1 до ~ 1 с учетом погрешности), т.е. аккреция на СМЧД идет в высоком темпе и радиационно эффективном режиме.


Полученные значения интересно сравнить с соответствующими значениями для представительной выборки (391 объект) ранее известных квазаров в области Дыры Локмана из упомянутой

работы Даи и др. (2014). Эти объекты были отобраны по потоку на длине волны 24 мкм в инфракрасном обзоре SWIRE обсерватории Spitzer на площадке размером $\approx \! 11$ кв. градусов (которая входит в область покрытия обзора Дыры Локмана обсерватории $CP\Gamma$) и отождествлены как квазары с широкими эмиссионными линиями в ходе спектроскопического обзора на телескопе MMT. Как видно на рис. 4, отношение $L_{\rm bol}/L_{\rm Edd}$ для квазаров J1022+5634 и J1052+5851 оказывается среди самых высоких значений для квазаров в области Дыры Локмана.

ЗАКЛЮЧЕНИЕ

На практике показано, что введенный в эксплуатацию на 2.5-м телескопе КГО ГАИШ МГУ спектрограф TDS позволяет получать спектры объектов $\sim 20^m$ за 2 ч наблюдений с отношением сигнал к шуму больше 5 и разрешением $R \sim 1500$. Такие характеристики позволяют использовать инструмент для изучения слабых объектов, в частности, оптических компаньонов рентгеновских источников, которые открываются в большом количестве обсерваторией СРГ. Значительный объем наблюдательного материала СРГ требует автоматического отождествления рентгеновских источников в оптическом диапазоне, их классификации и фотометрических измерений красных смещений. Для решения этой задачи в отделе астрофизики высоких энергий ИКИ РАН была создана система SRGz на основе алгоритмов машинного обучения, а также созданы алгоритмы автоматического поиска красных последовательностей в скоплениях галактик по данным в оптическом и ИК-диапазонах.

Первые спектральные наблюдения со спектрографом TDS кандидатов в квазары на $z\lesssim 3$ и скоплений галактик, открытых телескопом ePO3ИTA обсерватории CPГ, показали, что система SRGz правильно отождествляет такие объекты, а ее результаты по фотометрическому измерению красных смещений рентгеновских источников хорошо согласуются с результатами оптической спектроскопии. Характеристики нового спектрографа TDS КГО ГАИШ МГУ позволяют решать широкий круг задач, связанных с отождествлением в видимом

Рис. 4. Слева: распределение ранее известных квазаров с широкими эмиссионными линиями в области Дыры Локмана (Даи и др. 2014, серые точки) по красному смещению и массе СМЧД. Черными квадратами с ошибками показаны соответствующие значения для квазаров SRGE J102214.2+563443 и SRGE J105213.3+585541, обнаруженных в ходе рентгеновского обзора Дыры Локмана телескопом СРГ/еРОЗИТА и отождествленных с помощью 2.5-м телескопа КГО ГАИШ МГУ. Справа: соответствующая диаграмма для темпа аккреции и массы черной дыры.

диапазоне рентгеновских источников обзора СРГ и определением их физических свойств.

Спектрограф TDS создан при финансовой поддержке программы развития МГУ им. М.В. Ломоносова и грантов РНФ 16-12-10519 (красный канал), РНФ 17-12-01241 (синий канал). Работа АВД, САП, ААБ, ОВЕ, АМТ, КАП выполнена при поддержке гранта Программы развития МГУ "Ведущая научная школа "Физика звезд, релятивистских объектов и галактик".

Это исслелование основано на наблюдениях телескопа еРОЗИТА на борту обсерватории СРГ. Обсерватория СРГ изготовлена Роскосмосом в интересах Российской академии наук в лице Института космических исследований (ИКИ) в рамках Российской федеральной научной программы с участием Германского центра авиации и космонавтики (DLR). Рентгеновский телескоп СРГ/еРОЗИТА изготовлен консорциумом германских институтов во главе с Институтом внеземной физики Общества им. Макса Планка (МРЕ) при поддержке DLR. Космический аппарат СРГ спроектирован, изготовлен, запущен и управляется НПО им. Лавочкина и его субподрядчиками. Прием научных данных осуществляется комплексом антенн дальней космической связи в Медвежьих озерах, Уссурийске и Байконуре и финансируется Роскосмосом. Использованные в настоящей работе данные телескопа еРОЗИТА обработаны с помощью программного обеспечения eSASS, разработанного германским консорциумом еРОЗИТА, и программного обеспечения, разработанного российским консорциумом телескопа СРГ/ еРОЗИТА.

СПИСОК ЛИТЕРАТУРЫ

- 1. Аболфати и др. (B. Abolfathi, D. Aguado, G. Aguilar, P. Allende, A. Almeida, T. Ananna, et al.), Astrophys. J. Suppl. Ser. **235**, 42 (2018).
- 2. Буренин Р.А., Письма в Астрон. журн. **43**, 559 (2017) [R.A. Burenin, Astron. Lett. **43**, 507 (2017)].
- 3. Буренин Р.А., Бикмаев И.Ф., Хамитов И.М., Зазнобин И.А., Хорунжев Г.А., Еселевич М.В. и др., Письма в Астрон. журн. **44**, 297 (2018) [R.A. Burenin et al., Astron. Lett. **44**, 297 (2018)].
- 4. ван Доккум (P.G. van Dokkum), PASP 113, 1420 (2001).
- 5. Даи и др. (Y.S. Dai, M. Elvis, J. Bergeron, G. Fazio, et al.), Astrophys. J. **791**, 113 (2014).
- 6. Дей и др. (A. Dey, D.J. Schlegel, D. Lang, R. Blum, et al.), Astron. J. **157**, 168 (2019).
- 7. Колодзиг и др. (A. Kolodzig, M. Gilfanov, R. Sunyaev, S. Sazonov, and M. Brusa), Astron. Astrophys. **558**, A89 (2013).
- 8. Колодзиг и др. (A. Kolodzig, M. Gilfanov, G. Huetsi, and R. Sunyaev), Astron. Astrophys. **558**, A90 (2013).
- 9. Корнилов и др. (V. Kornilov, B. Safonov, M. Kornilov, N. Shatsky, O. Voziakova, S. Potanin, et al.), PASP **126**, 482 (2014).
- 10. Лэнг и др. (D. Lang, D. Hogg, and D. Schlegel), Astron. J. **151**, 36 (2016).
- 11. Мещеряков и др. (А. Мещеряков, В. Глазкова, С. Герасимов, И. Машечкин), Письма в Астрон. журн. **44**, 801 (2018). [A. Mescheryakov, et al., Astron. Lett. **44**, 735 (2018)].
- 12. Мещеряков (А. Мещеряков), in preparation (2020).
- 13. Павлинский (М.Н. Павлинский), in preparation (2020).
- 14. Парк и др. (D. Park, J. Woo, K. Denney, and J. Shin), Astrophys. J. **770**, 87 (2013).
- 15. Потанин и др. (S. Potanin, N. Shatsky, et al.), in preparation (2020).
- 16. Предэль (P. Predehl), in preparation (2020).

- 17. Райт (E.L. Wright), PASP 118, 1711 (2006).
- 18. Ричардс и др. (G.T. Richards, M. Lacy, L. Storrie-Lombardi, P. Hall, S. Gallagher, D. Hines, et al.), Astrophys. J. Suppl. Ser. **166**, 470 (2006).
- 19. Сообщество Планка (Planck Intermediate Results XXVI: P.A.R. Ade, N. Aghanim, M. Arnaud, et al.), Astron. Astrophys. **582**, A29 (2015); arXiv:1407.6663.
- 20. Сюняев и др. (R. Sunyaev, et al.), готовится к печати (2020).
- 21. Хорунжев и др. (Г.А. Хорунжев, А.В. Мещеряков, Р.А. Буренин, А.Р. Ляпин, П.С. Медведев,

- С.Ю. Сазонов и др.), Письма в Астрон. журн. **46**, 155 (2020) [G.A. Khorunzhev et al., Astron. Lett. **46**, N3 (2020)].
- 22. Чамберс и др. (K.C. Chambers, E.A. Magnier, N. Metcalfe, et al.), arXiv e-prints arXiv:1612.05560, (2016).
- 23. Чилингарян и др. (I. Chilingarian, I. Zolotukhin, I. Katkov, and A.-L. Melchior), Astrophys. J. Suppl. Ser. 228, 14 (2017).
- 24. Чилингарян, Золотухин (I. Chilingarian and I. Zolotukhin), MNRAS **419**, 1727 (2012).