ИЗМЕНЕНИЯ ПЕРИОДА ЦЕФЕИДЫ НАСЕЛЕНИЯ II СС Lyr

© 2020 г. Л. Н. Бердников^{1*}, А. М. Якоб², Е. Н. Пастухова³

¹Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

²Отдел астрономических и астрофизических исследований, обсерватория Энтото и исследовательский центр, Эфиопский институт космических исследований и технологии, Аддис Абеба, Эфиопия

³Институт астрономии РАН, Москва, Россия Поступила в редакцию 20.07.2020 г.

После доработки 06.08.2020 г.; принята к публикации 22.09.2020 г.

Обработка всей имеющейся фотометрии цефеиды СС Lyr позволила построить ее диаграмму O - C, охватывающую временной интервал 124 года. Полученные данные свидетельствуют в пользу существования больших случайных флуктуаций периода ($\varepsilon/P \approx 0.046$). Формальная аппроксимация остатков O - C параболой позволила оценить скорость векового увеличения периода $dP/dt = 229.3(\pm 14.8)$ с/год. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность увеличения периода.

Ключевые слова: цефеиды населения II, периоды пульсаций, эволюция звезд.

DOI: 10.31857/S0320010820090028

ВВЕДЕНИЕ

В Общем Каталоге Переменных Звезд (Самусь и др., 2017) СС Lyr числится цефеидой типа СWA с периодом 24.16 сут. Измерения металличности (Маас и др., 2007) показали, что это очень бедная металлами звезда: [Fe/H] = -3.5 dex. Аоки и др. (2017) получили значение [Fe/H] = -3.9 dex и причислили ее к экстремально бедным металлами пост-AGB звездам, свойства которых близки к свойствам СС Lyr.

Изменения периода СС Lyr изучали Кви (1967), Хус (1968), Васильяновская и Ерлексова (1970), Перова (1970) и Зверев и Макаренко (1979) на интервалах времени нескольких десятков лет. Были выявлены скачки периода, но прогрессивные изменения периода обнаружены не были.

В данной работе мы проводим новое изучение изменяемости периода СС Lyr на основе существенно увеличенного объема наблюдательных данных, включая наблюдения, полученные как на старых фотопластинках, так и в ходе выполнения современных фотометрических обзоров.

МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Для нового изучения периода СС Lyr мы собрали фотоэлектрические и ПЗС-наблюдения в фильтрах *В* и *V* из литературы (Вальравен и др., 1958; Оостерхоф, 1960; Ирвин, 1961; Кви, Браун, 1967; Харрис, 1980; Меакес и др., 1991; Игнатова, Возякова, 2000; Шмидт и др., 2004), из международной базы данных Американской Ассоциации Наблюдателей Переменных Звезд (AAVSO) и из обзора Ніррагсов (ЕКА, 1997), а также ПЗСнаблюдения из обзоров NSVS (Возниак и др., 2004), INTEGRAL-OMC (Альфонсо-Гарсон и др., 2012), ASAS–SN (Яясингхе и др., 2019) и PAN-STARRS1 (Чамберс и др., 2019), полученные в полосах, близких к *V* и *g*'.

Кроме того, мы использовали фотографические наблюдения из литературы (Фридель, 1967; Зверев, Макаренко, 1979), из проекта DASCH (Гриндлей и др., 2009) и сделанные нами глазомерные оценки блеска на фотопластинках ГАИШ (РФ).

Сведения о количестве использованных наблюдений приведены в табл. 1. Самая старая фотопластинка с изображением СС Lyr, хранящаяся в Гарварде, была получена в 1896 г., а последние ПЗС-наблюдения были сделаны в 2020 г. Следовательно, наши данные охватывают временной интервал 124 года.

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа диаграмм O - C, а самым точным методом определения остатков O - C является метод Герцшпрунга

^{*}Электронный адрес: lberdnikov@yandex.ru

Источник данных	Число наблюдений	Полоса наблюдений	Интервал JD
DASCH	1237	PG	2413734-2447763
ГАИШ (данная работа)	328	PG	2414881-2449634
Литература	588	PG, PV	2433040-2441182
Литература	200	VIS	2427543-2428128
Литература	245	B, V	2436751-2451829
Hipparcos	167	V	2447899-2449053
NSVS	167	V	2451274-2451627
INTEGRAL-OMC	87	V	2454242 - 2455666
PAN-STARRS1	10	g'	2455388 - 2456456
ASAS-SN	2260	V,g'	2456595 - 2458969
AAVSO	53	B, V	2457647-2458451

Таблица 1. Наблюдательный материал цефеиды СС Lyr

(1919), машинная реализация которого описана в работе Бердникова (1992). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых СС Lyr методом Герцшпрунга (1919) изображены на диаграмме O - C (рис. 1) кружками с вертикальными черточками, указывающими пределы ошибок определения остатков О – С. На рис. 1 показаны частые и резкие скачки периода, поэтому вычисление остатков О – С по небольшому числу наблюдений на больших интервалах времени, особенно вблизи моментов скачка периода, может приводить к большим ошибкам и, как следствие, — к просчетам эпох, которые могут иметь место также и в окрестностях JD 2450000 и 2454000. Чтобы разрешить эту проблему, мы использовали опубликованные моменты максимального блеска и моменты поярчаний, т.е. эпохи наблюдений вблизи максимального блеска, и построили новую O - C диаграмму (рис. 2), на которой данные, полученные методом Герцшпрунга (табл. 2), обозначены большими кружками, а остальные (табл. 3) — малыми кружками. На рис. 2 показано, что на рис. 1 был допущен просчет эпохи вблизи JD 2421000; к сожалению, нет наблюдений между первыми двумя точками и вблизи JD 2454000, где просчет эпохи возможен.

Данные табл. 2 позволяют оценить величину случайных флуктуаций пульсационного периода. Для этого вычислялись задержки u(x) = |z(r + x) - z(r)| для максимумов, разделенных x циклами. Средняя величина $\langle u(x) \rangle$, согласно Эддингтону и Плакидису (1929), должна быть связана со случайной флуктуацией периода ε соотношением

$$\langle u(x)\rangle^2 = 2\alpha^2 + x\varepsilon^2,\tag{1}$$

где α характеризует величину случайных ошибок измеренных моментов максимального блеска.

Результаты вычислений представлены на рис. 3 и указывают на существование линейного тренда $\langle u(x) \rangle^2$ для разности циклов x < 22, где формальная подгонка уравнения (1) дает решение в виде

$$\langle u(x) \rangle^2 = 0.577(\pm 0.786) + 2.393(\pm 0.178)x,$$

откуда $\alpha = 0.97537 \pm 0.9887$, что близко к средней ошибке определения моментов максимального блеска (второй столбец табл. 2). Величина случайной флуктуации периода $\varepsilon = 1.994 \pm 0.9422$. Таким образом, полученные нами данные свидетельствуют о существовании больших случайных флуктуаций периода ($\varepsilon/P \approx 0.046$), которые сильно зашумляют параболу на диаграмме O - C.

По моментам максимального блеска из табл. 2 и табл. 3 получены квадратичные элементы изменения блеска цефеиды СС Lyr:

$$Max HJD = 2436276.2627(\pm 2.296) + (2)$$

 $+ 24 \cdot 01002139 (\pm 0.00301)E +$

 $+ 0.872485 \times 10^{-4} (\pm 0.5616 \ 10^{-5}) E^2,$

линейная часть которых использована для вычислений остатков O - C в табл. 2 и табл. 3. Элементы (2) использовались для проведения параболы на

Рис. 1. Диаграмма О – С цефеиды СС Lyr для максимумов, определенных методом Герцшпрунга.

Рис. 2. Диаграмма *О* – *С* СС Lyr относительно линейных (вверху) и квадратичных (внизу) элементов (2). Линия — парабола, соответствующая элементам (2). Большие и маленькие кружки соответствуют данным табл. 2 и 3 соответственно.

БЕРДНИКОВ и др.

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2415989.734	0.965	PG	-848	74.746	9	ГАИШ (данная работа)
2416673.823	0.496	PG	-819	62.545	10	DASCH
2417021.050	0.330	PG	-804	49.622	27	DASCH
2417119.516	0.230	PG	-800	52.047	14	DASCH
2418506.632	1.368	PG	-742	46.582	18	DASCH
2418846.668	1.045	PG	-728	50.478	8	ГАИШ (данная работа)
2420095.268	0.438	PG	-676	50.557	17	DASCH
2421119.410	0.503	PG	-633	42.268	16	DASCH
2422798.329	0.716	PG	-563	40.486	19	DASCH
2423705.953	0.421	PG	-525	35.729	27	DASCH
2424510.281	0.415	PG	-491	23.716	22	DASCH
2425103.732	0.556	PG	-466	16.916	20	DASCH
2425977.208	0.332	PG	-429	2.021	38	DASCH
2426710.889	0.361	PG	-398	-8.608	40	DASCH
2427257.769	0.467	PG	-375	-13.959	22	DASCH
2427633.710	0.220	PG	-359	-22.177	47	DASCH
2427634.048	0.166	VIS	-359	-22.617	81	Зверев, Макаренко (1979)
2427822.834	0.156	PG	-351	-25.134	5	ГАИШ (данная работа)
2427967.394	0.105	VIS	-345	-25.411	119	Зверев, Макаренко (1979)
2428013.821	0.189	PG	-343	-26.227	46	DASCH
2428351.691	0.690	PG	-329	-24.498	36	DASCH
2428713.396	0.445	PG	-314	-22.942	37	DASCH
2428761.363	0.280	PG	-312	-22.996	9	ГАИШ (данная работа)
2429046.979	0.513	PG	-300	-25.500	33	DASCH
2429456.434	0.222	PG	-283	-24.215	64	DASCH
2429457.910	0.500	PG	-283	-22.739	15	ГАИШ (данная работа)
2429817.998	0.165	PG	-268	-22.802	63	DASCH
2430179.330	0.474	PG	-253	-21.620	34	DASCH
2430613.394	0.435	PG	-235	-19.736	5	ГАИШ (данная работа)
2430756.123	0.301	PG	-229	-21.068	48	DASCH
2431259.408	0.321	PG	-208	-21.993	45	DASCH
2431644.914	0.277	PG	-192	-20.647	31	DASCH
2432028.776	0.325	PG	-176	-20.946	35	DASCH

Таблица 2. Моменты максимального блеска СС Lyr, определенные методом Герцшпрунга

Таблица 2. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2432365.486	0.305	PG	-162	-20.376	50	DASCH
2432942.686	0.307	PG	-138	-19.416	46	DASCH
2433110.868	0.184	PG	-131	-19.305	52	Фридель (1967)
2433471.724	0.469	PG	-116	-18.598	30	DASCH
2433640.124	0.158	PG	-109	-18.269	69	Фридель (1967)
2433856.738	0.430	PG	-100	-17.746	21	Зверев, Макаренко (1979)
2433954.878	0.445	PG	-96	-15.645	8	ГАИШ (данная работа)
2434196.427	0.403	PG	-86	-14.196	35	DASCH
2434271.336	0.499	PG	-83	-11.317	9	ГАИШ (данная работа)
2434513.766	0.155	PG	-73	-8.988	94	Фридель (1967)
2435022.058	1.283	PG	-52	-4.906	11	ГАИШ (данная работа)
2435456.541	0.205	PG	-34	-2.604	40	Фридель (1967)
2435480.346	0.313	PG	-33	-2.808	21	Зверев, Макаренко (1979)
2436062.065	0.464	PG	-9	2.669	41	Зверев, Макаренко (1979)
2436108.615	0.536	PG	-7	1.199	16	ГАИШ (данная работа)
2436422.413	0.282	PG	6	2.867	51	Зверев, Макаренко (1979)
2436566.837	0.536	PG	12	3.231	27	Фридель (1967)
2436787.901	0.203	V	21	7.428	25	Ирвин (1961)
2436788.189	0.188	V	21	7.716	25	Оостерхоф (1960)
2437004.691	0.171	PG	30	8.905	61	Зверев, Макаренко (1979)
2437725.079	0.485	PG	60	8.992	45	Зверев, Макаренко (1979)
2438230.624	0.329	V	81	9.550	13	Вальравен и др. (1958)
2438230.944	0.249	V	81	9.870	13	Кви, Браун (1967)
2439582.899	0.421	PV	137	17.263	49	Зверев, Макаренко (1979)
2441145.165	1.962	PG	202	19.655	17	Зверев, Макаренко (1979)
2441799.375	0.660	PG	229	25.595	27	DASCH
2443125.050	0.281	PG	284	30.718	35	DASCH
2443221.527	0.310	PG	288	31.156	15	ГАИШ (данная работа)
2443727.675	0.169	PG	309	33.093	46	ГАИШ (данная работа)
2443850.429	0.334	PG	314	35.797	20	DASCH
2444001.074	0.329	V	320	41.604	8	Харрис (1980)
2444069.145	0.311	PG	323	38.422	39	ГАИШ (данная работа)
2444477.666	0.317	PG	340	38.773	14	ГАИШ (данная работа)

Таблица 2. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2444622.627	0.380	PG	346	39.674	19	DASCH
2444840.396	0.306	PG	355	41.353	17	ГАИШ (данная работа)
2445179.386	0.696	PG	369	44.202	26	DASCH
2445230.656	0.390	PG	371	47.452	10	ГАИШ (данная работа)
2445735.020	0.233	PG	392	47.606	51	DASCH
2445929.422	0.271	PG	400	49.928	19	ГАИШ (данная работа)
2446245.497	0.517	PG	413	53.873	21	DASCH
2446317.202	0.255	PG	416	53.547	14	ГАИШ (данная работа)
2446609.094	0.358	V	428	56.542	11	Меакес и др. (1991)
2446681.564	0.229	PG	431	57.759	27	ГАИШ (данная работа)
2446777.644	0.333	PG	435	57.799	43	DASCH
2447065.503	0.285	PG	447	57.538	12	ГАИШ (данная работа)
2447392.648	0.872	PG	461	48.543	7	ГАИШ (данная работа)
2447442.898	0.480	PG	463	50.773	25	DASCH
2447970.680	0.295	V	485	49.557	28	Hipparcos
2448188.075	0.198	V	494	50.862	31	Hipparcos
2448227.657	0.586	PG	496	43.201	13	ГАИШ (данная работа)
2448379.377	0.229	V	502	50.084	27	Hipparcos
2448474.695	0.195	V	506	49.362	51	Hipparcos
2448808.435	0.221	V	520	46.961	30	Hipparcos
2450658.979	0.164	В	597	49.511	25	Игнатова, Возякова (2000)
2450659.879	0.177	V	597	49.633	25	Игнатова, Возякова (2000)
2450707.735	0.416	V	599	49.470	8	Шмидт и др. (2004)
2450998.125	0.055	В	611	52.517	28	Игнатова, Возякова (2000)
2450998.782	0.106	V	611	52.396	28	Игнатова, Возякова (2000)
2451336.663	0.158	V	625	54.137	83	NSVS
2451481.022	0.108	V	631	54.436	84	NSVS
2452135.604	0.183	V	658	60.747	12	Шмидт и др. (2004)
2452453.425	0.234	V	671	66.438	13	Шмидт и др. (2004)
2452790.084	0.444	V	685	66.957	11	Шмидт и др. (2004)
2455092.765	0.099	V	781	64.676	87	INTEGRAL-OMC
2455907.015	0.255	g'	815	62.430	10	PAN-STARRS1
2456863.878	0.039	V	855	59.047	243	ASAS-SN

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2457288.831	0.058	V	873	51.820	243	ASAS-SN
2457667.182	0.045	V	889	46.010	243	ASAS-SN
2458021.906	0.088	V	904	40.584	74	ASAS-SN
2458117.288	0.057	g'	908	39.772	151	ASAS-SN
2458140.912	0.060	V	909	39.540	247	ASAS-SN
2458281.871	0.201	В	915	37.216	26	AAVSO
2458283.066	0.171	V	915	37.634	27	AAVSO
2458283.173	0.064	g'	915	37.586	100	ASAS-SN
2458306.606	0.065	g'	916	37.010	151	ASAS-SN
2458330.814	0.074	g'	917	37.207	125	ASAS-SN
2458591.047	0.055	g'	928	33.330	100	ASAS-SN
2458638.988	0.075	g'	930	33.251	92	ASAS-SN
2458639.313	0.062	g'	930	33.576	108	ASAS-SN
2458709.421	0.063	g'	933	31.654	124	ASAS-SN
2458709.688	0.069	g'	933	31.921	151	ASAS-SN
2458804.302	0.056	g'	937	30.495	108	ASAS-SN

Таблица 2. Окончание

верхней части рис. 2, на нижней части которого показаны отклонения от этой параболы.

Известно, что для пульсирующих переменных максимумы блеска наступают позже с ростом эффективной длины волны фотометрической полосы. Поэтому, когда используются данные, полученные в разных полосах, надо выбрать основную (в нашем случае это V) и по одновременным наблюдениям определить величины сдвига моментов максимального блеска в других полосах. По данным табл. 2 было найдено, что максимумы в фильтрах B наступают раньше, а в фильтре g' позже, чем в фильтре V на 0.4777 и 0.4154 соответственно. Эти поправки учтены при вычислении остатков O - C (см. табл. 2 и 3), а также при построении рис. 1 и 2 и определении элементов (2), которые, таким образом, относятся к системе V.

Квадратичный член элементов (2) дает возможность вычислить скорость векового увеличения периода $dP/dt = 229.3(\pm 14.8)$ с/год.

Для подтверждения реальности увеличения периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для этого мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из табл. 2, $\Delta(O-C)_i = (O - -C)_{i+1} - (O-C)_i$, и построили график зависимости $D_i = \Delta(O-C)_i/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ (рис. 4). Разности D_i , которые имеют смысл изменений периода в интервале эпох $E_i \div E_{i+1}$, соответствуют поведению остатков O-Cна рис. 2.

На диаграмме *О* – *С* мы выделили 17 прямолинейных участков, для которых методом наименьших квадратов определили линейные элементы изменения блеска, приведенные в табл. 4; последняя строка в этой таблице дает текущие элементы.

На рис. 2 показано, что полученные нами результаты носят предварительный характер. Парабола на диаграмме O - C не является очевидной, она проведена формально. За 124 года наблюдений период CC Lyr не показала уверенного векового изменения, поэтому следует расширить интервал времени, охваченный диаграммой O - C. К сожалению, мы не можем продвинуться во времени назад раньше 1890 г., поэтому придется двигаться

БЕРДНИКОВ и др.

Максимум, HJD	Фильтр	E	О-С, сут	Источник данных
2413734.727	PG	-943	100.692	DASCH
2414766.831	PG	-900	100.364	DASCH
2414881.406	PG	-895	94.890	ГАИШ (данная работа)
2415143.443	PG	-884	92.816	ГАИШ (данная работа)
2415288.264	PG	-878	93.577	ГАИШ (данная работа)
2415549.735	PG	-867	90.938	DASCH
2415763.954	PG	-858	89.067	DASCH
2415800.915	PG	-856	78.008	DASCH
2415801.920	PG	-856	79.013	DASCH
2415988.602	PG	-848	73.615	DASCH
2416226.904	PG	-838	71.817	DASCH
2416340.698	PG	-833	65.561	DASCH
2416410.563	PG	-830	63.395	DASCH
2416415.477	PG	-830	68.309	DASCH
2416605.797	PG	-822	66.549	DASCH
2416723.606	PG	-817	64.309	DASCH
2416769.480	PG	-815	62.162	DASCH
2416769.584	PG	-815	62.266	DASCH
2417000.751	PG	-805	53.332	DASCH
2417049.683	PG	-803	54.245	DASCH
2417094.591	PG	-801	51.133	DASCH
2417462.587	PG	-786	58.978	DASCH
2417861.525	PG	-769	49.747	DASCH

-754

-753

-739

-739

-728

-710

-684

-682

-680

-680

_

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 46 № 9 2020

46.716

49.539

47.455

48.436

47.492

45.980

50.205

53.092

45.952

50.913

DASCH

DASCH

DASCH

DASCH

DASCH

DASCH

DASCH

DASCH

DASCH

Кукаркин (1931)

2418218.646

2418245.479

2418579.535

2418580.515

2418843.681

2419274.350

2419902.836

2419953.743

2419994.623

2419999.584

PG

Таблица 3. Продолжение

Максимум, HJD	Фильтр	E	О-С, сут	Источник данных
2420383.530	PG	-664	50.699	DASCH
2420386.522	PG	-664	53.691	DASCH
2420386.576	PG	-664	53.745	DASCH
2420413.487	PG	-663	56.646	DASCH
2420751.632	PG	-649	58.651	DASCH
2420769.563	PG	-648	52.572	DASCH
2421182.557	PG	-631	57.396	DASCH
2421468.550	PG	-619	55.268	DASCH
2421823.606	PG	-604	50.174	DASCH
2422179.676	PG	-589	46.093	DASCH
2425411.800	PG	-453	12.854	Xyc (1968)
2425648.500	PG	-443	9.454	Xyc (1968)
2426094.500	PG	-424	-0.736	Xyc (1968)
2427608.800	PG	-360	-23.078	Зверев (1931)
2427775.520	PG	-353	-24.428	Зверев (1932)
2428403.400	PG	-327	-20.808	Xyc (1968)
2428428.400	PG	-326	-19.818	Xyc (1968)
2428834.300	PG	-309	-22.089	Xyc (1968)
2428954.600	PG	-304	-21.839	Xyc (1968)
2429025.500	PG	-301	-22.969	Xyc (1968)
2429070.000	PG	-299	-26.489	Анерт и др. (1941)
2429167.300	PG	-295	-25.229	Xyc (1968)
2429193.300	PG	-294	-23.239	Xyc (1968)
2429457.900	PG	-283	-22.749	Xyc (1968)
2429816.250	PG	-268	-24.550	Анерт и др. (1941)
2430131.600	PG	-255	-21.330	Xyc (1968)
2430590.900	PG	-236	-18.220	Xyc (1968)
2430876.500	PG	-224	-20.741	Xyc (1968)
2431356.900	PG	-204	-20.541	Xyc (1968)
2431644.800	PG	-192	-20.761	Xyc (1968)
2431907.600	PG	-181	-22.072	Xyc (1968)
2432028.420	PG	-176	-21.302	Васильяновская и Ерлексова (1970)
2432823.300	PG	-143	-18.752	Xyc (1968)

Таблица 3. Окончание

Максимум, HJD	Фильтр	E	О-С, сут	Источник данных
2433111.570	PG	-131	-18.603	Васильяновская и Ерлексова (1970)
2433182.400	PG	-128	-19.803	Xyc (1968)
2433857.660	PG	-100	-16.823	Васильяновская и Ерлексова (1970)
2434199.120	PG	-86	-11.504	Васильяновская и Ерлексова (1970)
2434972.830	PG	-54	-6.114	Васильяновская и Ерлексова (1970)
2435626.700	PG	-27	-0.515	Васильяновская и Ерлексова (1970)
2435967.100	PG	-13	3.745	Xyc (1968)
2436039.730	PG	-10	4.345	Васильяновская и Ерлексова (1970)
2436303.869	PG	1	4.374	Коровкина (1959)
2436424.180	PG	6	4.634	Васильяновская и Ерлексова (1970)
2436450.900	PG	7	7.344	Xyc (1968)
2436690.240	PG	17	6.584	Васильяновская и Ерлексова (1970)
2436836.200	PG	23	8.484	Xyc (1968)
2437030.270	PG	31	10.474	Васильяновская и Ерлексова (1970)
2437078.800	PG	33	10.984	Xyc (1968)
2437557.400	PG	53	9.383	Xyc (1968)
2437797.250	PG	63	9.133	Васильяновская и Ерлексова (1970)
2437943.600	PG	68	35.433	Xyc (1968)
2438112.600	PG	76	12.353	Xyc (1968)
2438206.910	PG	80	10.623	Васильяновская и Ерлексова (1970)
2438500.900	PG	92	16.493	Xyc (1968)
2438597.120	PG	96	16.673	Васильяновская и Ерлексова (1970)
2438935.500	PG	110	18.912	Xyc (1968)
2439418.500	PG	130	21.712	Xyc (1968)
2448095.335	PG	490	54.939	ГАИШ (данная работа)
2448401.506	PG	503	48.980	ГАИШ (данная работа)
2449267.216	PG	539	50.329	ГАИШ (данная работа)
2450319.725	V	583	45.620	Шмидт и др. (2004)
2450348.660	V	584	50.545	Шмидт и др. (2004)

Рис. 3. Зависимость квадрата средней накопленной задержки $\langle u(x) \rangle$ от разности циклов x для цефеиды СС Lyr. Линия — подгонка уравнения (1) для x < 22, которая дает величину случайных флуктуаций периода $\varepsilon = 1$ ⁴094 ± 0⁴422 ($\varepsilon/P \approx 0.046$).

Рис. 4. Зависимость $D_i = ((O - C)_{i+1} - (O - C)_i)/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$. Линия соответствует поведению остатков O - C на рис. 2.

вперед и ждать, по крайней мере, несколько десятилетий.

Так как СС Lyr является пост-AGB звездой (Аоки и др., 2017), то на диаграмме Герцшпрунга— Рассела она должна пересекать полосу нестабильности справа налево (Боно и др., 2016), т.е. ее период должен убывать. Если дальнейшие наблюдения подтвердят увеличение периода, то возможным объяснением этого может быть наличие голубых петель на эволюционных треках, как в работе Гингольда (1976, 1985); правда, современные расчеты не показывают наличие таких петель. Кроме того, период может возрастать при пересечении полосы справа налево, когда наклон эволюционного трека больше наклона линии одинакового периода (Гингольд, 1976, 1985; Боно и др., 2016). В любом случае, для сравнения наших результатов с теорией, следует дождаться публикации эволюционных расчетов для моделей с [Fe/H] = $-4.0 \div -3.5$ dex.

Отметим, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. 5 с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Таблица 5 содержит звездные

Интервал JD	Начальная эпоха, HJD	Период, сут
2414000-2417500	2416038.291 ± 0.665	23.51894 ± 0.02156
2417500-2419000	2418292.926 ± 0.545	23.95772 ± 0.01717
2419000-2421000	2420192.707 ± 0.751	24.17348 ± 0.04561
2421000-2423000	2422133.084 ± 0.414	23.76325 ± 0.01650
2423000 - 2428000	2425860.191 ± 0.397	23.65773 ± 0.00649
2428000-2434000	2431020.595 ± 0.220	24.03325 ± 0.00298
2434000-2434800	2434368.731 ± 0.639	24.32875 ± 0.10451
2434800-2437000	2435916.981 ± 0.297	24.18263 ± 0.01188
2437000-2438000	2437462.095 ± 0.353	24.00618 ± 0.02288
2438000 - 2439500	2438861.066 ± 0.820	24.17001 ± 0.03543
2439500 - 2442000	2440667.324 ± 1.557	24.06013 ± 0.03649
2442000 - 2447000	2445036.306 ± 0.406	24.18704 ± 0.00830
2447000 - 2449000	2448067.686 ± 0.803	23.91339 ± 0.02389
2449000 - 2451500	2450516.514 ± 0.706	24.07753 ± 0.02705
2451500 - 2453000	2452209.092 ± 0.622	24.24753 ± 0.02649
2455000 - 2457000	2456122.037 ± 0.162	23.93371 ± 0.00530
2457000-2458900	2458164.655 ± 0.103	23.68647 ± 0.00563

Таблица 4. Линейные элементы изменения блеска СС Lyr

величины СС Lyr для фаз от 0 до 0.995 с шагом 0.005 в системе BVg'; эти стандартные кривые графически изображены на рис. 5.

Рис. 5. Стандартные кривые цефеиды СС Lyr в системе BVg'.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода CC Lyr использовались 2153 оценки блеска на старых фотопластинках; кроме того, было собрано 3189 опубликованных наблюлений. Все имеюшиеся данные были обработаны методом Герцшпрунга (1919), и полученные 115 моментов максимального блеска были объединены с опубликованными максимумами и моментами поярчаний для построения диаграммы *О* – *С*, охватывающей временной интервал 124 года. Полученные нами данные свидетельствуют в пользу существования больших случайных флуктуаций периода ($\varepsilon/P \approx 0.046$), которые существенно зашумляют параболу на диаграмме О--C. Формальная аппроксимация остатков O-Cпараболой позволила оценить скорость векового увеличения периода $dP/dt = 229.3(\pm 14.8)$ с/год. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность увеличения периода.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (гранты 18-02-00890 и 19-02-00611). Работа А.М. Якоба поддержана грантом ESSTI.

ИЗМЕНЕНИЯ ПЕРИОДА ЦЕФЕИДЫ

Фаза	В	V	g'	Фаза	В	V	g'	Фаза	В	V	g'
0.000	11.954	11.661	11.738	0.335	12.526	12.048	12.257	0.670	13.240	12.415	12.691
0.005	11.955	11.661	11.739	0.340	12.535	12.053	12.264	0.675	13.244	12.418	12.693
0.010	11.959	11.663	11.741	0.345	12.545	12.058	12.270	0.680	13.247	12.421	12.694
0.015	11.965	11.665	11.744	0.350	12.554	12.063	12.276	0.685	13.250	12.423	12.694
0.020	11.974	11.668	11.748	0.355	12.564	12.068	12.283	0.690	13.251	12.425	12.694
0.025	11.984	11.671	11.753	0.360	12.573	12.074	12.290	0.695	13.252	12.427	12.693
0.030	11.996	11.675	11.760	0.365	12.583	12.079	12.297	0.700	13.253	12.428	12.691
0.035	12.008	11.681	11.767	0.370	12.592	12.085	12.303	0.705	13.252	12.429	12.689
0.040	12.021	11.686	11.776	0.375	12.602	12.090	12.310	0.710	13.252	12.429	12.686
0.045	12.033	11.692	11.785	0.380	12.611	12.095	12.317	0.715	13.250	12.429	12.682
0.050	12.045	11.698	11.794	0.385	12.621	12.101	12.324	0.720	13.248	12.428	12.678
0.055	12.055	11.705	11.805	0.390	12.631	12.106	12.331	0.725	13.245	12.426	12.673
0.060	12.068	11.713	11.816	0.395	12.640	12.112	12.337	0.730	13.242	12.424	12.667
0.065	12.079	11.720	11.827	0.400	12.650	12.118	12.344	0.735	13.238	12.420	12.661
0.070	12.090	11.728	11.839	0.405	12.659	12.123	12.351	0.740	13.234	12.417	12.654
0.075	12.101	11.736	11.852	0.410	12.669	12.129	12.358	0.745	13.229	12.412	12.647
0.080	12.111	11.745	11.865	0.415	12.678	12.135	12.365	0.750	13.224	12.406	12.638
0.085	12.121	11.753	11.878	0.420	12.688	12.140	12.372	0.755	13.218	12.399	12.629
0.090	12.131	11.762	11.891	0.425	12.697	12.146	12.378	0.760	13.211	12.392	12.620
0.095	12.141	11.770	11.904	0.430	12.707	12.152	12.385	0.765	13.205	12.383	12.609
0.100	12.150	11.779	11.918	0.435	12.717	12.158	12.392	0.770	13.197	12.374	12.598
0.105	12.160	11.787	11.932	0.440	12.726	12.163	12.399	0.775	13.190	12.363	12.586
0.110	12.170	11.796	11.945	0.445	12.736	12.169	12.406	0.780	13.182	12.351	12.573
0.115	12.181	11.805	11.959	0.450	12.746	12.175	12.413	0.785	13.173	12.339	12.559
0.120	12.192	11.813	11.972	0.455	12.756	12.181	12.419	0.790	13.164	12.325	12.544
0.125	12.204	11.822	11.985	0.460	12.766	12.187	12.426	0.795	13.154	12.310	12.529
0.130	12.215	11.830	11.998	0.465	12.777	12.193	12.433	0.800	13.143	12.295	12.512
0.135	12.230	11.838	12.011	0.470	12.787	12.199	12.440	0.805	13.132	12.278	12.495
0.140	12.248	11.846	12.023	0.475	12.798	12.205	12.446	0.810	13.119	12.260	12.477
0.145	12.260	11.854	12.035	0.480	12.809	12.211	12.453	0.815	13.101	12.242	12.457
0.150	12.273	11.861	12.046	0.485	12.820	12.217	12.460	0.820	13.084	12.223	12.437
0.155	12.285	11.869	12.057	0.490	12.831	12.223	12.467	0.825	13.066	12.203	12.416
0.160	12.295	11.876	12.068	0.495	12.842	12.229	12.473	0.830	13.046	12.182	12.394

Таблица 5. Стандартные кривые СС Lyr в фильтрах *B*, *V* и *g*′

Таблица 5. Окончание

Фаза	В	V	g'	Фаза	В	V	g'	Фаза	В	V	g'
0.165	12.300	11.883	12.078	0.500	12.854	12.236	12.480	0.835	13.025	12.161	12.371
0.170	12.309	11.890	12.087	0.505	12.865	12.242	12.487	0.840	13.002	12.139	12.347
0.175	12.316	11.896	12.096	0.510	12.874	12.248	12.493	0.845	12.978	12.117	12.323
0.180	12.323	11.903	12.104	0.515	12.888	12.254	12.500	0.850	12.952	12.094	12.297
0.185	12.330	11.909	12.112	0.520	12.901	12.261	12.507	0.855	12.925	12.072	12.271
0.190	12.336	11.915	12.119	0.525	12.915	12.267	12.513	0.860	12.896	12.049	12.245
0.195	12.343	11.920	12.126	0.530	12.929	12.273	12.520	0.865	12.865	12.026	12.218
0.200	12.349	11.926	12.132	0.535	12.943	12.279	12.527	0.870	12.833	12.003	12.191
0.205	12.355	11.931	12.138	0.540	12.957	12.285	12.534	0.875	12.798	11.980	12.163
0.210	12.360	11.936	12.143	0.545	12.971	12.291	12.540	0.880	12.763	11.957	12.136
0.215	12.364	11.941	12.148	0.550	12.986	12.297	12.547	0.885	12.726	11.935	12.108
0.220	12.369	11.946	12.153	0.555	13.000	12.303	12.554	0.890	12.687	11.913	12.081
0.225	12.373	11.951	12.157	0.560	13.014	12.309	12.561	0.895	12.647	11.892	12.054
0.230	12.377	11.955	12.161	0.565	13.028	12.315	12.568	0.900	12.605	11.871	12.027
0.235	12.382	11.960	12.165	0.570	13.042	12.321	12.576	0.905	12.562	11.851	12.001
0.240	12.387	11.964	12.169	0.575	13.056	12.327	12.583	0.910	12.517	11.832	11.976
0.245	12.392	11.968	12.172	0.580	13.070	12.332	12.590	0.915	12.472	11.814	11.951
0.250	12.397	11.973	12.176	0.585	13.083	12.338	12.597	0.920	12.427	11.796	11.927
0.255	12.402	11.977	12.180	0.590	13.096	12.343	12.604	0.925	12.381	11.780	11.905
0.260	12.408	11.981	12.183	0.595	13.109	12.349	12.612	0.930	12.335	11.764	11.884
0.265	12.414	11.985	12.187	0.600	13.121	12.354	12.619	0.935	12.289	11.749	11.864
0.270	12.420	11.989	12.191	0.605	13.133	12.359	12.626	0.940	12.245	11.736	11.845
0.275	12.427	11.993	12.195	0.610	13.145	12.364	12.633	0.945	12.202	11.724	11.828
0.280	12.434	11.998	12.199	0.615	13.156	12.369	12.640	0.950	12.160	11.712	11.812
0.285	12.441	12.002	12.203	0.620	13.167	12.374	12.646	0.955	12.121	11.702	11.797
0.290	12.449	12.006	12.208	0.625	13.177	12.379	12.652	0.960	12.085	11.693	11.785
0.295	12.456	12.010	12.212	0.630	13.186	12.383	12.658	0.965	12.052	11.685	11.774
0.300	12.464	12.015	12.217	0.635	13.195	12.388	12.664	0.970	12.024	11.679	11.764
0.305	12.473	12.019	12.222	0.640	13.204	12.392	12.669	0.975	11.998	11.673	11.756
0.310	12.481	12.024	12.228	0.645	13.211	12.396	12.674	0.980	11.981	11.668	11.749
0.315	12.490	12.028	12.233	0.650	13.218	12.401	12.679	0.985	11.975	11.665	11.744
0.320	12.498	12.033	12.239	0.655	13.225	12.405	12.683	0.990	11.963	11.663	11.741
0.325	12.507	12.038	12.245	0.660	13.231	12.408	12.686	0.995	11.957	11.661	11.739
0.330	12.517	12.043	12.251	0.665	13.236	12.412	12.689				

СПИСОК ЛИТЕРАТУРЫ

- 1. AAVSO, https://www.aavso.org.
- 2. Альфонсо-Гарсон и др. (J. Alfonso-Garzon, A. Domingo, J.M. Mas-Hesse, and A. Gimenez), Astron. Astrophys. **548**, A79 (2012).
- Анерт и др. (Р. Ahnert, H. van Schewick, and C. Hoffmeister), Kleinere Veroeff. Berlin-Babelsberg Nr 24, 3 (1941).
- 4. Аоки и др. (W. Aoki, T. Matsuno, S. Honda, M. Parthasarathy, H. Li, and T. Suda), Publ. Astron. Soc. Japan **69**, 21 (2017).
- 5. Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- Боно и др. (G. Bono, A. Pietrinferni, M. Marconi, V.F. Braga, G. Fiorentino, P.B. Stetson, R. Buonanno, M. Castellani, et al.), Commun. Konkoly Observ. Hung. Akad. Sci. 14, 149 (2016).
- 7. Вальравен и др. (Th. Walraven, A.B. Mueller, and P.Th. Oosterhoff), Bull. Astron. Inst. Netherl. 14, 81 (1958).
- 8. Васильяновская О.П., Ерлексова Г.Е., Бюлл. Инст. Астрофиз. АН Тадж. ССР **Nr 54**, 3 (1970).
- 9. Возниак и др. (P.R. Wozniak, W.T. Vestrand, C.W. Akerlof, R. Balsano, J. Bloch, D. Casperson, S. Fletcher, G. Gisler, et al.), Astron. J. **127**, 2436 (2004).
- 10. Герцшпрунг (E. Hertzsprung), Astron. Nachr. **210**, 17 (1919).
- 11. Гингольд (R.A. Gingold), Astrophys. J. **204**, 116 (1976).
- 12. Гингольд (R.A. Gingold), Mem. SAI 56, 169 (1985).
- 13. Гриндлей и др. (J. Grindlay, Sumin Tang, E. Los, and M. Servilla), ASP Conf. Ser. **410**, 101 (2009).
- EKA, The Hipparcos and Tycho catalogues, ESA SP-1200 (Noordwijk: ESA, 1997).
- 15. Зверев (M. Zverev), Var. Stars 4, 355 (1931).
- 16. Зверев (M. Zverev), Var. Stars 5, 109 (1932).
- Зверев М.С., Макаренко Е.Н., Переменные Звезды Прил. 3, 431 (1979).
- Игнатова, Возякова (V.V. Ignatova and O.V. Vozyakova), Astron. Astrophys. Trans. 19, 133 (2000).

- 19. Ирвин (J.B. Irwin), Astrophys. J. Suppl. Ser. 6, 253 (1961).
- 20. Кви (К.К. Kwee), Bull. Astron. Inst. Netherl. Suppl. Ser. 2, 97 (1967).
- 21. Кви, Браун (К.К. Kwee and D.L. Braun), Bull. Astron. Inst. Netherl. Suppl. Ser. **2**, 77 (1967).
- 22. Коровкина Л.К., Астрон. Цирк. N205, 21 (1959).
- 23. Кукаркин (B.W. Kukarkin) Var. Stars 3, 135 (1931).
- 24. Ломбард, Коен (F. Lombard and C. Koen), Mon. Not. Roy. Astron. Soc. **263**, 309 (1993).
- 25. Маас и др. (T. Maas, S. Giridhar, and D. L. Lambert), Astrophys. J. **666**, 378 (2007).
- 26. Меакес и др. (М. Meakes, G. Wallerstein, and J.F. Opalko), Astron. J. **101**, 1795 (1991).
- 27. Оостерхоф (P.Th. Oosterhoff), Bull. Astron. Inst. Netherl. 15, 199 (1960).
- 28. Перова Н.Б., Астрон. Цирк. Nr 593, 8 (1970).
- 29. Самусь и др. (N.N. Samus, E.V. Kazarovets, O.V. Durlevich, N.N. Kireeva, and E.N. Pastukhova), Astron. Rep. **61**, 80 (2017).
- Фридель Ю.В., Цирк. Астрон. Обсерв. Львов. Универ. Nr 42, 22 (1967).
- 31. Харрис (H.C. Harris), Ph. D. Thesis. University of Washington, 1980, P. 133–154.
- Xyc (H. Huth), Mitt. Veraenderl. Sterne. Berlin-Babelsberg 4, 183 (1968).
- Чамберс и др. (К.С. Chambers, E.A. Magnier, N. Metcalfe, H.A. Flewelling, M.E. Huber, C.Z. Waters, L. Denneau, P.W. Draper, et al.), arXiv:1612.05560v4, (2019).
- 34. Шмидт и др. (E.G. Schmidt, D. Johnston, S. Langan, and K.M. Lee), Astron. J. **128**, 1748 (2004).
- 35. Эддингтон, Плакидис (A.S. Eddington and S. Plakidis), Mon. Not. Roy. Astron. Soc. **90**, 65 (1929).
- Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Dong Subo, et al.), Mon. Not. Roy. Astron. Soc. 485, 961 (2019).