ГИДРОДИНАМИЧЕСКАЯ МОДЕЛЬ ЗАТУХАНИЯ РАДИАЛЬНЫХ ПУЛЬСАЦИЙ RU Cam

© 2021 г. Ю. А. Фадеев^{1*}

¹Институт астрономии РАН, Москва, Россия Поступила в редакцию 06.10.2021 г. После доработки 06.10.2021 г.; принята к публикации 06.10.2021 г.

Проведены расчеты эволюции звезд с массой на главной последовательности $M_0 = 0.82, 0.85$ и $0.9 M_{\odot}$ и начальными содержаниями гелия и металлов Y = 0.25 и $Z = 10^{-3}$ до ранней стадии белого карлика. Эволюционные стадии AGB и post-AGB рассматривались для каждого значения M_0 при трех значениях параметра скорости потери массы в формуле Блокера: $\eta_{\rm B} = 0.02, 0.05$ и 0.1. Показано, что переменная RU Cam с периодом $\Pi \approx 22$ сут находится на эволюционной стадии post-AGB, а падение амплитуды пульсаций, которое произошло в 1962-1963 гг., обусловлено перемещением звезды на диаграмме ГР за пределы области пульсационной неустойчивости. Теоретические оценки массы и светимости RU Cam составляют $0.524 M_{\odot} \le M \le 0.532 M_{\odot}$ и $2.20 \times 10^3 L_{\odot} \le L \le 2.33 \times 10^3 L_{\odot}$. Из результатов гидродинамических расчетов нелинейных пульсаций следует, что по мере приближения к границе неустойчивости сначала происходит значительное (~90%) падение амплитуды пульсаций на отрезке времени около двух лет, за которым следует медленное затухание малоамплитудных колебаний. Решение уравнений гидродинамики с нестационарными внутренними граничными условиями, описывающими эволюционные изменения радиуса и светимости на дне пульсирующей оболочки post-AGB звезды, позволяет заключить, что прекращение пульсаций RU Cam сопровождалось эффектом колебательного гистерезиса. В частности, стадия автоколебаний большой амплитуды была затянута на $pprox\!12$ лет, а следующая за ней стадия затухающих колебаний малой амплитуды простирается за пределы формальной границы пульсационной неустойчивости.

Ключевые слова: звездная эволюция; пульсации звезд; звезды — переменные и пекулярные.

DOI: 10.31857/S0320010821110024

ВВЕДЕНИЕ

Переменная звезда RU Cam (BD+69°417) с периодом изменения блеска $\Pi \approx 22$ сут принадлежит к пульсирующим переменным типа W Vir (Самусь и др., 2017). Как у многих переменных звезд этого типа, период и форма кривой блеска RU Cam подвержены заметным случайным изменениям (Нилсен, 1936; Пейн-Гапошкин, 1941; Ленувель, Жеуле, 1953). Тем не менее О – - С диаграммы, построенные по опубликованным результатам фотометрических наблюдений с 1907 по 1965 г., позволяют уверенно предполагать, что в настоящее время происходит вековое сокращение периода пульсаций этой звезды (Сейдл и др., 1992). Поскольку среднее значение видимого блеска RU Cam остается приблизительно неизменным, наблюдаемое уменьшение периода указывает на эволюционное перемещение звезды на диаграмме Герцшпрунга-Рассела (ГР) в сторону высоких эффективных температур.

Интерес к RU Cam значительно возрос после сообщения о внезапном уменьшении амплитуды колебаний этой звезды (Демерс, Ферни, 1966). До 1963 г. изменения блеска происходили с амплитудой $\Delta m_{pq} \approx 1$ зв. вел. (Цераский, 1907; Сэнфорд, 1928; Пейн-Гапошкин, 1941; Ленувель, Жеуле, 1953) при амплитуде лучевой скорости $\Delta V_r pprox$ ≈ 30 км/с (Сэнфорд, 1928). Однако после 1966 г. значения амплитуды сократились до $\Delta m_V <$ < 0.2 зв. вел. (Демерс, Ферни, 1966; Броглиа, 1967; Ферни, 1968; Броглиа, Герреро, 1972; Бердников, Возякова, 1995) и $\Delta V_r < 10$ км/с (Валлерстейн, Крэмптон, 1967). Последние фотоэлектрические измерения блеска RU Cam, проведенные до падения амплитуды пульсаций, датируются с января по апрель 1962 г. (Михаловска-Смак, Смак, 1965), тогда как средняя кривая блеска с амплитудой около 0.2 зв. вел., приведенная Демерсом и Ферни (1966), была построена по наблюдениям с октября 1964 г. по январь 1966 г. Таким образом, падение амплитуды колебаний произошло на отрезке вре-

^{*}Электронный адрес: fadeyev@inasan.ru

мени около двух лет. Более подробное обсуждение хронологии изменений периода и амплитуды пульсаций RU Cam приводится в статье Перси (2021).

Причины внезапного падения амплитуды колебаний RU Cam остаются неясными. По мнению Уитни (1967), подобное явление может быть связано с колебательным гистерезисом во время пересечении звездой границы пульсационной неустойчивости. Колебательный гистерезис возникает в автоколебательных системах при достаточно медленном изменении параметра, определяющего амплитуду осцилляций, и становится причиной затягивания стадии медленного изменения колебаний большой амплитуды с последующим внезапным затуханием (Боголюбов, Митропольский, 1958). К сожалению, дальнейшего развития модели колебательного гистерезиса применительно к пульсирующим звездам до сих пор не последовало. Коллат и Сейдл (1993) предположили, что падение амплитуды пульсаций RU Cam произошло из-за прекращения регулярных колебаний большой амплитуды, тогда как наблюдаемая позднее переменность малой амплитуды связана с иррегулярными осцилляциями. Однако получить наблюдательное подтверждение этой гипотезы авторам не удалось.

В предшествующей работе автора (Фадеев, 2020) показано, что пульсирующие переменные типа W Vir являются post-AGB звездами с массой $0.52M_{\odot} \leq M \leq 0.55M_{\odot}$, светимостью $2 \times 10^3 L_{\odot}$ $\odot \leq L \leq 5 \times 10^3 L_{\odot}$ и периодом фундаментальной моды $\Pi \gtrsim 15$ сут. Принимая во внимание наблюдаемое сокращение периода RU Cam, естественно предположить, что эта звезда находится на ранней стадии post-AGB, а наблюдаемое падение амплитуды колебаний обусловлено тем, что в ходе эволюции звезда покидает область пульсационной неустойчивости.

Цель данной работы состоит в решении двух следующих задач. Во-первых, предполагается определить массу и светимость звезды, при которых происходит прекращение радиальных пульсаций post-AGB звезды с периодом $\Pi \approx 22$ сут. Для этого, используя отдельные модели эволюционной последовательности в качестве начальных условий при решении уравнений радиационной гидродинамики, описывающих звездные пульсации, мы определяем возраст, массу, светимость и радиус звезды на границе пульсационной неустойчивости. Период пульсаций звезды на границе неустойчивости определяется в предположении, что время роста или затухания колебаний значительно короче характерного времени эволюционных изменений. Таким образом, замыкание системы уравнений гидродинамики производится с помощью стационарных внутренних граничных условий.

Решение второй задачи предполагает построение гидродинамической модели, описывающей затухание радиальных пульсаций при эволюционном пересечении звездой границы пульсационной неустойчивости. В этом случае решение уравнений радиационной гидродинамики проводится с использованием нестационарных внутренних граничных условий и охватывает отрезок времени протяженностью в несколько десятков лет.

ЭВОЛЮЦИОННЫЕ МОДЕЛИ RU Cam

Расчеты звездной эволюции проводились от главной последовательности до ранней стадии белого карлика по программе MESA версии 12778 (Пакстон и др., 2019). Были рассмотрены звезды с массой на главной последовательности $M_0 =$ =0.82, 0.85 и $0.9M_{\odot}$ при начальных массовых содержаниях гелия и более тяжелых элементов (металлов) Y = 0.25 и $Z = 10^{-3}$ соответственно. Учет конвективного перемешивания проводился по теории Бём-Витензе (1958) при отношении длины пути перемешивания к шкале высот по давлению $\alpha_{\rm MLT} = \Lambda/H_{\rm P} = 1.8$. Эффекты овершутинга на границах конвективных зон учитывались, согласно Хервигу (2000), при значениях параметров $f = 0.016, f_0 = 0.004.$ Расчеты скорости генерации энергии в термоядерных реакциях и решение уравнений нуклеосинтеза проводились для сетки реакций, состоящей из 26 изотопов от водорода $^{1}\mathrm{H}$ до магния $^{24}\mathrm{Mg}$, которые связаны между собой 81 бинарной реакцией. Для вычисления скоростей реакций использовалась база данных JINA Reaclib (Сайбурт и др., 2010).

Эффекты звездного ветра на стадии, предшествующей асимптотической ветви гигантов (AGB), учитывались согласно Раймерсу (1975) при значении параметра $\eta_{\rm B} = 0.5$. На стадии AGB и ранней стадии post-AGB скорость потери массы рассчитывалась по формуле Блокера (1995). Принимая во внимание значительные неопределенности в оценках скорости потери массы звездами AGB, в данной работе для каждого значения начальной массы M_0 рассчитывались три эволюционных последовательности при значениях параметра в формуле Блокера (1995) $\eta_{\rm B} = 0.02, \ 0.05$ и 0.1. Начальная точка каждой из этих эволюционных последовательностей определялась из условия $Y_{
m c} \le 10^{-4},$ где Yc — относительное массовое содержание гелия в центре звезды.

Отдельные модели каждой эволюционной последовательности использовались как начальные условия при расчете нелинейных звездных пульсаций. Описание уравнений радиационной гидродинамики и нестационарной конвекции приводится в более ранней статье автора (Фадеев, 2013). Здесь только заметим, что обсуждаемые в данном разделе

Рис. 1. Амплитуда изменения скорости течения газа на внешней границе гидродинамической модели (а) и амплитуда изменения болометрического блеска (б) как функции времени эволюции $t_{\rm ev}$ для эволюционной последовательности $M_0 = 0.82$, $\eta_{\rm B} = 0.05$. Штриховыми и сплошными линиями показаны результаты расчетов со стационарными и нестационарными внутренними граничными условиями.

результаты решения уравнений гидродинамики получены в приближении стационарных внутренних граничных условий

$$\frac{\partial r_0}{\partial t} = \frac{\partial L_0}{\partial t} = 0, \tag{1}$$

где r_0 и L_0 — радиус и светимость на внутренней границе гидродинамической модели. При использовании граничных условий (1) предполагается, что время роста или затухания колебаний значительно короче характерного времени эволюционных изменений в строении пульсирующей оболочки звезды. Основные результаты расчетов звездной эволюции и нелинейных звездных пульсаций собраны в табл. 1, где для каждой пары значений M_0 и $\eta_{\rm B}$, определяющей эволюционную последовательность на стадии post-AGB, даны значения возраста $t_{\rm ev}$, массы M, светимости L и периода пульсаций звезды П на формальной границе пульсационной неустойчивости, т.е. в точке эволюционного трека, где темпы роста кинетической энергии пульсационных движений $\eta = 0$ (Фадеев, 2019а).

Как видно из табл. 1, три эволюционные последовательности ($M_0 = 0.82 M_{\odot}$, $\eta_{\rm B} = 0.05$;

Рис. 2. Максимальная кинетическая энергия за цикл колебаний $E_{K,max}$ как функция времени эволюции t_{ev} гидродинамической модели с нестационарными внутренними граничными условиями.

 $M_0 = 0.82 M_{\odot}, \ \eta_{\rm B} = 0.10; \ M_0 = 0.85 M_{\odot}, \ \eta_{\rm B} = 0.10)$ удовлетворяют условию П ≈ 22 сут на границе пульсационной неустойчивости. Все три модели имеют близкие значения массы и светимости, которые заключены в пределах $0.524 M_{\odot} \leq M \leq 0.532 M_{\odot}$ и $2.20 \times 10^3 L_{\odot} \leq L \leq 2.33 \times 10^3 L_{\odot}$. Гидродинамические модели этих эволюционных

Таблица 1. Параметры post—AGB звезд на формальной границе области пульсационной неустойчивости

M_0/M_{\odot}	$\eta_{\rm B}$	$t_{ m ev}, 10^9$ лет	M/M_{\odot}	L/L_{\odot}	П, сут
0.82	0.02	12.450	0.537	2956	30
	0.05		0.528	2203	22
	0.10		0.524	2316	23
0.85	0.02	10.958	0.545	2861	28
	0.05		0.537	2882	30
	0.10		0.532	2330	23
0.90	0.02	8.965	0.558	3309	31
	0.05		0.547	3071	29
	0.10		0.538	6667	48

последовательностей показывают похожее изменение амплитуды пульсаций по мере приближения к границе неустойчивости. На рис. 1 штриховыми линиями показаны изменения амплитуды колебаний моделей эволюционной последовательности $M_0 = 0.82 M_{\odot}, \eta_{\rm B} = 0.05$. Из приведенных графиков видно, что значительное падение амплитуды происходит раньше, чем звезда оказывается на границе неустойчивости. Амплитуда изменения болометрического блеска после резкого падения амплитуды колебаний не превосходит ≈ 0.1 зв. вел. и медленно убывает до нулевого значения в течение ≈ 18 лет.

ГИДРОДИНАМИЧЕСКАЯ МОДЕЛЬ RU Cam

Построение гидродинамической модели RU Cam на стадии приближения к границе неустойчивости предполагает, что вместо стационарных внутренних граничных условий (1) используются явные выражения $r_0(t_{\rm ev})$ и $L_0(t_{\rm ev})$, полученные из расчетов звездной эволюции. В данной работе внутренняя граница задавалась в лагранжевом слое с лучистым переносом энергии, температурой газа $T \approx 10^6$ K и радиусом $r_0 \approx 0.02R$, где R радиус внешней границы эволюционной модели. Масса слоев газа, лежащих выше внутренней границы, составляет $\approx 1.1 \times 10^{-3}$ массы звезды.

Рис. 3. Изменение скорости течения газа на внешней границе гидродинамической модели (а) и болометрического блеска (б). Сплошные и штриховые линии соответствуют отрезкам времени, отмеченным на рис. 1 заполненными кружками 1 и 2.

В качестве начальных условий была выбрана гидродинамическая модель эволюционной последовательности $M_0 = 0.82 M_{\odot}$, $\eta b = 0.05$, отстоящая от границы пульсационной неустойчивости на ≈ 20 лет и находящаяся на стадии автоколебаний с амплитудой скорости течения газа на внешней границе $\Delta U \approx 30$ км/с. Результаты решения уравнений гидродинамики с нестационарными граничными условиями показаны на рис. 2, где приведен график изменения максимальной за цикл колебаний кинетической энергии $E_{K,\text{max}}$. Для удобства графического представления время эволюции t_{ev}

отсчитывается от формальной границы пульсационной неустойчивости, которая была определена по результатам гидродинамических расчетов, проведенных с использованием стационарных внутренних граничных условий.

Как видно из рис. 2, область существования колебаний большой амплитуды охватывает интервал времени $t_{\rm ev} < -8$ лет, после чего на отрезке времени около двух лет происходит переход к малым колебаниям, амплитуда которых продолжает монотонно убывать за пределами формальной границы неустойчивости, т.е. при $t_{\rm ev} > 0$. Прекращение затухания колебаний при $t_{\rm ev} > 15$ лет и приблизительно постоянное значение кинетической энергии $\lg E_{K,\max} \approx 32$ обусловлены ограниченной точностью гидродинамических расчетов.

Графики изменения амплитуды скорости течения газа на внешней границе ΔU и болометрического блеска $\Delta m_{\rm bol}$ модели, рассчитанной с нестационарными граничными условиями, показаны на рис. 1 сплошными линиями. Сравнение с результатами, основанными на использовании стационарных граничных условий, позволяет заключить, что решение, полученное с нестационарными внутренними граничными условиями, характеризуется значительным затягиванием стадии колебаний большой амплитуды (колебательный гистерезис), за которой следует резкое падение амплитуды пульсаций.

На рис. 3 показаны кривые радиальной скорости внешней границы U и болометрического блеска $m_{\rm bol}$ для двух отрезков времени, один из которых предшествует падению амплитуды пульсаций, тогда как второй соответствует прекращению падения амплитуды. На рис. 1 эти отрезки времени отмечены заполненными кружками и обозначены как 1 и 2. Как следует из рис. 3, нелинейные пульсации RU Cam до падения амплитуды колебаний характеризуются отсутствием строгой повторяемости, что является характерной особенностью пульсирующих post-AGB звезд (Фадеев, 2019б).

ЗАКЛЮЧЕНИЕ

Приведенные выше результаты позволяют заключить, что внезапное прекращение радиальных пульсаций RU Cam связано с тем, что звезда покинула область пульсационной неустойчивости и продолжает эволюционировать на диаграмме ГР в сторону более высоких эффективных температур как обычная post-AGB звезда. Известное из наблюдений значение периода $\Pi = 22$ сут позволило получить теоретические оценки массы и светимости звезды, находящейся на границе пульсационной неустойчивости: $0.524M_{\odot} \leq M \leq 0.532M_{\odot}$ и $2.20 \times 10^3 L_{\odot} \leq L \leq 2.33 \times 10^3 L_{\odot}$.

Переход от стационарного внутреннего граничного условия к нестационарному не привел к существенному различию в результатах гидродинамических расчетов, поскольку в обоих случаях при приближении к границе неустойчивости наблюдается значительное падение амплитуды (≈90%) с последующим медленным затуханием колебаний малой амплитуды. Вместе с тем использование нестационарного граничного условия дало возможность установить, что пересечение границы пульсационной неустойчивости сопровождается эффектом колебательного гистерезиса, который в рассматриваемом случае становится причиной заметного затягивания колебаний большой амплитуды и значительного удлинения стадии затухания колебаний малой амплитуды, которая простирается за пределы формальной границы пульсационной неустойчивости.

СПИСОК ЛИТЕРАТУРЫ

- Бердников, Возякова (L.N. Berdnikov and O.V. Voziakova), Inform. Bull. Var. Stars 4154, 1 (1995).
- 2. Бём-Витензе (E. Böhm-Vitense), Zeitschrift für Astrophys. 46, 108 (1958).
- 3. Блокер (Т. Blöcker), Astron. Astrophys. 297, 727 (1995).
- Боголюбов Н.Н., Митропольский Ю.А., Асимптотические методы в теории нелинейных колебаний (2-е изд.) М.: Физматлит, 1958 [N. Bogoliubov and Y. Mitropolsky, Asymptotic Methods in the Theory of Non-linear Oscillations, 2d ed.; New York: Gordon & Breach, 1961].
- 5. Броглиа (P. Broglia), Inform. Bull. Var. Stars **213**, 1 (1967).
- 6. Броглиа, Герреро (P. Broglia and G. Guerrero), Astron. Astrophys. 18, 201 (1972).
- Валлерстейн, Крэмптон (G. Wallerstein and D. Crampton), Astrophys. J. 149, 225 (1967).
- 8. Демерс, Ферни (S. Demers and J.D. Fernie), Astrophys. J. **144**, 440 (1966).
- 9. Коллат, Сейдл (Z. Kolláth and B. Szeidl), Astron. Astrophys. 277, 62 (1993).
- 10. Ленувель, Жеуле (F. Lenouvel and D. Jehoulet), Annales dTAstrophysique **16**, 139 (1953).
- 11. Михаловска-Смак, Смак (A. Michalowska-Smak and J. Smak), Acta Astron. **15**, 333 (1965).
- 12. Нилсен (A.V. Nielsen), Astron. Nachr. **260**, 377 (1936).
- Пакстон и др. (B. Paxton, R. Smolec, J. Schwab, A. Gautschy, L. Bildsten, M. Cantiello, A. Dotter, R. Farmer, J.A. Goldberg, A.S. Jermyn, S.M. Kanbur, P. Marchant, A. Thoul, R.H.D. Townsend, W.M. Wolf, M. Zhang, and F.X. Timmes), Astrophys. J. Suppl. Ser. 243, 10 (2019).
- 14. Пейн-Гапошкин (С. Payne-Gaposchkin), Harvard Bull. **915**, 10 (1941).
- 15. Перси (J.R. Percy), J. Am. Associat. Var. Star Observ. **49**, 46 (2021).
- 16. Раймерс (D. Reimers), *Problems in stellar atmospheres and envelopes* (Ed. B. Baschek, W.H. Kegel, G. Traving, New York: Springer-Verlag, 1975), p. 229.
- 17. Сайбурт и др. (R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.K. Thielemann, and M. Wiescher), Astrophys. J. Suppl. Ser. **189**, 240 (2010).
- Самусь Н.Н., Казаровец Е.В., Дурлевич О.В., Киреева Н.Н., Пастухова Е.Н., Астрон. журн. 94, 87 (2017) [N.N. Samus', Е.V. Kazarovets, O.V. Durlevich, N.N. Kireeva, and E.N. Pastukhova, Astron. Rep. 61, 80 (2017)].

799

- 19. Сейдл и др. (B. Szeidl, K. Oláh, L. Szabados, K. Barlai, and L. Patkós), Commun. Konkoly Observ. 97, 245 (1992).
- 20. Сэнфорд (R.F. Sanford), Astrophys. J. **68**, 408 (1928).
- 21. Уитни (С.А. Whitney), Astrophys. J. **147**, 1191 (1967).
- 22. Фадеев Ю.А., Письма в Астрон. журн. **39**, 342 (2013) [Yu.A. Fadeyev, Astron. Lett. **39**, 306 (2013)].
- 23. Фадеев Ю.А., Письма в Астрон. журн. 45, 403 (2019а) [Yu.A. Fadeyev, Astron. Lett. 45, 353 (2019а)].
- 24. Фадеев Ю.А., Письма в Астрон. журн. **45**, 578 (20196) [Yu.A. Fadeyev, Astron. Lett. **45**, 521 (2019b)].
- 25. Фадеев Ю.А., Письма в Астрон. журн. **46**, 783 (2020) [Yu.A. Fadeyev, Astron. Lett. **46**, 734 (2020)].
- 26. Ферни (J.D. Fernie), J. Roy. Astron. Soc. Canada **62**, 214 (1968).
- 27. Хервиг (F. Herwig), Astron. Astrophys. **360**, 952 (2000).
- 28. Цераский (W. Ceraski), Astron. Nachr. 174, 79 (1907).