ИЗУЧЕНИЕ ТЕСНЫХ СБЛИЖЕНИЙ ЗВЕЗД С СОЛНЕЧНОЙ СИСТЕМОЙ ПО ДАННЫМ КАТАЛОГА GAIA EDR3

© 2021 г. В. В. Бобылев^{1*}, А. Т. Байкова¹

¹Главная астрономическая обсерватория РАН, Санкт-Петербург, Россия Поступила в редакцию 11.12.2020 г. После доработки 12.12.2020 г.; принята к публикации 29.12.2021 г.

Изучены звезды-кандидаты на тесные (менее 1 пк) сближения с Солнечной системой. Для всех рассматриваемых звезд кинематические характеристики взяты из каталога Gaia EDR3. Параметры сближения этих звезд с Солнечной системой вычислены с использованием трех методов: (1) линейно-го, (2) с помощью интегрирования орбит в осесимметричном потенциале и (3) в потенциале с учетом спиральной волны плотности. Показано, что все три метода дают близкие результаты. Выделены пять звезд, которые являются хорошими кандидатами на достижение границ облака Оорта и прохождение через него. Для звезды GJ 710 на основе второго метода в хорошем согласии с другими двумя методами получены следующие оценки параметров сближения: $t_{min} = 1.320 \pm 0.028$ млн лет и $d_{min} = 0.020 \pm 0.007$ пк. Интересно также отметить звезду Gaia EDR3 510911618569239040 с параметрами $t_{min} = -2.863 \pm 0.046$ млн лет и $d_{min} = 0.057 \pm 0.079$ пк.

Ключевые слова: сближение звезд с Солнечной системой, кинематика, Солнечная система, облако Оорта.

DOI: 10.31857/S0320010821020030

ВВЕДЕНИЕ

Тесные (менее 1-2 пк) сближения звезд поля с Солнечной системой могут приводить к возмущению облака Оорта (Оорт, 1950). Такое возмущение может спровоцировать возникновение так называемого кометного ливня от внешних границ облака Оорта во внутреннюю область Солнечной системы, в сторону Земли в частности. Как показывает моделирование (Дыбжиньский, 2002; 2005; Мартинес-Барбоса и др., 2017), помимо звездных пролетов кометное облако Оорта подвержено возмущениям от гигантских молекулярных облаков, а также испытывает воздействие галактического прилива. Согласно Оорту (1950), предполагаемая внешняя граница облака Оорта составляет примерно 10^5 а.е. (0.48 пк).

Новый всплеск интереса к эволюционным свойствам облака Оорта связан с обнаружением в Солнечной системе двух межзвездных странников, а именно, объектов 11/'Oumuamua (Баци и др., 2017) и 2I/Borisov (Борисов, 2019). Согласно оценкам Портегиса Цварта (2020), около 6% ближайших звезд могут иметь планеты и астероиды в своих аналогах облака Оорта. Такие тела могут

*Электронный адрес: vbobylev@gaoran.ru

освобождаться от родительской звезды и вылетать в межзвездное пространство. Двигаясь по галактической орбите, близкой к орбите родительской звезды, эти тела образуют плотные потоки изгоев межзвездных астероидов и планет. Солнечная система иногда проходит через такие потоки, что может привести к случайным близким столкновениям с объектами из этих потоков.

Практический поиск тесных сближений звезд с Солнечной системой выполнялся в пионерских работах Ревиной (1988), Мэтьюса (1994), Мюлляри, Орлова (1996). Благодаря этим авторам, был выявлен ряд интересных кандидатов, например, Проксима Центавра, система α Центавра или звезда GJ 905.

По данным каталога HIPPARCOS (1997) такую задачу решали Гарсиа-Санчес и др. (1999, 2001), Бобылев (2010а,б), Андерсон, Фрэнсис (2012), Дыбжиньский, Берский (2015), Байлер-Джонс (2015), Фенг, Байлер-Джонс (2015). Поиск тесных сближений по данным каталога Gaia TGAS (Тусho-Gaia Astrometric Solution, Линдегрен и др., 2016) привел к обнаружению нескольких кандидатов на очень тесный пролет (Берский, Дыбжиньский, 2016; Бобылев, Байкова, 2017; Фуенте Маркос, Фуенте Маркос, 2018), а именно, на попадание внутрь облака Оорта (до расстояний менее 0.5 пк). Одним из рекордсменов является звезда GJ 710 (Гарсиа-Санчес и др., 2001; Бобылев, 2010а; Берский, Дыбжиньский, 2016; Байлер-Джонс, 2018).

Анализ данных каталога Gaia DR2 (Браун и др., 2018; Линдегрен и др., 2018) показал (см. Байлер-Джонс и др., 2018; Дарма и др., 2019; Торрес и др., 2019; Высочаньская и др., 2020; Бобылев, Байкова, 2020), что сближения с Солнечной системой до расстояний менее 5 пк на временном интервале ±5 млн лет могут иметь около 3000 кандидатов, менее 1 пк — около 30 звезд и 5–6 звезд могут иметь сближения до расстояний менее 0.25 пк.

В последней версии каталога Gaia EDR3 (Gaia Early Data Release 3, Браун и др., 2020; Линдегрен и др., 2020) уточнены примерно на 30% значения тригонометрических параллаксов и собственных движений для примерно 1.5 млрд звезд. Лучевые же скорости просто скопированы из каталога Gaia DR2. Поэтому данные каталога Gaia EDR3 в задаче поиска тесных сближений могут эффективно служить для уточнения параметров сближения уже выявленных кандидатов.

Целью настоящей работы является применение различных методов анализа движения звездкандидатов для уточнения параметров их тесных сближений с Солнечной системой с использованием новейших измерений параллаксов и собственных движений звезд из каталога Gaia EDR3. Для построения звездных орбит применяются линейный метод и два варианта потенциала Галактики осесимметричный и неосесимметричный, включающий учет спиральной волны плотности.

МЕТОДЫ ПОСТРОЕНИЯ ОРБИТ

В прямоугольной системе координат с центром в Солнце ось X направлена в сторону галактического центра, ось Y — в сторону галактического вращения и ось Z — в сторону северного полюса Галактики. Тогда $X = r \cos l \cos b$, $Y = r \sin l \cos b$ и $Z = r \sin b$, где $r = 1/\pi$ — гелиоцентрическое расстояние звезды в кпк, которое мы вычисляем через параллакс звезды π в мсд. Ометим, что в настоящей работе используются звезды с относительными ошибками параллаксов менее 10%, поэтому нет необходимости в учете эффекта Лутца—Келкера (Лутц, Келкер, 1973).

Из наблюдений известны лучевая скорость V_r и две проекции тангенциальной скорости $V_l =$ = $4.74r\mu_l \cos b$ и $V_b = 4.74r\mu_b$, направленные вдоль галактических долготы l и широты b соответственно, выраженные в км/с. Здесь коэффициент 4.74 является отношением числа километров в астрономической единице к числу секунд в тропическом году. Компоненты собственного движения $\mu_l \cos b$ и μ_b выражены в мсд/год.

Через компоненты V_r, V_l, V_b вычисляются скорости U, V, W, где скорость U направлена от Солнца к центру Галактики, V — в направлении вращения Галактики и W — на северный галактический полюс:

$$U = V_r \cos l \cos b - V_l \sin l - V_b \cos l \sin b, \quad (1)$$
$$V = V_r \sin l \cos b + V_l \cos l - V_b \sin l \sin b,$$
$$W = V_r \sin b + V_b \cos b.$$

Линейный метод

Согласно работе Мэтьюса (1994), минимальное расстояние между траекторией звезды и Солнца d_{\min} на момент сближения t_{\min} можно найти из следующих соотношений:

$$d_{\min} = r/\sqrt{1 + (V_r/V_t)^2},$$

$$t_{\min} = rV_r/(V_t^2 + V_r^2),$$
(2)

где $V_t = \sqrt{V_l^2 + V_b^2}$ — скорость звезды, перпендикулярная лучу зрения.

Модель гравитационного потенциала

Осесимметричный потенциал Галактики представляется в виде суммы трех составляющих центрального сферического балджа $\Phi_b(r(R, Z))$, диска $\Phi_d(r(R, Z))$ и массивного сферического гало темной материи $\Phi_h(r(R, Z))$:

$$\Phi(R, Z) = \Phi_b(r(R, Z)) + (3) + \Phi_d(r(R, Z)) + \Phi_h(r(R, Z)).$$

Здесь используется цилиндрическая система координат (R, ψ, Z) с началом координат в центре Галактики. В прямоугольной системе координат (X, Y, Z) расстояние до звезды (сферический радиус) будет $r^2 = X^2 + Y^2 + Z^2 = R^2 + Z^2$. Гравитационный потенциал выражается в единицах 100 км²/с², расстояния — в кпк, массы — в единицах галактической массы $M_{\rm gal} = 2.325 \times 10^7 \ M_{\odot}$, соответствующей гравитационной постоянной G = 1.

Потенциалы балджа $\Phi_b(r(R,Z))$ и диска $\Phi_d(r(R,Z))$ представляются в форме, предложенной Миямото, Нагаи (1975):

$$\Phi_b(r) = -\frac{M_b}{(r^2 + b_b^2)^{1/2}},\tag{4}$$

$$\Phi_d(R,Z) = -\frac{M_d}{\left[R^2 + \left(a_d + \sqrt{Z^2 + b_d^2}\right)^2\right]^{1/2}}, \quad (5)$$

где M_b , M_d — массы компонент, b_b , a_d , b_d — масштабные параметры компонент в кпк. Компонента гало представляется согласно Наварро и др. (1997):

$$\Phi_h(r) = -\frac{M_h}{r} \ln\left(1 + \frac{r}{a_h}\right). \tag{6}$$

Значения параметров модели галактического потенциала (4)–(6) даны в табл. 1. В работе Байковой, Бобылева (2016) модель (4)–(6) обозначена как модель III.

Уравнения движения пробной частицы в галактическом потенциале выглядят следующим образом:

$$\dot{X} = p_X, \quad \dot{Y} = p_Y, \quad \dot{Z} = p_Z, \tag{7}$$
$$\dot{p}_X = -\partial \Phi / \partial X,$$
$$\dot{p}_Y = -\partial \Phi / \partial Y,$$
$$\dot{p}_Z = -\partial \Phi / \partial Z,$$

где p_X , p_Y , p_Z — канонические моменты, точка означает производную по времени. Для интегрирования уравнений (7) использован алгоритм Рунге— Кутты четвертого порядка.

В прямоугольной галактической системе координат начальные значения положений и скоростей пробной частицы определяются по формулам

$$X = R_0 - X_0, \quad Y = Y_0, \quad Z = Z_0 + h_{\odot}, \quad (8)$$
$$U = -(U_0 + U_{\odot}),$$
$$V = V_0 + V_{\odot} + V_{\text{circ}},$$
$$W = W_0 + W_{\odot},$$

где $(X_0, Y_0, Z_0, U_0, V_0, W_0)$ — начальные положения и пространственные скорости пробной частицы

Таблица 1. Значения параметров модели галактического потенциала, согласно работе Байковой, Бобылева (2016), $M_{\rm gal} = 2.325 \times 10^7 \, M_{\odot}$

Параметры	Модель III
$M_b\left(M_{ m gal} ight)$	443 ± 27
$M_{d}\left(M_{\mathrm{gal}} ight)$	2798 ± 84
$M_{h}\left(M_{\mathrm{gal}} ight)$	12474 ± 3289
<i>b_b</i> (кпк)	0.2672 ± 0.0090
a_d (кпк)	4.40 ± 0.73
<i>b_d</i> (кпк)	0.3084 ± 0.0050
a_h (кпк)	7.7 ± 2.1

в гелиоцентрической системе координат, а круговая скорость вращения солнечной окрестности в нашем потенциале составляет $V_{\rm circ} = 244$ км/с. Значение пекулярной скорости Солнца $(U, V, W)_{\odot} =$ = (11.0, 12.0, 7.2) км/с взято из работы Шонриха и др. (2010). Возвышение Солнца над галактической плоскостью $h_{\odot} = 16$ пк взято из работы Бобылева, Байковой (2016).

Так же как и раньше, для каждой звезды вычисляется параметр сближения между орбитами звезды и Солнца $d(t) = \sqrt{\Delta X^2(t) + \Delta Y^2(t) + \Delta Z^2(t)}$. Затем определяем параметры d_{\min} на момент сближения t_{\min} .

Ошибки определения d_{\min} и t_{\min} оцениваем с использованием метода Монте-Карло. Здесь предполагается, что ошибки параметров звезд распределены по нормальному закону с дисперсией σ . Ошибки добавляются в экваториальные координаты, компоненты собственного движения, параллакс и лучевую скорость звезды.

Учет спиральной волны плотности

В случае учета спиральной волны плотности (Линь, Шу, 1964; Линь и др., 1969) в правую часть выражения (3) добавляется член (Фернандес и др., 2008)

$$\Phi_{sp}(R,\theta,t) = A\cos[m(\Omega_p t - \theta) + \chi(R)].$$
(9)

Здесь

$$A = \frac{(R_0 \Omega_0)^2 f_{r0} \mathrm{tg}i}{m},$$

$$\chi(R) = -\frac{m}{\mathrm{tg}i} \ln\left(\frac{R}{R_0}\right) + \chi_{\odot},$$

где A — амплитуда потенциала спиральной волны, f_{r0} — отношение между радиальной составляющей возмущения от спиральных рукавов и общим притяжением Галактики, Ω_p — угловая скорость твердотельного вращения спирального узора, m — количество спиральных рукавов, i — угол закрутки рукавов для закручивающегося узора i < 0, χ — фаза радиальной волны (фазе $\chi = 0^\circ$ соответствует центр рукава), χ_{\odot} — радиальная фаза Солнца в спиральной волне.

В настоящей работе приняты следующие значения параметров спиральной волны:

$$m = 4,$$
 (10)
 $i = -13^{\circ},$
 $f_{r0} = 0.05,$
 $\chi_{\odot} = -140^{\circ},$
 $\Omega_p = 20$ км/с/кпк

Таблица 2. Исходные данные о звездах

Gaia EDR3	π , мсд	$\mu_{lpha}\cos\delta,$ мед/год $\mu_{\delta},$ мед/год		V_r , км/с	
4270814637616488064	52.40 ± 0.02	-0.41 ± 0.02 -0.11 ± 0.02		-14.47 ± 0.02	
510911618569239040	13.21 ± 0.03	0.14 ± 0.02 0.01 ± 0.03		26.45 ± 0.35	
5571232118090082816	10.23 ± 0.01	0.09 ± 0.01	0.46 ± 0.01	82.18 ± 0.47	
729885367894193280	20.70 ± 0.84	0.64 ± 0.96	-2.35 ± 1.31	-90 ± 54	
1952802469918554368	141.90 ± 0.02	161.45 ± 0.02	-119.74 ± 0.02	-98.52 ± 7.54	
6396469681261213568	9.80 ± 0.02	0.49 ± 0.01	0.19 ± 0.02	52.30 ± 0.24	
3118526069444386944	7.61 ± 0.055	0.252 ± 0.05	0.045 ± 0.05	40.41 ± 0.94	
1281410781322153216	20.80 ± 0.04	1.29 ± 0.03	1.00 ± 0.03	31.84 ± 4.73	
1949388868571283200	4.15 ± 0.02	-0.47 ± 0.02	-0.63 ± 0.02	347.3 ± 6.5	
5261593808165974784	15.36 ± 0.01	-0.09 ± 0.01	-2.21 ± 0.02	71.05 ± 0.88	
2595284016771502080	138.23 ± 0.05	308.71 ± 0.05	-718.39 ± 0.04	308 ± 116	
1251059445736205824	24.37 ± 0.21	-0.23 ± 0.20	-3.24 ± 0.16	40 ± 10	
1227133699053734528	107.73 ± 0.22	86.67 ± 0.29	127.95 ± 0.20	-87 ± 33	
1791617849154434688	11.38 ± 0.02	-0.39 ± 0.01	-1.17 ± 0.01	56.29 ± 0.48	
2926732831673735168	8.85 ± 0.01	-0.74 ± 0.01	0.53 ± 0.01	66.49 ± 0.25	
3260079227925564160	32.11 ± 0.03	-3.62 ± 0.03	-4.96 ± 0.02	-33.38 ± 0.42	
3972130276695660288	59.92 ± 0.03	-20.81 ± 0.03	6.63 ± 0.02	31.80 ± 0.73	
1926461164913660160	316.48 ± 0.04	112.53 ± 0.04	-1591.65 ± 0.03	-78.00 ± 0.40	
2552928187080872832	231.78 ± 0.02	1231.40 ± 0.02	-2711.88 ± 0.02	263.0 ± 4.9	
1129149723913123456	190.33 ± 0.02	748.42 ± 0.02	480.80 ± 0.03	-111.65 ± 0.02	
2924378502398307840	6.10 ± 0.01	0.75 ± 0.01	0.14 ± 0.01	86.98 ± 1.00	
6608946489396474752	7.93 ± 0.01	-0.65 ± 0.01	-0.31 ± 0.01	44.23 ± 0.57	

в качестве начального приближения. Такой набор значений параметров был принят в работе Бобылева, Байковой (2014), где можно найти обзор литературных источников по данной теме. Отметим, что модель потенциала может быть еще более сложной и содержать вклад центрального бара (см., например, Гарсиа-Санчес и др., 2001). Но мы решили не учитывать влияние бара в настоящей работе, так как характеристики центрального бара в Галактике (по некоторым данным двух баров) известны с еще большей неопределенностью по сравнению с характеристиками спиральной волны.

ДАННЫЕ

Рабочая выборка формировалась следующим образом. Вначале был составлен предварительный

Таблица 3. Дополнительные данные о звездах

Gaia EDR3	Другое обозначение	StePPeD	Macca, M_{\odot}	
4270814637616488064	GJ 710	P0107	0.650	
510911618569239040	TYC 4034-1077-1	P0230	1.100	
5571232118090082816		P0506	0.766	
729885367894193280	2MASS J10492824+2537231	P0414	0.080	
1952802469918554368		P0416	0.200	
6396469681261213568	TYC 9327-264-1	P0382	0.891	
3118526069444386944		P0533	0.865	
1281410781322153216	WD 1446+28	P0417	0.852	
1949388868571283200		P0524	0.695	
5261593808165974784		P0522	0.547	
2595284016771502080	GJ 4274	P0412	0.139	
1251059445736205824	2MASS J13510178+2200085	P0423	0.100	
1227133699053734528	2MASS J14162408+1348263	P0457	0.080	
1791617849154434688	TYC 1662-1962-1	P0189	0.710	
2926732831673735168	TYC 5960-2077-1	P0287	1.023	
3260079227925564160		P0526	0.450	
3972130276695660288	GJ 3649	P0178	0.549	
1926461164913660160	GJ 905	P0413	0.151	
2552928187080872832	WD 0046+05	P0005	0.500	
1129149723913123456	HIP 57544	P0078	0.294	
2924378502398307840	UCAC2 21925028	P0400	0.709	
6608946489396474752		P0514	0.746	

список звезд-кандидатов на тесные сближения с Солнечной системой (с параметром сближения менее 1 пк). Основным источником для этой цели нам послужила база данных StePPeD (the Stellar Potential Perturbers Database ¹), описанная Высочаньской и др. (2020). Для составления этой базы данных были использованы данные из каталога Gaia DR2. Несколько звезд было добавлено из работы Бобылева, Байковой (2020). В этот предварительный список вошло около 50 звезд.

Затем было проведено отождествление звезд предварительного списка с каталогом Gaia EDR3. К сожалению, для нескольких звезд, представ-

¹ https://pad2.astro.amu.edu.pl/stars

ляющих большой интерес для задачи поиска сближений, не оказалось измерений параллаксов в новой версии каталога Gaia. Например, такие измерения отсутствуют для звезды ALS 9243, которая 2.5 млн лет назад могла сблизиться с орбитой Солнца до расстояния 0.25 пк, согласно оценке Высочаньской и др. (2020). Отсутствуют они и для рекодсмена по сближениям из базы StePPeD—звезды Gaia DR2 4535062706661799168. Для некоторых звезд (Gaia DR2 969867803725057920 или Gaia DR2 365942724131566208) использование новых значений их параллаксов приводят к таким d_{\min} , которые вычеркивают эти звезды из списка кандидатов на тесные сближения.

Такие данные об отобранных звездах, как обозначение в каталоге Gaia EDR3, параллакс π , компоненты собственного движения $\mu_{\alpha} \cos \delta$ и μ_{δ} , а также гелиоцентрическая лучевая скорость V_r , представлены в табл. 2. В табл. 3 для этих звезд дано альтернативное обозначение (если есть), обозначение в базе данных StePPeD и оценка массы, скопированная из базы данных StePPeD.

Практически для всех указанных звезд значения их гелиоцентрических лучевых скоростей V_r совпадают с теми, что указаны в базе данных StePPeD. Но есть исключения. Это белые карлики WD 1446+28 и WD 0046+05.

Для белого карлика WD 1446+28 в базе данных StePPeD дано значение $V_r = 36.0 \pm 119.9$ км/с с, которое измерено с очень большой ошибкой. В настоящей работе для этой звезды мы взяли значение гелиоцентрической скорости $V_r = 31.84 \pm 4.73$ км/с из работы Ангуиано и др. (2017), где измерения выполнены уже существенно точнее. А главное, выполнен учет гравитационного красного смещения, что для белых карликов является актуальным, так как, в среднем, значение такой поправки составляет около 50 км/с (Гринстейн, Тримбл, 1967).

Белый карлик WD 0046+05 известна еще как звезда Ван Маанена 2. Имеется обширная библиография, где описаны спектроскопические наблюдения этой звезды (Гринстейн, Тримбл, 1967; Гринстейн, 1972; Гейтвуд, Рассел, 1974). Согласно этим авторам, значение гелиоцентрической скорости белого карлика WD 0046+05 близко к $V_r \sim 1 \pm 15$ км/с, вычисленное с учетом поправки за гравитационное красное смещение.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 4 приведены параметры сближения звезд с Солнечной системой, полученные тремя методами — линейным (2), интегрированием орбит в осесимметричном потенциале (3) и интегрированием орбит в потенциале с учетом спиральной волны (9). В последнем столбце даны ошибки определения параметров, которые можно отнести ко всем трем методам. Эти ошибки оценены с применением метода Монте-Карло.

Как видно из табл. 4, параметры сближения, полученные вторым и третьим методом, практически не различаются. Моменты сближения t_{min} , найденные всеми тремя методами, находятся между собой в очень хорошем согласии: расхождение обычно не превышает 1—2 единицы второго знака после запятой. А вот разница в определении расстояния d_{min} , найденном первым и двумя другими методами, может достигать 0.6 пк (например, для звезды Gaia EDR3 6608946489396474752). Хотя обычно эта разница является существенно меньше.

Значительное количество звезд из табл. 4 были проанализированы в работе Бобылева, Байковой (2020) с использованием данных из каталога Gaia DR2 (отметим, что конкретные цифровые номера всех наших звезд в версиях DR2 и EDR3 совпадают). Можем заключить, что случайные ошибки определения параметров сближения σ_t и σ_d , найденные в настоящей работе, уменьшились примерно на 30% по сравнению с результатами анализа данных каталога Gaia DR2. При этом имеются две звезды с огромными случайными ошибками измерения лучевых скоростей (см. табл. 2), которые определяют и огромные (превышающие 1 пк по расстоянию) ошибки σ_t и σ_d . Это звезды Gaia EDR3 729885367894193280 и Gaia EDR3 1227133699053734528.

Как показали наши вычисления, со значением гелиоцентрической скорости белого карлика WD 0046+05 $V_r \sim 1 \pm 15$ км/с исключаются тесные сближения этой звезды с Солнечной системой.

Большой интерес представляет звезда GJ 710 (первая строка в табл. 2–4), известная в качестве одного из рекордсменов по очень тесным сближениям. Например, в работе Бобылева, Байковой (2020) с данными из каталога Gaia DR2 для нее были получены следующие параметры сближения: $t_{\rm min} = 1.316 \pm 0.040$ млн лет, $d_{\rm min} = 0.055 \pm \pm 0.009$ пк с использованием линейного метода (метод 1) и $t_{\rm min} = 1.320 \pm 0.040$ млн лет, $d_{\rm min} = 0.016 \pm 0.009$ пк при интегрировании орбит в осесимметричном потенциале (метод 2). Видим, что использование данных из каталога Gaia EDR3 здесь привело только к уменьшению случайных ошибок σ_t и σ_d .

Есть и примеры значительного изменения параметров сближения t_{\min} и d_{\min} , найденных с использованием данных из каталога Gaia EDR3. Например, для звезды Gaia EDR3 3118526069444386944 с данными из каталога Gaia DR2 в работе Высочаньской и др. (2020) были получены следующие параметры сближения: $t_{\min} = -3.235$ млн лет и

ИЗУЧЕНИЕ ТЕСНЫХ СБЛИЖЕНИЙ ЗВЕЗД

Таблица 4. Параметры сближения звезд с Солнечной системой

Gaio EDD2	t_{\min} , млн	d_{\min} , пк	$t_{ m min}$, млн	d_{\min} , пк	$t_{ m min}$, млн	d_{\min} , пк	T. MIU	σ. IV
Gala EDRo	(1)		(2)		(3)		σ_t , МЛН	σ_d , ПК
4270814637616488064	1.320	0.051	1.320	0.020	1.320	0.020	.028	.007
510911618569239040	-2.861	0.149	-2.863	0.057	-2.863	0.066	.046	.079
5571232118090082816	-1.189	0.259	-1.189	0.196	-1.189	0.190	.021	.021
729885367894193280	0.537	0.300	0.538	0.300	0.538	0.300	1.31	1.92
1952802469918554368	0.071	0.479	0.072	0.462	0.072	0.462	.006	.039
6396469681261213568	-1.950	0.495	-1.946	0.867	-1.946	0.880	.011	.024
3118526069444386944	-3.253	0.521	-3.259	0.509	-3.262	0.525	.079	.097
1281410781322153216	-1.510	0.563	-1.507	0.499	-1.507	0.498	.747	.625
1949388868571283200	-0.693	0.622	-0.694	0.660	-0.694	0.657	.015	.134
5261593808165974784	-0.917	0.626	-0.917	0.650	-0.917	0.650	.012	.014
2595284016771502080	-0.023	0.627	-0.024	0.604	-0.024	0.604	.016	.505
1251059445736205824	-1.025	0.647	-1.024	0.603	-1.024	0.603	.417	.248
1227133699053734528	0.106	0.723	0.107	0.708	0.107	0.708	.10	1.03
1791617849154434688	-1.560	0.802	-1.561	0.850	-1.561	0.843	.014	.040
2926732831673735168	-1.699	0.827	-1.700	0.794	-1.700	0.788	.007	.022
3260079227925564160	0.932	0.845	0.933	0.784	0.934	0.783	.013	.011
3972130276695660288	-0.523	0.906	-0.523	0.892	-0.523	0.892	.013	.024
1926461164913660160	0.037	0.926	0.037	0.909	0.037	0.909	.001	.004
2552928187080872832	-0.016	0.973	-0.016	1.017	-0.016	1.017	.001	.019
1129149723913123456	0.045	1.023	0.046	1.004	0.046	1.004	.000	.002
6726602067616477056	-2.140	1.030	-2.143	0.965	-2.144	0.963	.004	.021
2924378502398307840	-1.885	1.114	-1.885	0.921	-1.885	0.921	.022	.059
6608946489396474752	-2.849	1.228	-2.820	0.571	-2.821	0.552	.039	.034

Примечание. (1) — линейный метод, (2) — осесимметричный потенциал, (3) — потенциал с учетом спиральной волны плотности.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 47 № 3 2021

 $d_{\min} = 0.979$ пк методом (2). Как видно из табл. 4, аналогичным методом мы нашли $t_{\min} = -3.259 \pm 0.079$ млн лет и $d_{\min} = 0.509 \pm 0.097$ пк. Здесь использование новейших измерений привело к существенному уменьшению параметра d_{\min} . Звезда стала интереснее для нашей задачи, так как могла пройти по краю облака Оорта.

Сказанное можно отнести и к звезде Gaia EDR3 510911618569239040, для которой параметр сближения d_{\min} существенно уменьшился. Теперь она занимает вторую строку в наших таблицах. Высочаньской и др. (2020) для этой звезды были получены следующие параметры сближения: $t_{\min} = -2.789$ млн лет и $d_{\min} = 0.412$ пк методом 2.

В итоге можно выделить пять следующих звезд: Gaia EDR3 4270814637616488064 (GJ 710), Gaia EDR3 510911618569239040, Gaia EDR3 5571232118090082816, Gaia EDR3 195280246991-8554368, и Gaia EDR3 3118526069444386944. Применение любого из трех методов показывает, что они являются хорошими кандидатами на проникновение внутрь облака Оорта. В этот список мы не включили две звезды с большими ошибками σ_t и σ_d . Не вошла в этот список и звезда Gaia EDR3 6396469681261213568, для которой имеются заметные расхождения в оценке параметра d_{\min} при использовании различных методов.

ЗАКЛЮЧЕНИЕ

Рассмотрена выборка из 23 кандидатов на тесные (менее 1 пк) сближения с Солнечной системой. Значения тригонометрических параллаксов и собственных движений этих звезд взяты из последней версии каталога Gaia EDR3. Параметры сближения звезд вычислены с использованием линейного метода (1), интегрированием орбит в осесимметричном потенциале (2) и интегрированием орбит в потенциале с учетом спиральной волны плотности (3). Сделан вывод о том, что результаты, полученные вторым и третьим методом, практически не различаются. Параметры сближения, полученные первым методом, находятся в хорошем согласии с результатами, полученными двумя другими методами, хотя разница в определении расстояния d_{\min} , найденным первым и двумя другими методами, может достигать в отдельных случаях нескольких десятых долей парсека.

Выделены пять звезд, которые являются хорошими кандидатами на достижение границ облака Оорта и прохождение через него. Наиболее тесное сближение может иметь звезда GJ 710. Для нее, например, на основе второго метода в хорошем согласии с другими двумя методами получены следующие оценки параметров сближения: $t_{min} =$ = 1.320 ± 0.028 млн лет и $d_{min} = 0.020 \pm 0.007$ пк. Интересно также отметить звезду Gaia EDR3 510911618569239040 со следующими параметрами: $t_{\rm min} = -2.863 \pm 0.046$ млн лет и $d_{\rm min} = 0.057 \pm \pm 0.079$ пк.

СПИСОК ЛИТЕРАТУРЫ

- Ангуиано и др. (B. Anguiano, A. Rebassa-Mansergas, E. Garcia-Berro, S. Torres, K.C. Freeman, and T. Zwitter), MNRAS 469, 2102 (2017).
- Андерсон Э., Фрэнсис Ч., Письма в Астрон. журн. 38, 374 (2012) [E. Anderson and Ch. Francis, Astron. Lett. 38, 331 (2012)].
- 3. Байлер-Джонс (С.А.L. Bailer-Jones), Astron. Astrophys. **575**, 35 (2015).
- 4. Байлер-Джонс (C.A.L. Bailer-Jones), Astron. Astrophys. **609**, 8 (2018).
- 5. Байлер-Джонс и др. (C.A.L. Bailer-Jones, J. Rybizki, R. Andrae, and M. Fouesneau), Astron. Astrophys. **616**, 37 (2018).
- 6. Баци и др. (P. Bacci, M. Maestripieri, L. Tesi, G. Fagioli, R.A. Mastaler, G. Hug, M. Schwartz, R.R. Holvorcem, et al.), *Minor Planet Electronic Circulars*, 2017–U181 (2017).
- Берский, Дыбжиньский (F. Berski and P.A. Dybczyński), Astron. Astrophys. 595, L10 (2016).
- Бобылев В.В., Письма в Астрон. журн. 36, 230 (2010a) [V.V. Bobylev, Astron. Lett. 36, 220 (2010a)].
- Бобылев В.В., Письма в Астрон. журн. 36, 862 (2010б) [V.V. Bobylev, Astron. Lett. 36, 816 (2010b)].
- Бобылев В.В., Байкова А.Т., Письма в Астрон. журн. 40, 396 (2014) [V.V. Bobylev and А.Т. Bajkova, Astron. Lett. 40, 352 (2014)].
- Бобылев В.В., Байкова А.Т., Письма в Астрон. журн. 42, 3 (2016) [V.V. Bobylev, et al., Astron. Lett. 42, 1 (2016)].
- Байкова А.Т., Бобылев В.В., Письма в Астрон. журн. 42, 625 (2016) [А.Т. Вајкоva et al., Astron. Lett. 42, 567 (2016)].
- Бобылев В.В., Байкова А.Т., Письма в Астрон. журн. 43, 616 (2017) [V.V. Bobylev and А.Т. Bajkova, Astron. Lett. 43, 559 (2017)].
- 14. Бобылев В.В., Байкова А.Т., Письма в Астрон. журн. **46**, 274 (2020) [V.V. Bobylev and А.Т. Bajkova, Astron. Lett. **46**, 245 (2020)].
- 15. Борисов (G. Borisov), Minor Planet Electronic Circular No. 2019-R106, 11 (2019).
- 16. Браун и др. (Gaia Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti, de Bruijne, C. Babusiaux, C.A.L. Bailer-Jones, M. Biermann, D.W. Evans, et al.), Astron. Astrophys. **616**, 1 (2018).
- 17. Браун и др. (Gaia Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, M. Biermann, O.L. Creevey, D.W. Evans, et al.), arXiv: 2012.01533 (2020).
- 18. Высочаньска и др. (R. Wysoczańska, P.A. Dybczyński, and M. Polińska), Astron. Astrophys. **640**, 129 (2020).

- 19. Гарсиа-Санчес и др. (J. Garcia-Sánchez, R.A. Preston, D.L. Jones, P.R. Weissman, J.-F. Lestrade, D.W. Latham, and R.P. Stefanik), Astron. J. **117**, 1042 (1999).
- 20. Гарсиа-Санчес и др. (J. Garcia-Sánchez, P.R. Weissman, R.A. Preston, D.L. Jones, J.-F. Lestrade, D.W. Latham, R.P. Stefanik, and J.M. Paredes), Astron. Astrophys. **379**, 634 (2001).
- 21. Гейтвуд, Рассел (G. Gatewood and J. Russell), Astron. J. **79**, 815 (1974).
- 22. Гринстейн, Тримбл (J.L. Greenstein and V.L. Trimble), Astrophys. J. **149**, 283 (1967).
- 23. Гринстейн (J.L. Greenstein), Astrophys. J. **173**, 377 (1972).
- 24. Дарма и др. (R. Darma, W. Hidayat, and M.I. Arifyanto), J. Phys.: Conf. Ser. **1245**, 012028 (2019).
- 25. Дыбжиньский (P.A. Dybczyński), Astron. Astrophys. **396**, 283 (2002).
- Дыбжиньский (P.A. Dybczyński), Astron. Astrophys. 441, 783 (2005).
- 27. Дыбжиньский, Берский (Р.А. Dybczyński and F. Berski), MNRAS **449**, 2459 (2015).
- 28. Линдегрен и др. (Gaia Collaboration, L. Lindegren, U. Lammers, U. Bastian, J. Hernandez, S. Klioner, D. Hobbs, A. Bombrun, D. Michalik, et al.), Astron. Astrophys. **595**, A4 (2016).
- Линдегрен и др. (Gaia Collaboration, L. Lindegren, J. Hernández, A. Bombrun, S. Klioner, U. Bastian, M. Ramos-Lerate, A. de Torres, H. Steidelmüller, et al.), Astron. Astrophys. 616, 2 (2018).
- Линдегрен и др. (Gaia Collaboration, L. Lindegren, S.A. Klioner, J. Hernández, A. Bombrun, M. Ramos-Lerate, H. Steidelmüller, U. Bastian, M. Biermann, et al.), arXiv: 2012.03380 (2020).
- 31. Линь, Шу (С.С. Lin and F.H. Shu), Astrophys. J. **140**, 646 (1964).
- 32. Линь и др. (С.С. Lin, С. Yuan and F.H. Shu), Astrophys. J. **155**, 721 (1969).

- 33. Лутц, Келкер (Т.Е. Lutz and D.H. Kelker), Publ. Astron. Soc. Pacific **85**, 573 (1973).
- Мартинес-Барбоса и др. (С.А. Martinez-Barbosa, L. Jýlková, S. Portegies Zwart, and A.G.A. Brown), MNRAS 464, 2290 (2017).
- 35. Миямото, Нагаи (M. Miyamoto and R. Nagai), PASP **27**, 533 (1975).
- 36. Мэтьюс (R.A.J. Matthews), Royal Astron. Soc. Quart. J. **35**, 1 (1994).
- 37. Мюлляри, Орлов (A.A. Mülläri and V.V. Orlov), *Earth, Moon, and Planets* (Kluwer, Netherlands, **72**, р. 19, 1996).
- 38. Наварро и др. (J.F. Navarro, C.S. Frenk, and S.D.M. White), Astrophys. J. **490**, 493 (1997).
- 39. Оорт (J.H. Oort), Bull. Astron. Inst. Netherland 11 (408), 91 (1950).
- 40. Портегис Цварт (S. Portegies Zwart), arXiv: 2011.08257 (2020).
- 41. Ревина (I.A. Revina), Analysis of motion of celestial bodies and estimation of accuracy of their observations (Latvian University, Riga, p. 121, 1988).
- 42. Торрес и др. (S. Torres, M.X. Cai, A.G.A. Brown, and S. Portegies Zwart), Astron. Astrophys. **629**, 139 (2019).
- 43. Фенг, Байлер-Джонс (F. Feng and C.A.L. Bailer-Jones), MNRAS **454**, 3267 (2015).
- 44. Фернандес и др. (D. Fernandez, F. Figueras, and J. Torra), Astron. Astrophys. **480**, 735 (2008).
- 45. Фуенте Маркос, Фуенте Маркос (R. de la Fuente Marcos and C. de la Fuente Marcos), Res. Not. Am. Astron. Soc. **2**, 30 (2018).
- 46. Шонрих и др. (R. Schönrich, J. Binney, and W. Dehnen), MNRAS **403**, 1829 (2010).
- 47. The HIPPARCOS and Tycho Catalogues, ESA SP-1200 (1997).