ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДОВ БИМОДАЛЬНОЙ ЦЕФЕИДЫ AS Cas

© 2021 г. Л. Н. Бердников^{1*}, А. А. Белинский¹, Е. Н. Пастухова², М. А. Бурлак¹, Н. П. Иконникова¹, Е. О. Мишин¹, Н. И. Шатский¹

¹ Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

> ²Институт астрономии РАН, Москва, Россия Поступила в редакцию 20.05.2021 г. После доработки 20.05.2021 г.; принята к публикации 04.06.2021 г.

Для обоих периодов бимодальной классической цефеиды AS Cas построены O - C диаграммы, охватывающие временной интервал 132 года. Диаграммы O - C имеют вид парабол, что позволило впервые определить квадратичные элементы изменения блеска и вычислить скорости эволюционных изменений периодов: $dP_0/dt = +0.065 \ (+0.010) \ c/год$ для основного тона и $dP_1/dt = +0.163 \ (+0.006) \ c/год$ для первого обертона, что согласуется с результатами теоретических расчетов для третьего пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность изменений периодов.

Ключевые слова: бимодальные цефеиды, изменяемость периодов, эволюция звезд.

DOI: 10.31857/S0320010821060012

ВВЕДЕНИЕ

Переменность AS Cas открыл Белявский (1931). Зверев (1943) по своим визуальным наблюдениям определил тип ее переменности как δ Сер с периодом 1^d4940. Однако первые фотоэлектрические наблюдения AS Cas (Хенден, 1980) показали, что это бимодальная цефеида с периодами основного тона $P_0 = 3^d021$ и первого обертона $P_1 = 2^d290$. Хакке и Реер (1990) по многолетним фотографическим наблюдениям уточнили периоды: $P_0 = 3^d0245026$ и $P_1 = 2^d1554458$. Кроме того, они отметили, что период основного тона является более стабильным, но конкретных данных не привели. Поэтому мы решили исследовать изменения обоих периодов AS Cas методом анализа их O - C диаграмм.

КРИВЫЕ ИЗМЕНЕНИЯ БЛЕСКА ОБОИХ КОЛЕБАНИЙ AS Cas

Недавно мы (Бердников и др., 2021) опубликовали результаты PSF-фотометрии в фильтрах BVg'r' бимодальной цефеиды AS Cas, полученные на 60-см телескопе Кавказской горной обсерватории ГАИШ МГУ (Бердников и др., 2020), где также фундаментальной моды и первого обертона и приведены сами кривые блеска. В качестве примера на рис. 1 показаны эти кривые изменения блеска в фильтрах *B* и *V*. В табл. 1 приведены параметры кривых блеска

описана методика построения кривых блеска для

обоих колебаний AS Cas в фильтрах BVg'r': блеск в максимуме, амплитуда и средний блеск по интенсивности, а коэффициенты Фурье (разложение по косинусам) приведены в табл. 2. Коэффициенты Фурье для P_0 и P_1 попадают, соответственно, в области классических цефеид (DCEP) и малоамплитудных цефеид (DCEPS), которые пульсируют в первом обертоне (Поретти, 1994).

ИЗМЕНЯЕМОСТЬ ПЕРИОДОВ ОБОИХ КОЛЕБАНИЙ AS Cas

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа O-C диаграмм, а самым точным методом определения остатков O-C является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992а). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

^{*}Электронный адрес: lberdnikov@yandex.ru

Рис. 1. Кривые изменения блеска обоих колебаний AS Саѕ в фильтрах В и V по наблюдениям Бердникова и др. (2021).

Рис. 2. Кривые изменения блеска обоих колебаний AS Саѕ в фильтрах В и V по наблюдениям Бердникова (19926).

Для изучения периодов AS Cas мы получили ее PSF-фотометрию (Бердников и др., 2021), что позволило построить надежные стандартные кривые для использования их в методе Герцшпрунга (1919). Кроме того, мы сделали глазомерные оценки блеска на фотографических пластинках ГАИШ (Москва), а также использовали фотографическую фотометрию из проектов DASCH (Гриндлей, 2009) университета Гарварда (США) и ГАИШ (http://scan.sai.msu.ru/pl/) и ПЗСфотометрию из каталогов NSVS (Возниак и др., 2004), INTEGRAL-OMC (Альфонсо-Гарсон и др., 2012) и ASAS-SN (Яясингхе и др., 2019).

Также мы собрали опубликованные фотоэлектрические наблюдения (Хенден, 1980; Бердников, 19926-д, 1993; Бердников, Ибрагимов, 1994; Бердников и др., 1992, 1995, 1997, 1998; Игнатова, Возякова, 2000).

Сведения о количестве использованных наблюдений приведены в табл. 3. Самая старая пластинка с изображением AS Cas была получена в 1889 г., а последние ПЗС-наблюдения были сделаны в 2021 г. Следовательно, наши данные охватывают временной интервал 132 года.

Для разложения суммарного блеска AS Cas на два колебания мы применяем ту же методику, что и в статье Бердникова и др. (2001), т.е. все наблюдения обрабатываемого ряда переводятся в интенсивности, и для каждого *i*-го наблюдения составляются условные уравнения вида

$$I_{i} = I_{0} + \sum [A_{j} \sin(2\pi t_{i}F_{j}) + B_{j} \cos(2\pi t_{i}F_{j})], \quad j = 1 \div N,$$
(1)

где I_i — наблюденная полная интенсивность, I_0 — средняя интенсивность, A_j и B_j — амплитуды колебаний, t_i — юлианская дата, F_j — частоты F_0 и F_1 (которые соответствуют периодам P_0 и P_1) и их комбинации, N — число членов ряда Фурье (1), которое менялось от 6 до 17 в зависимости от качества и количества наблюдений.

Интенсивности каждого колебания (I_{0i} или I_{1i}) определяются рядом (1) без целочисленных гармоник другого колебания. При этом остаточный шум, т.е. [$I_i - (I_{0i} + I_{1i})$]/2, добавлялся к каждой

Мода колебаний	Фильтр	Блеск в максимуме	Амплитуда	Средний блеск по интенсивности
Основная	В	13 ^m 230	$0^{m}_{}748$	$13\overset{\text{m}}{\cdot}625$
Основная	g'	$12^{m}517$	$0^{m}_{\cdot}611$	$12^{m}_{}843$
Основная	V	$11\overset{\text{m}}{.}959$	$0^{m}_{}503$	$12^{m}_{\cdot}236$
Основная	r'	$11^{\text{m}}453$	$0^{m}_{\cdot}401$	$11^{m}_{\cdot}673$
Первый обертон	В	$13^{m}_{\cdot}409$	$0^{m}_{\cdot}434$	$12^{m}_{\cdot}625$
Первый обертон	g'	$12^{\mathrm{m}}666$	0^{m}_{356}	$12^{m}_{\cdot}843$
Первый обертон	V	$12^{m}_{\cdot}089$	$0^{m}_{}293$	$12^{m}_{\cdot}236$
Первый обертон	r'	$11^{m}_{\cdot}552$	$0^{m}_{\cdot}248$	11 ^m 673

Таблица 1. Параметры кривых блеска обоих колебаний AS Cas в фильтрах B, g', V и r'

Таблица 2. Коэффициенты Фурье (разложение по косинусам) кривых блеска основного тона ($P_0 = 3^{d}02456$) и первого обертона ($P_1 = 2^{d}15546$) AS Саѕ в фильтрах B, g', V и r'

Период	Фильтр	R_{21} Ошибка	R_{31} Ошибка	R_{41} Ошибка	ϕ_{21} Ошибка	ϕ_{31} Ошибка	ϕ_{41} Ошибка
P_0	В	0.25519	0.07660	0.00694	4.11069	2.18763	5.71623
		0.00247	0.00247	0.00247	0.01088	0.03313	0.35637
P_0	g'	0.25758	0.08186	0.00569	4.11491	2.24800	1.62770
		0.00216	0.00216	0.00216	0.00941	0.02711	0.37852
P_0	V	0.26011	0.09717	0.00932	4.14140	2.03879	1.38605
		0.00259	0.00259	0.00259	0.01122	0.02775	0.27796
P_0	r'	0.23909	0.10385	0.00213	4.13853	2.22928	0.71952
		0.00327	0.00327	0.00327	0.01518	0.03303	1.53892
P_1	В	0.17757	0.04634	0.00847	4.63861	2.02422	0.58321
		0.00322	0.00322	0.00322	0.01926	0.07022	0.38082
P_1	g'	0.18730	0.03952	0.01200	4.65209	2.19824	0.64772
		0.00373	0.00373	0.00373	0.02125	0.09497	0.31093
P_1	V	0.17469	0.01744	0.01169	4.51971	2.78720	0.15032
		0.00476	0.00476	0.00476	0.02886	0.27321	0.40743
P_1	r'	0.17948	0.01679	0.01047	4.65571	3.08635	1.66433
		0.00516	0.00516	0.00516	0.03057	0.30794	0.49353

Таблица 3. Наблюдательный материал суммарного блеска AS Cas

Источник данных	Число наблюдений	Тип наблюдений	Интервал JD
DASCH	907	Φ отографические, pg	2411311-2447860
ГАИШ	177	Φ отографические, pg	2438587 - 2448180
Данная работа	316	Φ отографические, pg	2437911-2445340
Литература	1668	Φ отоэлектрические, BV	2443698-2451041
NSVS	202	ПЗС, V	2451335-2451593
INTEGRAL-OMC	18964	ПЗС, V	2452654 - 2459105
ASAS-SN	1311	ПЗС, Vg'	2455955 - 2459198
Литература	1665	ПЗС, $BVg'r'$	2459126 - 2459265

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ

Таблица 4. Моменты максимума блеска AS Cas: основной тон

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2414620.1840	0.0311	PG	-9244	0.1057	25	DASCH
2425974.3189	0.0242	PG	-5490	0.0565	31	DASCH
2426113.3875	0.0257	PG	-5444	-0.0045	35	DASCH
2426134.6484	0.0172	PG	-5437	0.0846	70	DASCH
2427807.2677	0.0148	PG	-4884	0.1243	75	DASCH
2428333.5023	0.0185	PG	-4710	0.0860	50	DASCH
2430305.5075	0.0155	PG	-4058	0.0806	51	DASCH
2431221.8947	0.0180	PG	-3755	0.0273	76	DASCH
2431778.4136	0.0096	PG	-3571	0.0278	135	DASCH
2431914.6463	0.0216	PG	-3526	0.1555	71	DASCH
2433142.4123	0.0157	PG	-3120	-0.0483	30	DASCH
2433324.0134	0.0219	PG	-3060	0.0794	39	DASCH
2438287.2152	0.0084	PG	-1419	-0.0156	77	Данная работа
2439853.9415	0.0140	PG	-901	-0.0094	43	Данная работа
2441901.5573	0.0071	PG	-224	-0.0181	74	Данная работа
2442119.3755	0.0580	PG	-152	0.0320	65	ГАИШ
2442588.2006	0.0238	PG	3	0.0509	78	DASCH
2442929.9873	0.0078	PG	116	0.0627	58	Данная работа
2443788.9408	0.0141	PG	400	0.0423	23	Хенден (1980)
2443791.9911	0.0150	PG	401	0.0680	21	Хенден (1980)
2444230.5625	0.0244	PG	546	0.0787	47	Данная работа
2445171.1415	0.0229	PG	857	0.0208	68	DASCH
2446976.8419	0.0194	PG	1454	0.0612	72	DASCH
2447418.3391	0.0182	В	1600	-0.0269	28	Бердников (1992б)
2447418.3730	0.0138	V	1600	-0.0178	28	Бердников (1992б)
2447760.1282	0.0074	В	1713	-0.0126	40	Бердников (1992в)
2447760.1710	0.0059	V	1713	0.0053	40	Бердников (1992в)
2448113.9923	0.0053	В	1830	-0.0216	24	Бердников (1992г)
2448114.0180	0.0070	V	1830	-0.0208	24	Бердников (1992г)
2448504.1622	0.0094	В	1959	-0.0194	60	Бердников и др. (1992)
2448504.2003	0.0096	V	1959	-0.0062	63	Бердников и др. (1992)
2448513.2434	0.0052	В	1962	-0.0119	83	Бердников (1992д)
2448513.2683	0.0047	V	1962	-0.0119	83	Бердников (1992д)
2448882.2399	0.0038	В	2084	-0.0113	184	Бердников (1993)
2448882.2612	0.0036	V	2084	-0.0149	184	Бердников (1993)
2449227.0493	0.0035	В	2198	-0.0013	101	Бердников и Ибрагимов (1994)
2449227.0701	0.0035	V	2198	-0.0053	101	Бердников и Ибрагимов (1994)
2449629.2929	0.0100	В	2331	-0.0237	83	Бердников и др. (1995)
2449629.3034	0.0163	V	2331	-0.0381	87	Бердников и др. (1995)
2449989.2256	0.0092	V	2450	-0.0380	66	Бердников и др. (1997)

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 47 № 6 2021

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2449992.3019	0.0038	В	2451	0.0385	60	Бердников и др. (1997)
2450324.9766	0.0033	В	2561	0.0121	107	Бердников и др. (1998)
2450324.9799	0.0030	V	2561	-0.0095	108	Бердников и др. (1998)
2451441.0811	0.0056	V	2930	0.0304	155	NSVS
2451459.2229	0.0042	V	2936	0.0250	201	NSVS
2453503.8453	0.0012	V	3612	0.0473	5492	INTEGRAL-OMC
2455587.7971	0.0012	V	4301	0.0799	3480	INTEGRAL-OMC
2457211.9953	0.0029	V	4838	0.0915	160	ASAS-SN
2457674.7554	0.0030	V	4991	0.0944	166	ASAS-SN
2457677.7832	0.0014	V	4992	0.0976	4739	INTEGRAL-OMC
2458016.4974	0.0045	V	5104	0.0616	164	ASAS-SN
2458361.3290	0.0042	V	5218	0.0937	94	ASAS-SN
2458430.8898	0.0029	g'	5241	0.0945	171	ASAS-SN
2458567.0022	0.0010	V	5286	0.0972	5187	INTEGRAL-OMC
2458736.3731	0.0021	g'	5342	0.0976	271	ASAS-SN
2459099.3225	0.0017	g'	5462	0.1002	285	ASAS-SN
2459184.0068	0.0011	g'	5490	0.0969	414	Бердников и др. (2021)
2459187.0272	0.0012	В	5491	0.1130	421	Бердников и др. (2021)
2459187.0384	0.0013	V	5491	0.0993	419	Бердников и др. (2021)

Таблица 4. Окончание

интенсивности, и после этого интенсивности переводились в звездные величины.

В качестве примера на рис. 2 изображены кривые блеска обоих колебаний, полученные разложением фотоэлектрических наблюдений Бердникова (1992б).

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых AS Cas приведены в табл. 4 для основного тона и в табл. 5 для первого обертона. В первом и втором столбцах этих таблиц даны моменты максимального блеска и ошибки их определения, в третьем — тип используемых наблюдений, в четвертом и пятом — номер эпохи E и значение остатка O - C, а в шестом и седьмом — число наблюдений N и источник данных. Данные табл. 4 и табл. 5 изображены на O - C диаграммах (рис. 3 и рис. 4 соответственно) квадратиками для фотографических наблюдений и кружками для остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O - C.

Диаграммы O-C имеют вид парабол. Самые левые точки на рис. З и рис. 4 получены всего по 25 наблюдениям, полученным в течение 19 лет на самых ранних фотопластинках, которые отличались значительно меньшей чувствительностью, т.е. блеск звезды ($13^m2 \div 14^m0$) был близок к пределу. Следовательно, их реальные ошибки могут значительно превышать формальные ошибки аппроксимации наблюдений стандартной кривой, поэтому при проведении парабол эти точки не учитывались.

По моментам максимального блеска из табл. 4 получены квадратичные элементы изменения блес-ка для основного тона:

$$MaxHJD = 2442579.1009 (+0.0075) + (2) + 3.024556221 (+0.0000016) E + + 0.312086 \times 10^{-8} (+0.458 \times 10^{-9}) E^2,$$

и из табл. 5 — для первого обертона:

$$MaxHJD = 2442578.7743 (+0.0069) + (3)$$

+ 2^d155460412 (+0.0000011) E +
+ 0.557874 × 10⁻⁸ (+0.219 × 10⁻⁹) E²,

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ

Таблица 5. Моменты максимума блеска AS Cas: первый обертон

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2414510.6751	0.0537	PG	-13022	0.3485	23	DASCH
2425973.3863	0.0249	PG	-7704	0.3212	31	DASCH
2426111.3940	0.0276	PG	-7640	0.3795	35	DASCH
2426143.6107	0.0242	PG	-7625	0.2643	69	DASCH
2427811.8394	0.0174	PG	-6851	0.1666	74	DASCH
2428352.9939	0.0227	PG	-6600	0.3006	51	DASCH
2430305.7613	0.0274	PG	-5694	0.2208	51	DASCH
2431189.4163	0.0153	PG	-5284	0.1370	76	DASCH
2431780.0298	0.0138	PG	-5010	0.1544	135	DASCH
2431915.8616	0.0339	PG	-4947	0.1921	71	DASCH
2433142.2565	0.0161	PG	-4378	0.1301	30	DASCH
2433325.3996	0.0241	PG	-4293	0.0591	39	DASCH
2438285.0443	0.0129	PG	-1992	-0.0106	84	Данная работа
2439854.2885	0.0221	PG	-1264	0.0584	43	Данная работа
2440388.7348	0.0392	PG	-1016	-0.0495	96	ГАИШ
2441904.0930	0.0103	PG	-313	0.0200	81	Данная работа
2442535.6811	0.0218	PG	-20	0.0582	79	DASCH
2442938.7040	0.0112	PG	167	0.0100	63	Данная работа
2443473.2918	0.0849	PG	415	0.0437	81	ГАИШ
2443790.0758	0.0204	В	562	-0.0250	22	Хенден (1980)
2443790.1290	0.0224	V	562	-0.0141	23	Хенден (1980)
2444219.0237	0.0227	В	761	-0.0137	45	Данная работа
2445178.2989	0.0262	В	1206	0.0815	70	DASCH
2446954.3197	0.0262	В	2030	0.0030	73	DASCH
2447419.8912	0.0089	В	2246	-0.0050	28	Бердников (1992б)
2447419.9181	0.0094	V	2246	-0.0203	28	Бердников (1992б)
2447760.5016	0.0111	B	2404	0.0427	40	Бердников (1992в)
2447760.5052	0.0094	V	2404	0.0040	40	Бердников (1992в)
2448114.0097	0.0135	B	2568	0.0553	24	Бердников (1992г)
2448114.0513	0.0125	V	2568	0.0547	24	Бердников (1992г)
2448504.1425	0.0102	В	2749	0.0498	61	Бердников и др. (1992)
2448504.1883	0.0111	V	2749	0.0533	63	Бердников и др. (1992)
2448512.7460	0.0039	В	2753	0.0314	83	Бердников (1992д)
2448512.7907	0.0031	V	2753	0.0339	83	Бердников (1992д)
2448881.3761	0.0044	В	2924	0.0778	184	Бердников (1993)
2448881.3893	0.0036	V	2924	0.0487	184	Бердников (1993)
2449226.2474	0.0039	В	3084	0.0754	101	Бердников и Ибрагимов (1994)
2449226.2754	0.0044	V	3084	0.0612	101	Бердников и Ибрагимов (1994)
2449627.0674	0.0081	В	3270	-0.0202	81	Бердников и др. (1995)
2449629.2804	0.0082	V	3271	-0.0049	86	Бердников и др. (1995)

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 47 № 6 2021

Таблица 5. Окончание

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2449989.2621	0.0064	V	3438	0.0148	66	Бердников и др. (1997)
2449991.3624	0.0089	В	3439	0.0019	59	Бердников и др. (1997)
2450325.5313	0.0047	В	3594	0.0745	108	Бердников и др. (1998)
2450325.5640	0.0041	V	3594	0.0650	108	Бердников и др. (1998)
2450784.7584	0.0294	V	3807	0.1463	34	Игнатова и Возякова (2000)
2450788.9562	0.0157	В	3809	0.0754	33	Игнатова и Возякова (2000)
2451442.1623	0.0054	V	4112	0.1348	154	NSVS
2451459.3781	0.0045	V	4120	0.1069	200	NSVS
2453504.9629	0.0015	V	5069	0.1598	5508	INTEGRAL-OMC
2455589.3633	0.0016	V	6036	0.2299	3495	INTEGRAL-OMC
2457210.2954	0.0032	V	6788	0.2558	159	ASAS-SN
2457675.9025	0.0025	V	7004	0.2835	164	ASAS-SN
2457678.0646	0.0014	V	7005	0.2901	4765	INTEGRAL-OMC
2458014.3032	0.0044	V	7161	0.2769	159	ASAS-SN
2458361.3311	0.0051	V	7322	0.2757	94	ASAS-SN
2458430.2941	0.0033	g'	7354	0.2975	170	ASAS-SN
2458568.2964	0.0013	V	7418	0.3167	5196	INTEGRAL-OMC
2458734.2342	0.0027	g'	7495	0.3177	270	ASAS-SN
2459100.6687	0.0024	g'	7665	0.3239	283	ASAS-SN
2459184.7365	0.0014	В	7704	0.3373	405	Бердников и др. (2021)
2459184.7405	0.0016	g'	7704	0.3328	413	Бердников и др. (2021)
2459184.7733	0.0017	V	7704	0.3320	417	Бердников и др. (2021)
2459184.8011	0.0020	r'	7704	0.3320	410	Бердников и др. (2021)

линейная часть которых использована для вычислений остатков O - C в пятых столбцах табл. 4 и табл. 5. Элементы (2) и (3) использовались для проведения парабол на верхней части рис. 3 и рис. 4, на нижней части которых показаны отклонения от этих парабол.

Из табл. 4 следует, что максимумы блеска основного тона в фильтре B и g' наступают раньше, чем в фильтре V, на 0^d0248 и 0^d0047 соответственно, а согласно табл. 5, максимумы первого обертона в фильтре B и g' наступают раньше, чем в фильтре V, на 0^d0422 и 0^d0335 соответственно. Эти поправки учитывались при построении рис. 3 и рис. 4 и определении элементов (2) и (3), которые, таким образом, относятся к системе V.

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для этого мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из табл. 4 и табл. 5, $\Delta(O--C)_i = (O-C)_{i+1} - (O-C)_i$, и построили графики зависимости $P'_i = \Delta(O-C)_i/(E_{i+1}-E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для основного тона (рис. 5) и первого обертона (рис. 6). Величины P'_i , которые имеют смысл периода в интервале эпох $E_i \div E_{i+1}$, соответствуют поведению остатков O-C на рис. 3 и рис. 4, т.е. обнаруженные изменения периодов являются реальными.

Квадратичные члены элементов (2) и (3) позволяют вычислить скорости эволюционного увеличения периода для основного тона $dP_0/dt = +0.065$ (+0.010) с/год и первого обертона $dP_1/dt = +0.163$ (+0.006) с/год.

Изучением периодов бимодальных цефеид занимались Хакке (1991а,б) (Y Car и GZ Car), Хак-

Рис. 3. Диаграмма *О* – *С* для AS Cas относительно линейных (вверху) и квадратичных (внизу) элементов основного тона (2). Линия — парабола, соответствующая элементам (2).

ке и Реер (1990, 1991а,б) (AS Cas, EW Sct и V367 Sct) и Хакке и др. (1990) (VX Pup). Они использовали, главным образом, фотографические наблюдения и не разлагали суммарный блеск на два колебания, поэтому их результаты, обремененные большими ошибками, позволили сделать лишь общий вывод, что период первого обертона подвержен бо́льшим изменениям, чем период основного тона.

Следовательно, найденные нами скорости увеличения периодов AS Саз являются первыми надежными результатами в этой области. Так как эти скорости разные, то и отношение dP_1/dP_0 , которое на эпоху JD = 2442579 равно 0.712653 ± 0.000001, будет меняться, и через 100 лет станет 0.712698.

Значение \dot{P}_0 соответствует теоретическим расчетам для третьего пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014), а величина \dot{P}_1 соответствует положению малоамплитудных цефеид (DCEPS), которые пульсируют в первом обертоне (см. также Бердников и др., 2000).

Отметим, что полученные здесь результаты основаны на конкретных стандартных кривых, которые можно найти в нашей предыдущей работе (Бердников и др., 2021).

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периодов основного тона и первого обертона AS Cas нами было сделано 316 глазомерных оценок блеска на фотопластинках ГАИШ; кроме того, было собрано из различных источников 24 859 фотографических, фотоэлектрических и ПЗС-наблюдений. В результате обработки всех имеющихся данных, охватывающих временной интервал с 1889 по 2021 г., были определены 60 и 63 момента максимального блеска для построения О – С диаграмм для основного тона и первого обертона AS Cas соответственно. Определены квадратичные элементы изменения блеска обоих колебаний и вычислены скорости эволюционных изменений их периодов: $dP_0/dt = +0.065$ (+ +0.010) с/год для основного тона и $dP_1/dt = +$ +0.163 (+0.006) с/год для первого обертона, что согласуется с результатами теоретических расчетов для третьего пересечения полосы нестабиль-

Рис. 4. Диаграмма *О* – *С* для AS Cas относительно линейных (вверху) и квадратичных (внизу) элементов первого обертона (3). Линия — парабола, соответствующая элементам (3).

Рис. 5. Зависимость $P_{0i} = [(O - C)_{i+1} - (O - C)_i]/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для основного тона. Линия соответствует поведению остатков O - C на рис. 3.

ности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность изменений периодов. Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (грант 19-02-00611) и междисциплинар-

Рис. 6. Зависимость $P_{1i} = [(O - C)_{i+1} - (O - C)_i]/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для первого обертона. Линия соответствует поведению остатков O - C на рис. 4.

ной научно-образовательной школы Московского университета <Фундаментальные и прикладные исследования космоса>. Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского университета.

СПИСОК ЛИТЕРАТУРЫ

- 1. Альфонсо-Гарсон и др. (J. Alfonso-Garzon, A. Domingo, J.M. Mas-Hesse, and A. Gimenez), Astron. Astrophys. **548**, A79 (2012).
- Белявский (S. Beljawsky), Astron. Nachr. 243, 115 (1931).
- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992a) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- 4. Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. 2, 43 (19926).
- 5. Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. **2**, 107 (1992в).
- 6. Бердников (L.N. Berdnikov), Astron. Astrophys. Trans. 2, 157 (1992г).
- Бердников Л.Н., Письма в Астрон. журн. 18, 325 (1992д) [L.N. Berdnikov, Sov. Astron. Lett. 18, 130 (1992)].
- 8. Бердников (L.N. Berdnikov), Commis. 27 IAU Inform. Bull. Var. Stars, № 3880, 1 (1993).
- Бердников Л.Н., Белинский А.А., Шатский Н.И., Бурлак М.А., Иконникова Н.П., Мишин Е.О., Черясов Д.В., Жуйко С.В., Астрон. журн. 97, 284 (2020) [L.N. Berdnikov, А.А. Belinskij, N.I. Shatskij, M.A. Burlak, N.P. Ikonnikova, E.O. Mishin, D.V. Cheryasov, and S.V. Zhuiko, Astron. Rep. 64, 310 (2020)]
- 10. Бердников и др. (L.N. Berdnikov, A.A. Belinskij, E.N. Pastukhova, M.A. Burlak, N.P. Ikonnikova, E.O. Mishin, and N.I. Shatskii), Variable Stars 41, № 2, 1 (2021).

- 11. Бердников и др. (L.N. Berdnikov, O.V. Vosyakova, and M.A. Ibragimov), Commis. 27 IAU Inform. Bull. Var. Stars № 4141, 1 (1995).
- 12. Бердников, Ибрагимов (L.N. Berdnikov and M.A. Ibragimov), Commis. 27 IAU Inform. Bull. Var. Stars № 3988, 1 (1994).
- Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 14, 237 (1997).
- Бердников и др. (L.N. Berdnikov, V.V. Ignatova, and O.V. Vozyakova), Astron. Astrophys. Trans. 17, 87 (1998).
- 15. Бердников Л.Н., Игнатова В.В., Фадеев Ю.А., Б.В. Кукаркин: Переменные звезды — ключ к пониманию строения и эволюции Галактики (ред. Н.Н. Самусь, А.В. Миронов, Нижний Архыз: "CYGNUS", 2000), с. 18.
- Бердников и др. (L.N. Berdnikov, S. Skornyakova, M. Ibragimov, V. Kondratiev, and S. Yakubov), Commis. 27 IAU Inform. Bull. Var. Stars № 3711, 1 (1992).
- 17. Возниак и др. (P.R. Wozniak, W.T. Vestrand, C.W. Akerlof, R. Balsano, J. Bloch, D. Casperson, S. Fletcher, G. Gisler, et al.), Astron. J. **127**, 2436 (2004).
- 18. Герцшпрунг (E. Hertzsprung), Astron. Nachr. **210**, 17 (1919).
- 19. Гриндлей и др. (J. Grindlay, Sumin Tang, E. Los, and M. Servilla), ASP Conf. Ser. **410**, 101 (2009).
- 20. Зверев М.С., Астрон. циркуляр № 22 (1943).
- 21. Игнатова, Возякова (V.V. Ignatova and O.V. Vozyakova), Astron. Astrophys. Trans. **19**, 133 (2000).
- 22. Ломбард, Коен (F. Lombard and C. Koen), MNRAS **263**, 309 (1993).
- 23. Поретти (E. Poretti), Astron. Astrophys. **285**, 524 (1994).

- 24. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, and L.N. Berdnikov), Publ. Astron. Soc. Pacific **118**, 410 (2006).
- 25. Фадеев Ю.А., Письма в Астрон. журн. **40**, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. **40**, 301 (2014)].
- 26. Хакке (G. Hacke), Veroeff. Sternwarte Sonneberg 11, 2 (1991а).
- 27. Хакке (G. Hacke), Veroeff. Sternwarte Sonneberg 11, 19 (19916).
- 28. Хакке, Peep (G. Hacke and O. Reer), Veroeff. Sternwarte Sonneberg 10, 350 (1990).
- 29. Хакке, Peep (G. Hacke and O. Reer), Veroeff. Sternwarte Sonneberg 11, 7 (1991a).

- 30. Хакке, Peep (G. Hacke and O. Reer), Veroeff. Sternwarte Sonneberg 11, 14 (19916).
- 31. Хакке и др. (G. Hacke, M. Richert, and O. Reer), Veroeff. Sternwarte Sonneberg **10**, 326 (1990).
- 32. Хенден (А.А. Henden), MNRAS 192, 621 (1980).
- Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Dong Subo, et al.), MNRAS 485, 961 (2019).