ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДА КЛАССИЧЕСКОЙ ЦЕФЕИДЫ СЕ Рир

© 2021 г. Л. Н. Бердников^{1*}

¹Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия Поступила в редакцию 31.05.2021 г. После доработки 31.05.2021 г.; принята к публикации 04.06.2021 г.

Обработка всей имеющейся фотометрии цефеиды СЕ Рир позволила построить ее O-C диаграмму, охватывающую временной интервал 128 лет. Это позволило впервые вычислить скорость эволюционного увеличения периода $dP/dt = +155.3 (\pm 13.1)$ с/год, что согласуется с результатами модельных расчетов для третьего пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность эволюционного изменения периода.

Ключевые слова: изменяемость периодов, эволюция звезд.

DOI: 10.31857/S0320010821060024

ВВЕДЕНИЕ

Согласно теории звездной эволюции, чем больше масса (а значит, и период) цефеиды, тем быстрее она эволюционирует, и тем легче обнаружить эволюционные изменения периода (параболу на ее O - C диаграмме). В частности, для цефеид с периодами больше 30 дней параболы должны быть обнаружимы уже на 30-летнем интервале времени (Ферни, 1990).

Однако изучение периодов 13 таких цефеид: V609 Cyg ($P = 31^{d}1$) (Бердников и др., 2019), V396 Суд ($P = 33^{d}3$) (Бердников, Пастухова, 2012), EV Aql ($P = 38^{\circ}.7$) (Бердников, 2020), V2641 Oph (P = 38.9) (Бердников и др., 2009а), RS Pup $(P = 41^{d}4)$ (Бердников и др., 2009б), SV Vul $(P = 45^{d}.1)$ (Тэрнер, Бердников, 2004), V1467 Cyg (P = 48.6) (Бердников и др., 2020), V708 Car ($P = 51^{d}4$) (Бердников, 2010), GY Sge $(P = 51^{d}.5)$ (Бердников и др., 2007). ЕТ Vul (P == 53.8) (Бердников, Пастухова, 2020), II Саг (P == 65^d4) (Бердников, Тэрнер, 2010), V1496 Aql $(P = 65^{d}4)$ (Бердников и др., 2004) и S Vul (P == 68^d0) (Махмуд, Сабадош, 1980; Бердников, 1994), показало, что случайные флуктуации перидов шести из них искажают их О-С диаграммы настолько, что их параболическая форма становится обнаружимой только на интервале времени порядка столетия, а для двух цефеид (EV Aql и V1496 Aql) не заметна вообще. Чтобы понять причину такого несоответствия, необходимо увеличить статистику. Поэтому в данной работе мы исследуем поведение пульсаций цефеиды CE Pup, период изменения блеска которой составляет 49^d3.

МЕТОДИКА И ИСПОЛЬЗУЕМЫЙ НАБЛЮДАТЕЛЬНЫЙ МАТЕРИАЛ

Переменность СЕ Рир открыл Герцшпрунг (1941) и классифицировал ее как цефеиду типа δ Сер с периодом 49 $^{4}53$. Изучением изменяемости периода этой цефеиды никто не занимался.

Для изучения периода СЕ Рир мы собрали фотоэлектрические и ПЗС B, V и I_c наблюдения (Пел, 1976; Колдвел и др., 2001; Бердников, Колдвел, 2001; Бердников, Тэрнер, 1995, 1998а,б, 2000, 2001а,б, 2004а—в; Бердников и др., 2015), а также ПЗС-наблюдения из обзоров INTEGRAL-ОМС (Альфонсо-Гарсон и др., 2012), ASAS-3 (Поймански, 2002) и ASAS—SN (Яясингхе и др., 2019), полученные в полосах, близких к V и g'. Мы также использовали сделанные нами глазомерные оценки блеска на фотопластинках коллекции университета Гарварда (США).

Сведения о количестве использованных наблюдений приведены в табл. 1. Самая старая фотопластинка с изображением СЕ Рир, хранящаяся в Гарварде, была получена в 1893 г., а последние

^{*}Электронный адрес: lberdnikov@yandex.ru

Источник данных	Число наблюдений	Полоса наблюдений	Интервал JD
Гарвард	697	PG	2412761-2446791
Литература	794	BVI_c	2440975 - 2456684
INTEGRAL-OMC	820	V	2452796 - 2456997
ASAS-3	1155	V	2451869-2455166
ASAS-SN	2432	Vg'	2457079-2458906

Таблица 1. Наблюдательный материал цефеиды СЕ Рир

Рис. 1. Диаграмма *О* – *С* для цефеиды СЕ Рир относительно линейных (вверху) и квадратичных (внизу) элементов (1). Линия — парабола, соответствующая элементам (1).

ПЗС-наблюдения были сделаны в 2021 г. Следовательно, наши данные охватывают временной интервал 128 лет.

Для изучения изменяемости периодов цефеид мы применяем общепринятую методику анализа O - C диаграмм, а самым точным методом определения остатков O - C является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых CE Pup приведены в табл. 2. В первом и втором столбце даны моменты максимального блеска и ошибки их

Таблица 2. Моменты максимума блеска СЕ Рир

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2413900.9381	1.3361	PG	-462	8.7348	18	Гарвард (данная работа)
2416955.0558	0.4183	PG	-400	8.8174	20	Гарвард (данная работа)
2421930.5864	2.2664	PG	-299	9.2264	13	Гарвард (данная работа)
2425531.2239	0.3538	PG	-226	13.9839	47	Гарвард (данная работа)
2426024.4861	0.3726	PG	-216	14.6598	53	Гарвард (данная работа)
2426419.1529	0.3182	PG	-208	15.2575	46	Гарвард (данная работа)
2426762.8164	0.3406	PG	-201	14.1106	50	Гарвард (данная работа)
2427401.3629	0.5047	PG	-188	12.2949	28	Гарвард (данная работа)
2428234.9342	0.5044	PG	-171	8.4695	30	Гарвард (данная работа)
2428973.1331	0.4256	PG	-156	7.7890	24	Гарвард (данная работа)
2429513.0542	0.5009	PG	-145	5.8651	39	Гарвард (данная работа)
2430201.5555	0.3801	PG	-131	4.7456	35	Гарвард (данная работа)
2430937.5674	0.3897	PG	-116	1.8781	41	Гарвард (данная работа)
2431675.9179	0.7205	PG	-101	1.3491	25	Гарвард (данная работа)
2432708.7885	0.3770	PG	-80	-0.2116	41	Гарвард (данная работа)
2433549.2681	0.5505	PG	-63	2.8713	17	Гарвард (данная работа)
2441085.8634	0.0791	В	90	2.8962	40	Пел (1976)
2441086.6676	0.0856	V	90	3.0310	40	Пел (1976)
2443550.6007	1.0189	PG	140	4.7020	30	Гарвард (данная работа)
2444193.7395	0.5982	I_c	153	2.7897	11	Колдвел и др. (2001)
2444238.7571	0.1214	В	154	3.2376	12	Колдвел и др. (2001)
2444239.0176	0.1920	V	154	2.8287	12	Колдвел и др. (2001)
2445025.8626	0.1140	В	170	2.2050	17	Колдвел и др. (2001)
2445026.2313	0.1119	V	170	1.9042	17	Колдвел и др. (2001)
2445909.7377	0.3609	PG	188	-0.5753	90	Гарвард (данная работа)
2447142.9383	0.5650	PG	213	1.1596	50	Гарвард (данная работа)
2449804.7789	0.3110	V	267	2.3648	21	Бердников и Тэрнер (1995)
2449808.9128	0.2181	I_c	267	2.4792	21	Бердников и Тэрнер (1995)
2450397.2564	0.0636	В	279	4.4081	19	Бердников и Тэрнер (1998а)
2450397.9239	0.0545	V	279	4.4062	23	Бердников и Тэрнер (1998а)
2450401.9837	0.1309	I_c	279	4.4465	23	Бердников и Тэрнер (1998а)
2450596.1070	0.0935	V	283	5.5547	20	Бердников и Тэрнер (1998б)
2450893.0425	0.2192	V	289	6.9384	24	Бердников и Тэрнер (2000)
2450896.6748	0.1536	I_c	289	6.5513	24	Бердников и Тэрнер (2000)
2451288.1972	0.0606	V	297	8.0241	34	Бердников и Тэрнер (2001а)
2451292.3448	0.0826	I_c	297	8.1522	33	Бердников и Тэрнер (2001а)
2451633.3775	0.0891	V	304	8.3940	26	Бердников и Колдвел (2001)
2451637.0840	0.1050	I_c	304	8.0810	26	Бердников и Колдвел (2001)
2451929.2430	0.1194	V	310	8.7077	72	ASAS-3

Таблица 2. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2451977.8912	0.1269	B	311	8.7668	12	Бердников и Тэрнер (2001б)
2451978.5528	0.0861	V	311	8.7589	16	Бердников и Тэрнер (2001б)
2451982.6467	0.1282	I_c	311	8.8332	16	Бердников и Тэрнер (2001б)
2452225.4160	0.2388	V	316	9.3289	30	ASAS-3
2452324.2051	0.0432	B	318	10.2702	30	Бердников и Тэрнер (2004а)
2452324.8269	0.0552	V	318	10.2226	32	Бердников и Тэрнер (2004а)
2452328.8750	0.1014	I_c	318	10.2512	32	Бердников и Тэрнер (2004а)
2452621.5558	0.0895	V	324	11.3997	26	Бердников и Тэрнер (2004б)
2452625.6145	0.1864	I_c	324	11.4389	25	Бердников и Тэрнер (2004б)
2452671.1701	0.1312	V	325	11.7553	78	ASAS-3
2452968.9879	0.4266	V	331	14.0214	300	INTEGRAL-OMC
2453017.1507	0.1757	V	332	12.9255	20	Бердников и Тэрнер (2004в)
2453021.2989	0.1314	I_c	332	13.0543	20	Бердников и Тэрнер (2004в)
2453065.8714	0.1170	V	333	12.3876	88	ASAS-3
2453460.6579	0.1255	V	341	13.1051	72	ASAS-3
2453756.0472	0.1189	V	347	12.9426	90	ASAS-3
2453756.3723	0.2080	V	347	13.2677	98	INTEGRAL-OMC
2454149.0614	0.1064	V	355	11.8878	146	ASAS-3
2454493.9964	0.0782	V	362	12.0124	276	ASAS-3
2454840.7806	0.0826	V	369	13.9861	261	ASAS-3
2455138.0165	0.1811	V	375	15.6702	42	ASAS-3
2455236.0527	0.0690	V	377	15.1892	308	INTEGRAL-OMC
2455881.2525	0.1489	V	390	20.0268	114	INTEGRAL-OMC
2456675.4196	0.0555	B	406	26.7253	57	Бердников и др. (2015)
2456680.3966	0.1447	I_c	406	27.0133	65	Бердников и др. (2015)
2457463.4774	0.0410	V	422	25.9755	81	ASAS-SN
2457759.5018	0.0294	V	428	26.4482	185	ASAS-SN
2457858.2878	0.0397	V	430	26.7169	105	ASAS-SN
2458105.2243	0.0223	V	435	27.3602	189	ASAS-SN
2458203.7163	0.0341	V	437	27.3350	197	ASAS-SN
2458498.0154	0.0289	g'	443	27.5994	277	ASAS-SN
2458498.0351	0.0280	g'	443	27.6191	284	ASAS-SN
2458695.0380	0.0573	g'	447	27.5876	75	ASAS-SN
2458842.7693	0.0253	g'	450	27.5429	272	ASAS-SN
2458842.7742	0.0348	g'	450	27.5479	172	ASAS-SN
2459139.2776	0.0652	g'	456	28.4995	100	ASAS-SN
2459238.1367	0.0249	g'	458	28.8413	230	ASAS-SN
2459238.1663	0.0388	g'	458	28.8709	165	ASAS-SN
2459287.4972	0.0479	g'	459	28.9432	100	ASAS-SN

Рис. 2. Зависимость $P'_i = [(O - C)_{i+1} - (O - C)_i]/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$. Линия соответствует поведению остатков O - C на рис. 1.

Рис. 3. Зависимость квадрата средней накопленной задержки $\langle u(x) \rangle$ от разности циклов x для CE Pup. Линия — подгонка уравнения (2) для x < 20, которая дает величину случайных флуктуаций периода $\varepsilon = 0.47 \pm 0.422$ ($\varepsilon/P \approx 0.01$).

определения, в третьем — тип используемых наблюдений, в четвертом и пятом — номер эпохи E и значение остатка O - C, а в шестом и седьмом число наблюдений N и источник данных. Данные табл. 2 изображены на O - C диаграмме (рис. 1) квадратиками для фотографических наблюдений и точками для остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O - C.

По моментам максимального блеска из табл. 2 получены квадратичные элементы изменения блеска цефеиды CE Pup:

$$Max HJD = 2436650.3599 (\pm 0.984) + (1) + 49!25863027 (\pm 0.0028) E +$$

$$+0.121231 \times 10^{-3} (\pm 0.102 \times 10^{-4}) E^2$$
,

линейная часть которых использована для вычислений остатков O - C в пятом столбце табл. 2. Элементы (1) использовались для проведения параболы на верхней части рис. 1, на нижней части которого показаны отклонения от этой параболы.

По фотоэлектрическим и ПЗС-наблюдениям было найдено, что максимумы в фильтрах B и g' наступают раньше, чем в фильтре V, на 0.46694 и 1.45172 соответственно, а в фильтре I_c — позже на 4.40196. Эти поправки учитывались при построении рис. 1 и определении элементов (1), которые таким образом относятся к системе V.

Рис. 4. Стандартные кривые цефеиды СЕ Рир в фильтрах B, g', V и I_c .

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для этого мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из табл. 2, $\Delta(O-C)_i = (O - -C)_{i+1} - (O-C)_i$, и построили график зависимости $P'_i = \Delta(O-C)_i/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ (рис. 2). Значения P'_i , которые имеют смысл среднего периода в интервале эпох $E_i \div E_{i+1}$, соответствуют поведению остатков O-C на рис. 1.

Квадратичный член элементов (1) дает возможность вычислить скорость эволюционного увеличения периода $dP/dt = +155.3 (\pm 13.1)$ с/год, что соответствует теоретическим расчетам для третьего пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014) для классических цефеид.

Данные табл. 2 позволяют оценить величину случайных флуктуаций пульсационного периода. Для этого вычислялись задержки u(x) = |z(r + x) - z(r)| для максимумов, разделенных x цик-

лами. Средняя величина $\langle u(x) \rangle$, согласно Эддингтону и Плакидису (1929), должна быть связана со случайной флуктуацией периода ε соотношением

$$\langle u(x) \rangle^2 = 2\alpha^2 + x\varepsilon^2,$$
 (2)

где α характеризует величину случайных ошибок измеренных моментов максимального блеска.

Результаты вычислений представлены на рис. З и указывают на существование линейного тренда $\langle u(x) \rangle^2$ для разности циклов x < 20, где формальная подгонка уравнения (2) дает величину случайной флуктуации периода $\varepsilon = 0.47 \pm 0.422$. Таким образом, полученные нами данные свидетельствуют в пользу существования довольно больших случайных флуктуаций периода ($\varepsilon/P \approx 0.01$), которые, тем не менее, не маскируют вековые изменения периода.

Отметим, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. З с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Таблица 3 содержит звездные величины СЕ Рир для фаз от 0 до 0.995 с шагом 0.005 в фильтрах B, g', V и I_c . Эти стандартные кривые графически изображены на рис. 4.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периода СЕ Рир использовалось 697 оценок блеска на старых фотопластинках университета Гарварда (США). Кроме того, было собрано 5078 опубликованных наблюдений. Все имеющиеся данные были обработаны методом Герцшпрунга (1919), и было определено 78 моментов максимального блеска для построения *О* – *С* диаграммы, охватывающей временной интервал 128 лет. Это позволило определить квадратичные элементы изменения блеска (1) и вычислить скорость эволюционного увеличения периода $dP/dt = +155.3 \ (\pm 13.1) \ c/год,$ что согласуется с результатами модельных расчетов для третьего пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014). Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность увеличения периода.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (проект 19-02-00611).

Фаза	B	g'	V	I_c	Фаза	В	g'	V	I_c
0.000	12.846	12.156	11.415	9.770	0.500	13.747	12.890	11.960	10.168
0.005	12.847	12.157	11.416	9.770	0.505	13.760	12.901	11.969	10.178
0.010	12.848	12.158	11.416	9.770	0.510	13.772	12.911	11.979	10.187
0.015	12.850	12.160	11.417	9.771	0.515	13.784	12.921	11.989	10.196
0.020	12.851	12.163	11.419	9.771	0.520	13.796	12.932	11.998	10.204
0.025	12.854	12.167	11.421	9.771	0.525	13.808	12.942	12.008	10.212
0.030	12.857	12.171	11.423	9.772	0.530	13.821	12.952	12.018	10.220
0.035	12.861	12.175	11.425	9.773	0.535	13.833	12.963	12.028	10.227
0.040	12.865	12.180	11.428	9.773	0.540	13.846	12.973	12.038	10.233
0.045	12.870	12.185	11.430	9.774	0.545	13.858	12.983	12.048	10.239
0.050	12.874	12.191	11.433	9.775	0.550	13.871	12.994	12.058	10.244
0.055	12.880	12.196	11.437	9.776	0.555	13.882	13.004	12.068	10.249
0.060	12.886	12.202	11.440	9.776	0.560	13.894	13.014	12.078	10.254
0.065	12.893	12.208	11.444	9.777	0.565	13.907	13.025	12.088	10.259
0.070	12.900	12.214	11.447	9.778	0.570	13.919	13.035	12.098	10.264
0.075	12.907	12.220	11.451	9.779	0.575	13.931	13.045	12.107	10.269
0.080	12.916	12.226	11.455	9.781	0.580	13.942	13.056	12.117	10.274
0.085	12.924	12.232	11.459	9.782	0.585	13.954	13.066	12.126	10.280
0.090	12.933	12.238	11.464	9.783	0.590	13.965	13.076	12.135	10.286
0.095	12.942	12.244	11.468	9.784	0.595	13.976	13.087	12.145	10.291
0.100	12.951	12.250	11.472	9.785	0.600	13.986	13.097	12.153	10.297
0.105	12.962	12.257	11.476	9.787	0.605	13.994	13.107	12.162	10.301
0.110	12.971	12.263	11.480	9.788	0.610	14.003	13.117	12.171	10.305
0.115	12.981	12.269	11.484	9.789	0.615	14.012	13.127	12.179	10.308
0.120	12.992	12.275	11.489	9.791	0.620	14.022	13.136	12.187	10.310
0.125	13.001	12.282	11.493	9.792	0.625	14.031	13.146	12.195	10.311
0.130	13.011	12.288	11.497	9.794	0.630	14.039	13.155	12.202	10.310
0.135	13.020	12.295	11.500	9.795	0.635	14.047	13.163	12.209	10.308
0.140	13.029	12.301	11.504	9.797	0.640	14.056	13.172	12.216	10.304
0.145	13.038	12.308	11.508	9.798	0.645	14.063	13.180	12.223	10.299
0.150	13.048	12.315	11.512	9.800	0.650	14.070	13.187	12.229	10.294
0.155	13.057	12.321	11.516	9.802	0.655	14.077	13.194	12.235	10.288
0.160	13.067	12.328	11.520	9.803	0.660	14.082	13.200	12.240	10.282
0.165	13.076	12.336	11.523	9.805	0.665	14.087	13.206	12.245	10.276
0.170	13.085	12.343	11.527	9.807	0.670	14.091	13.211	12.249	10.270
0.175	13.093	12.350	11.531	9.809	0.675	14.095	13.215	12.253	10.264
0.180	13.102	12.358	11.535	9.811	0.680	14.097	13.218	12.256	10.259
0.185	13.112	12.365	11.540	9.813	0.685	14.099	13.220	12.258	10.254
0.190	13.122	12.373	11.545	9.815	0.690	14.099	13.222	12.260	10.248
0.195	13.131	12.380	11.550	9.817	0.695	14.099	13.222	12.261	10.243
0.200	13.140	12.388	11.554	9.819	0.700	14.097	13.222	12.261	10.236

Таблица 3. Стандартные кривые ЕТ Vul в фильтрах B, g', V и I_c

Таблица 3. Продолжение

Фаза	В	g'	V	I_c	Фаза	В	g'	V	I_c
0.205	13.149	12.395	11.559	9.821	0.705	14.094	13.220	12.260	10.230
0.210	13.158	12.403	11.564	9.823	0.710	14.089	13.218	12.258	10.222
0.215	13.168	12.411	11.569	9.826	0.715	14.084	13.214	12.256	10.214
0.220	13.177	12.418	11.575	9.828	0.720	14.078	13.210	12.252	10.205
0.225	13.188	12.426	11.580	9.831	0.725	14.069	13.204	12.247	10.195
0.230	13.198	12.434	11.586	9.833	0.730	14.060	13.197	12.241	10.184
0.235	13.208	12.441	11.592	9.836	0.735	14.050	13.188	12.235	10.172
0.240	13.218	12.449	11.597	9.839	0.740	14.038	13.179	12.227	10.160
0.245	13.228	12.456	11.603	9.842	0.745	14.025	13.168	12.218	10.147
0.250	13.238	12.464	11.609	9.845	0.750	14.011	13.157	12.209	10.133
0.255	13.248	12.471	11.615	9.848	0.755	13.995	13.144	12.198	10.119
0.260	13.258	12.478	11.621	9.851	0.760	13.978	13.130	12.186	10.104
0.265	13.269	12.486	11.627	9.854	0.765	13.959	13.115	12.173	10.088
0.270	13.279	12.493	11.633	9.858	0.770	13.940	13.099	12.160	10.073
0.275	13.290	12.500	11.639	9.861	0.775	13.920	13.081	12.145	10.057
0.280	13.301	12.507	11.645	9.865	0.780	13.898	13.062	12.130	10.041
0.285	13.312	12.514	11.651	9.869	0.785	13.875	13.043	12.113	10.025
0.290	13.323	12.521	11.657	9.873	0.790	13.851	13.022	12.096	10.008
0.295	13.333	12.528	11.663	9.877	0.795	13.827	13.000	12.078	9.992
0.300	13.344	12.535	11.669	9.881	0.800	13.800	12.978	12.059	9.976
0.305	13.355	12.542	11.675	9.886	0.805	13.773	12.954	12.039	9.960
0.310	13.366	12.550	11.681	9.890	0.810	13.744	12.930	12.018	9.944
0.315	13.376	12.557	11.687	9.895	0.815	13.715	12.904	11.997	9.932
0.320	13.386	12.564	11.693	9.900	0.820	13.684	12.878	11.975	9.916
0.325	13.396	12.571	11.699	9.905	0.825	13.652	12.851	11.951	9.896
0.330	13.406	12.578	11.705	9.910	0.830	13.620	12.823	11.928	9.889
0.335	13.415	12.585	11.712	9.915	0.835	13.586	12.795	11.904	9.880
0.340	13.426	12.593	11.718	9.920	0.840	13.552	12.766	11.880	9.872
0.345	13.435	12.600	11.724	9.926	0.845	13.517	12.737	11.855	9.864
0.350	13.445	12.608	11.731	9.932	0.850	13.481	12.708	11.830	9.857
0.355	13.454	12.615	11.738	9.938	0.855	13.446	12.678	11.805	9.850
0.360	13.464	12.623	11.744	9.944	0.860	13.410	12.648	11.780	9.843
0.365	13.473	12.631	11.751	9.950	0.865	13.373	12.618	11.755	9.837
0.370	13.482	12.639	11.758	9.957	0.870	13.338	12.589	11.730	9.831
0.375	13.491	12.647	11.765	9.963	0.875	13.302	12.559	11.706	9.826
0.380	13.501	12.655	11.772	9.970	0.880	13.266	12.530	11.682	9.821
0.385	13.510	12.663	11.779	9.977	0.885	13.231	12.501	11.658	9.816
0.390	13.519	12.672	11.786	9.984	0.890	13.197	12.473	11.636	9.811
0.395	13.528	12.681	11.793	9.991	0.895	13.163	12.446	11.614	9.807
0.400	13.538	12.689	11.801	9.998	0.900	13.131	12.419	11.593	9.803
0.405	13.547	12.698	11.808	10.006	0.905	13.099	12.393	11.573	9.799

Фаза	В	g'	V	I_c	Фаза	B	g'	V	I_c
0.410	13.557	12.708	11.815	10.011	0.910	13.068	12.369	11.554	9.796
0.415	13.566	12.717	11.823	10.013	0.915	13.040	12.345	11.536	9.793
0.420	13.576	12.726	11.830	10.022	0.920	13.014	12.323	11.519	9.790
0.425	13.585	12.736	11.837	10.029	0.925	12.989	12.302	11.504	9.787
0.430	13.595	12.746	11.845	10.037	0.930	12.966	12.282	11.491	9.785
0.435	13.605	12.755	11.852	10.046	0.935	12.945	12.264	11.478	9.783
0.440	13.615	12.766	11.860	10.055	0.940	12.926	12.247	11.467	9.781
0.445	13.625	12.776	11.868	10.064	0.945	12.909	12.231	11.457	9.779
0.450	13.635	12.786	11.875	10.073	0.950	12.899	12.217	11.449	9.777
0.455	13.645	12.796	11.883	10.083	0.955	12.887	12.205	11.441	9.776
0.460	13.656	12.806	11.891	10.092	0.960	12.877	12.194	11.435	9.775
0.465	13.667	12.817	11.899	10.101	0.965	12.869	12.185	11.430	9.774
0.470	13.678	12.827	11.907	10.111	0.970	12.862	12.177	11.425	9.773
0.475	13.689	12.838	11.916	10.120	0.975	12.857	12.170	11.422	9.772
0.480	13.700	12.848	11.924	10.129	0.980	12.852	12.165	11.419	9.771
0.485	13.712	12.859	11.934	10.139	0.985	12.850	12.161	11.417	9.771
0.490	13.724	12.869	11.943	10.148	0.990	12.848	12.158	11.416	9.771
0.495	13.735	12.880	11.951	10.157	0.995	12.847	12.157	11.415	9.770

Таблица 3. Окончание

СПИСОК ЛИТЕРАТУРЫ

- 1. Альфонсо-Гарсон и др. (J. Alfonso-Garzon, A. Domingo, J.M. Mas-Hesse, and A. Gimenez), Astron. Astrophys. **548**, A79 (2012).
- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- Бердников Л.Н., Письма в Астрон. журн. 20, 285 (1994) [L.N. Berdnikov, Astron. Lett. 20, 232 (1994)].
- Бердников Л.Н., Письма в Астрон. журн. 36, 600 (2010) [L.N. Berdnikov, Astron. Lett. 36, 569 (2010)].
- Бердников Л.Н., Письма в Астрон. журн. 46, 415 (2020) [L.N. Berdnikov, Astron. Lett. 46, 388 (2020)].
- Бердников Л.Н., Белинский А.А., Пастухова Е.Н., Бурлак М.А., Иконникова Н.П., Мишин Е.О., Письма в Астрон. журн. 46, 163 (2020) [L.N. Berdnikov, А.А. Belinskij, Е.N. Pastukhova, M.A. Burlak, N.P. Ikonnikova, and E.O. Mishin, Astron. Lett. 46, 156 (2020)]
- Бердников Л.Н., Князев А.Ю., Сефако Р., Дамбис А.К., Кравцов В.В., Жуйко С.В., Письма в Астрон. журн. 41, 27 (2015) [L.N. Berdnikov, A.Yu. Kniazev, R. Sefako, A.K. Dambis, V.V. Kravtsov, and S.V. Zhuiko, Astron. Lett. 41, 23 (2015)].
- 8. Бердников, Колдвел (L.N. Berdnikov and J.A.R. Caldwell), J. Astron. Data 7, № 3 (2001).

- Бердников Л.Н., Пастухова Е.Н., Астрон. журн. 89, 931 (2012) [L.N. Berdnikov and E.N. Pastukhova, Astron. Rep., 56, 843 (2012)].
- Бердников Л.Н., Пастухова Е.Н., Письма в Астрон. журн. 46, 263 (2020) [L.N. Berdnikov and E.N. Pastukhova, Astron. Lett. 46, 46, 235 (2020)].
- 11. Бердников и др. (L.N. Berdnikov, E.N. Pastukhova, and A.K. Dambis), Astrophys. Space. Sci. **364**:104 (2019).
- Бердников и др. (L.N. Berdnikov, E.N. Pastukhova, N.A. Gorynya, A.V. Zharova, and D.G. Turner), Publ. Astron. Soc. Paciifc 119, 82 (2007).
- Бердников Л.Н., Пастухова Е.Н., Тэрнер Д.Г., Мэйджес Д.Г., Письма в Астрон. журн. 35, 199 (2009) [L.N. Berdnikov, E.N. Pastukhova, D.G. Turner, and D.J. Majaess, Astron. Lett. 35, 175 (2009a)].
- Бердников и др. (L.N. Berdnikov, N.N. Samus, S.V. Antipin, O.V. Ezhkova, E.N. Pastukhova, and D.G. Turner), Publ. Astron. Soc. Pacific 116, 536 (2004).
- 15. Бердников Л.Н., Тэрнер Д.Г., Письма в Астрон. журн. **21**, 803 (1995) [L.N. Berdnikov and D.G. Turner, Astron. Lett. **21**, 717 (1995)].
- 16. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. 16, 205 (1998a).

- 17. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. 16, 291 (1998б).
- 18. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. 18, 679 (2000).
- 19. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. **19**, 689 (2001а).
- 20. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astrophys. J. Suppl. Ser. **137**, 209 (20016).
- 21. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. **23**, 253 (2004a).
- 22. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. 23, 395 (20046).
- 23. Бердников, Тэрнер (L.N. Berdnikov and D.G. Turner), Astron. Astrophys. Trans. **23**, 599 (2004в).
- Бердников Л.Н., Тэрнер Д.Г., Астрон. журн. 87, 436 (2010) [L.N. Berdnikov and D.G. Turner, Astron. Rep. 54, 392 (2010)].
- Бердников Л.Н., Хенден А.А., Тэрнер Д.Г., Пастухова Е.Н., Письма в Астрон. журн. 35, 451 (2009)
 [L.N. Berdnikov, А.А. Henden, D.G. Turner, and E.N. Pastukhova, Astron. Lett. 35, 406 (20096)].
- 26. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).
- 27. Герцшпрунг (E. Hertzsprung), Bull. Astron. Inst. Netherl. 9, 203 (1941).

- 28. Колдвел и др. (J.A.R. Caldwell, I.M. Coulson, J.F. Dean, and L.N. Berdnikov), J. Astron. Data 7, № 4 (2001).
- 29. Ломбард, Коен (F. Lombard and C. Koen), Mon. Not. Roy. Astron. Soc. **263**, 309 (1993).
- 30. Махмуд, Сабадош (F. Mahmoud and L. Szabados), Commis. 27 IAU Inform. Bull. Var. Stars. № 1895, 1 (1980).
- 31. Пел (J.W. Pel), Astron. Astrophys. Suppl. Ser. 24, 413 (1976).
- 32. Поймански (G. Pojmanski), Acta Astron. **52**, 397 (2002).
- 33. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, and L.N. Berdnikov), Publ. Astron. Soc. Pacific 118, 410 (2006).
- 34. Тэрнер, Бердников (D.G. Turner and L.N. Berdnikov), Astron. Astrophys. **423**, 335 (2004).
- Фадеев Ю.А., Письма в Астрон. журн. 40, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. 40, 301 (2014)].
- 36. Ферни (J.D. Fernie), Publ. Astron. Soc. Pacific **102**, 905 (1990).
- 37. Эддингтон, Плакидис (A.S. Eddington and S. Plakidis), MNRAS **90**, 65 (1929).
- Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Dong Subo, et al.), MNRAS 485, 961 (2019).