ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ ПЕРИОДОВ БИМОДАЛЬНОЙ ЦЕФЕИДЫ TU Cas

© 2021 г. Л. Н. Бердников^{1*}, Е. Н. Пастухова²

¹Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

> ²Институт астрономии РАН, Москва, Россия Поступила в редакцию 27.06.2021 г. После доработки 27.06.2021 г.; принята к публикации 29.06.2021 г.

Для обоих периодов бимодальной классической цефеиды TU Cas построены диаграммы O - C, охватывающие временной интервал 117 лет. Диаграммы O - C имеют вид парабол, что позволило впервые определить квадратичные элементы изменения блеска и вычислить скорости эволюционных изменений периодов: $dP_0/dt = -0.039 \ (\pm 0.004) \ c/$ год для основного тона и $dP_1/dt = -0.036 \ (\pm 0.007) \ c/$ год для первого обертона, что согласуется с результатами теоретических расчетов для второго пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность уменьшения периодов.

Ключевые слова: бимодальные цефеиды, изменяемость периодов, эволюция звезд.

DOI: 10.31857/S0320010821070020

ВВЕДЕНИЕ

Каннон (см. Каннон, Пикеринг, 1911) на фотопластинках университета Гарварда открыла быстро меняющуюся переменную звезду HV3307, которая впоследствии получила обозначение TU Cas. Ван Бисброк и Кастелс (1914) классифицировали ее как цефеиду типа δ Сер с периодом 2^d139. Оостерхоф (1957) объяснил быструю переменность взаимодействием основного периода 2^d13930 и периода биений 5^d230, но Симон (1979) показал, что наблюдаемые биения блеска бимодальных цефеид есть результат взаимодействия колебаний с периодами основной моды P_0 и первого обертона P_1 .

Недавно Бердников и др. (2021а) впервые изучили поведение периодов обоих колебаний бимодальной цефеиды: нашли, что скорость эволюционного увеличения периода первого обертона у AS Cas больше, чем основного тона. Этот интересный результат побудил нас исследовать изменения обоих периодов других бимодальных цефеид, и в данной работе мы представляем результаты по TU Cas. В нашей недавней работе (Бердников и др., 2021б) мы описали методику построения кривых блеска для фундаментальной моды и первого обертона, которую будем использовать и в данной работе. В качестве примера на рис. 1 показаны кривые изменения блеска в фильтрах B и V, построенные по ранее опубликованным нашим фотоэлектрическим наблюдениям, а также в фильтре g' по данным каталога ASAS-SN (Яясингхе и др., 2019). Использовались элементы (1) и (2).

В табл. 1 приведены параметры кривых блеска обоих колебаний TU Cas в фильтрах BVg': блеск в максимуме, амплитуда и средний блеск по интенсивности, а коэффициенты Фурье (разложение по косинусам) приведены в табл. 2. Коэффициенты Фурье для P_0 и P_1 попадают, соответственно, в области классических цефеид (DCEP) и малоамплитудных цефеид (DCEPS), которые пульсируют в первом обертоне (Поретти, 1994).

ИЗМЕНЯЕМОСТЬ ПЕРИОДОВ ОБОИХ КОЛЕБАНИЙ TU Cas

Для изучения изменяемости периодов мы применяем общепринятую методику анализа O - Cдиаграмм, а самым точным методом определения остатков O - C является метод Герцшпрунга

КРИВЫЕ ИЗМЕНЕНИЯ БЛЕСКА ОБОИХ КОЛЕБАНИЙ TU Cas

^{*}Электронный адрес: lberdnikov@yandex.ru

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ

Мода колебаний	Фильтр	Блеск в максимуме	Амплитуда	Средний блеск по интенсивности
Основная	В	$7^{\mathrm{m}}_{\cdot}823$	0 ^m 940	8 ^m 355
Основная	V	$7^{\mathrm{m}}_{\cdot}379$	$0^{m}_{\cdot}670$	$7^{\mathrm{m}}_{\cdot}743$
Основная	g'	8 ^m 080	0 ^m 703	8 ^m 494
Первый обертон	В	$8^{m}_{.}159$	0 ^m 380	$8^{m}_{}353$
Первый обертон	V	7 ^m 615	$0^{m}_{}258$	$7^{\mathrm{m}}_{\cdot}745$
Первый обертон	g'	$8^{m}_{\cdot}344$	$0^{m}_{}295$	8 ^m 499

Таблица 1. Параметры кривых блеска обоих колебаний TU Cas в фильтрах B, V и g'

Таблица 2. Коэффициенты Фурье (разложение по косинусам) кривых блеска основного тона ($P_0 = 2^{d}13930$) и первого обертона ($P_1 = 1^{d}51828$) TU Cas в фильтрах B, V и g'

Периол	Фильтр	R_{21}	R_{31}	R_{41}	ϕ_{21}	ϕ_{31}	ϕ_{41}			
пернод	4 minih			Оши	Ошибка					
P_0	В	0.32017	0.14222	0.06304	4.02628	1.88632	6.12836			
		0.00172	0.00172	0.00172	0.00639	0.01317	0.02819			
P_0	V	0.34353	0.12499	0.02182	4.10486	2.18487	1.01441			
		0.00030	0.00030	0.00030	0.00105	0.00254	0.01370			
P_0	g'	0.29171	0.13328	0.03826	3.78497	1.68129	6.11682			
		0.00001	0.00001	0.00001	0.00004	0.00007	0.00024			
P_1	В	0.13729	0.00626	0.00002	4.13961	3.13834	3.44973			
		0.00002	0.00002	0.00002	0.00012	0.00249	0.99159			
P_1	V	0.12767	0.00538	0.00004	4.39076	5.08798	3.93143			
		0.00002	0.00002	0.00002	0.00017	0.00395	0.56139			
P_1	g'	0.09468	0.00001	0.00002	3.66371	2.24076	4.43578			
		0.00002	0.00002	0.00002	0.00021	3.60344	0.78511			

Таблица 3. Наблюдательный материал суммарного блеска TU Cas

Источник данных	Число наблюдений	Тип наблюдений	Интервал JD
Данная работа	154	Φ отографические, PG	2416708-2436185
Литература	945	Φ отографические, PG	2425164-2434598
Литература	1509	Визуальные, VIS	2419198-2438089
Литература	3650	Φ отоэлектрические, BV	2433272-2451041
AAVSO	5957	Фотоэлектрические и ПЗС, BV	2436742-2458845
ASAS-SN	1416	$\Pi 3C, Vg'$	2457008-2459257
Hipparcos	239	Φ отоэлектрические, V	2447867 - 2449039

Рис. 1. Кривые изменения блеска обоих колебаний TU Cas в фильтрах *B*, *V* и *g*'.

(1919), машинная реализация которого описана в работе Бердникова (1992). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

Для изучения периодов TU Cas мы собрали опубликованные визуальные, фотографические, фотоэлектрические и ПЗС-наблюдения. Кроме того, мы сделали глазомерные оценки блеска на фотографических пластинках ГАИШ (Москва), а также использовали фотометрию из каталогов Hipparcos (EKA, 1997), ASAS-SN (Яясингхе и др., 2019) и AAVSO (Кафка, 2021).

Сведения о количестве использованных наблюдений приведены в табл. З. Самая старая фотопластинка с TU Cas была получена в 1904 г., а последние ПЗС-наблюдения были сделаны в 2021 г. Следовательно, наши данные охватывают временной интервал 117 лет.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых TU Cas приведены в табл. 4 для основного тона и в табл. 5 для первого обертона. В первом и втором столбцах этих таблиц даны моменты максимального блеска и ошибки их определения, в третьем — тип используемых наблюдений, в четвертом и пятом — номер эпохи E и значение остатка O - C, а в шестом и седьмом — число наблюдений N и источник данных. Данные табл. 4 и 5 изображены на O - C диаграммах (рис. 2 и 3 соответственно): квадратики — фотографичиские наблюдения, пустые кружки — визуальные наблюдения; маленькие заполненные кружки — остальные наблюдения, вертикальные черточки указывают пределы ошибок определения остатков O - C.

Диаграммы *О* – *С* имеют вид парабол. По моментам максимального блеска из табл. 4 получены квадратичные элементы изменения блеска для ос-

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ

Таблица 4. Моменты максимума блеска TU Cas: основной тон

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2417370.3226	0.0324	PG	-9774	-0.0528	22	Данная работа
2419325.6608	0.0073	VIS	-8860	-0.0733	148	Ван Бисброк, Кастелс (1914)
2425073.9963	0.0033	VIS	-6173	-0.0242	519	Рыбка (1929)
2425232.2249	0.0053	PG	-6099	-0.0606	191	Загар (1928)
2425424.8210	0.0062	VIS	-6009	-0.0440	199	Кукаркин (1940)
2425619.4416	0.0079	VIS	-5918	-0.0992	173	Савье (1929)
2425726.4777	0.0060	VIS	-5868	-0.0279	200	3arap (1931)
2426242.0228	0.0088	VIS	-5627	-0.0529	117	Кукаркин (1940)
2426308.3342	0.0030	PG	-5596	-0.0168	239	Эренфойхт (1934)
2429880.9205	0.0189	PG	-3926	-0.0537	29	Данная работа
2430719.5781	0.0177	PG	-3534	0.0002	49	Данная работа
2430939.8995	0.0076	PG	-3431	-0.0259	116	Васильяновская (1955)
2431733.5940	0.0059	PG	-3060	-0.0099	175	Васильяновская (1955)
2433293.1667	0.0088	PG	-2331	0.0166	59	Васильяновская (1955)
2433509.1885	0.0026	V	-2230	-0.0733	354	Оостерхоф (1957)
2434272.9761	0.0165	PG	-1873	0.0286	54	Данная работа
2435194.9933	0.0016	V	-1442	-0.0331	148	Воли, Эгген (1957)
2436024.9992	0.0034	В	-1054	-0.0310	55	Банер, Мавридис (1971)
2436027.1880	0.0062	V	-1053	-0.0243	63	Банер, Мавридис (1971)
2436797.2963	0.0077	В	-693	-0.0196	43	Оостерхоф (1960)
2436797.3294	0.0059	V	-693	-0.0292	45	Оостерхоф (1960)
2436799.4237	0.0092	В	-692	-0.0315	71	AAVSO
2436799.4570	0.0055	V	-692	-0.0409	71	AAVSO
2436801.5280	0.0073	В	-691	-0.0665	26	Веавер и др. (1961)
2436801.5793	0.0066	V	-691	-0.0579	26	Веавер и др. (1961)
2436814.4504	0.0023	V	-685	-0.0226	324	Кокито, Мазани (1960)
2437787.8174	0.0061	VIS	-230	-0.0350	114	Лозен (1964)
2438228.4764	0.0143	В	-24	-0.0280	13	Кви, Браун (1967)
2438228.5318	0.0209	V	-24	-0.0154	14	Кви, Браун (1967)
2438510.9113	0.0019	V	108	-0.0229	390	Васильяновская (1966)
2439105.5488	0.0064	В	386	-0.0667	31	Таказе (1969)
2439105.6320	0.0088	V	386	-0.0262	31	Таказе (1969)
2440620.3172	0.0148	V	1094	0.0378	33	Фельтц, Мак Намара (1980)

Таблица 4. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2442496.4415	0.0013	В	1971	0.0430	181	Гисекинг, Радеке (1978)
2442507.1719	0.0027	V	1976	0.0342	216	Гисекинг, Радеке (1978)
2443264.4514	0.0021	V	2330	0.0031	60	Нива, Шмидт (1979)
2443270.8353	0.0044	В	2333	0.0119	58	Нива, Шмидт (1979)
2443735.0786	0.0039	В	2550	0.0281	48	Хенден (1980)
2443737.2957	0.0051	V	2551	0.0631	49	Хенден (1980)
2444438.9394	0.0049	V	2879	0.0180	57	Мофет, Бэрнс (1984)
244445.3136	0.0048	В	2882	0.0170	51	Мофет, Бэрнс (1984)
2447130.1057	0.0024	В	4137	-0.0064	135	Мэтьюз и др. (1992)
2447130.1398	0.0029	V	4137	-0.0150	141	Мэтьюз и др. (1992)
2448013.7071	0.0019	V	4550	0.0233	107	Hipparcos
2448430.8479	0.0027	V	4745	0.0015	132	Hipparcos
2448805.2023	0.0431	V	4920	-0.0208	8	Бердников и др. (1993)
2448880.0782	0.0013	В	4955	0.0225	263	Бердников, Ибрагимов (1994а)
2448880.1260	0.0010	V	4955	0.0276	262	Бердников, Ибрагимов (1994а)
2449226.6401	0.0017	В	5117	0.0186	99	Бердников, Ибрагимов (1994б)
2449226.6803	0.0021	V	5117	0.0160	99	Бердников, Ибрагимов (1994б)
2449628.8103	0.0042	В	5305	0.0013	121	Бердников и др. (1995)
2449628.8539	0.0035	V	5305	0.0021	121	Бердников и др. (1995)
2450798.9736	0.0121	V	5852	-0.0726	42	Игнатова, Возякова (2000)
2450798.9774	0.0060	В	5852	-0.0261	42	Игнатова, Возякова (2000)
2453426.0677	0.0050	V	7080	-0.0332	62	AAVSO
2453699.8156	0.0082	В	7208	-0.0723	29	AAVSO
2453712.6418	0.0024	V	7214	-0.1247	2106	AAVSO
2453753.3123	0.0006	В	7233	-0.0579	2019	AAVSO
2453753.3609	0.0020	V	7233	-0.0521	2049	AAVSO
2453778.9867	0.0104	В	7245	-0.0552	26	AAVSO
2454072.1047	0.0027	V	7382	-0.0634	97	AAVSO
2454174.7351	0.0121	V	7430	-0.1192	256	AAVSO
2454472.1758	0.0038	V	7569	-0.0405	54	AAVSO
2454814.4248	0.0017	V	7729	-0.0787	94	AAVSO
2455139.5510	0.0041	В	7881	-0.0827	72	AAVSO
2455139.5958	0.0041	V	7881	-0.0806	72	AAVSO

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2455546.0391	0.0064	V	8071	-0.1034	40	AAVSO
2455982.4569	0.0055	V	8275	-0.1018	46	AAVSO
2456237.0172	0.0071	V	8394	-0.1177	19	AAVSO
2456722.6371	0.0031	V	8621	-0.1178	73	AAVSO
2457253.1657	0.0044	V	8869	-0.1344	144	ASAS-SN
2457659.6350	0.0073	V	9059	-0.1312	152	ASAS-SN
2458010.4986	0.0073	V	9223	-0.1121	157	ASAS-SN
2458181.5970	0.0011	V	9303	-0.1573	829	AAVSO
2458359.2111	0.0088	V	9386	-0.1047	107	ASAS-SN
2458414.8244	0.0050	g'	9412	-0.1047	154	ASAS-SN
2458442.5519	0.0035	В	9425	-0.1537	78	AAVSO
2458851.2059	0.0038	g'	9616	-0.1393	237	ASAS-SN
2458936.7787	0.0022	g'	9656	-0.1383	354	ASAS-SN
2459189.2158	0.0080	g'	9774	-0.1381	111	ASAS-SN

Таблица 4. Окончание

Рис. 2. Диаграмма *О* – *С* для TU Cas относительно линейных (вверху) и квадратичных (внизу) элементов основного тона (1). Линия — парабола, соответствующая элементам (1).

Рис. 3. Диаграмма *О* – *С* для TU Саз относительно линейных (вверху) и квадратичных (внизу) элементов первого обертона (2). Линия — парабола, соответствующая элементам (2).

новного тона:

$$MaxHJD = 2438279.8903 (\pm 0.0056) + (1) + 2!139295285 (\pm 0.00000088) E - - 0.130557 \times 10^{-8} (\pm 0.146 \times 10^{-9}) E^2,$$

и из табл. 5 — для первого обертона:

$$MaxHJD = 2438280.8427 (\pm 0.0128) + (2)$$

+ 1. d 518281451 (±0.0000014) E -- 0.854888 × 10⁻⁹ (±0.164 × 10⁻⁹) E^{2} ,

линейная часть которых использована для вычислений остатков O - C в пятых столбцах табл. 4 и 5. Элементы (1) и (2) использовались для проведения парабол на верхней части рис. 2 и 3, на нижней части которых показаны отклонения от этих парабол.

Из табл. 4 следует, что максимумы блеска основного тона в фильтре B и g' наступают раньше, чем в фильтре V, на 0⁴0428 и 0⁴0085 соответственно. Согласно табл. 5, максимумы первого обертона в фильтре B наступают позже, а в фильтре g' раньше, чем в фильтре V, на 0.40104 и 0.40769 соответственно. Эти поправки учитывались при построении рис. 2 и 3 и определении элементов (1) и (2), которые, таким образом, относятся к системе V.

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для этого мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из табл. 4 и 5: $\Delta(O-C)_i = (O-C)_{i+1} - (O-C)_i$, и построили графики зависимости $P'_i = \Delta(O-C)_i/(E_{i+1}-E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для основного тона (рис. 4) и первого обертона (рис. 5). Величины P'_i , которые имеют смысл периода в интервале эпох $E_i \div E_{i+1}$, соответствуют поведению остатков O-C на рис. 3 и 4, т.е. обнаруженные изменения периодов являются реальными.

Квадратичные члены элементов (1) и (2) позволяют вычислить скорости эволюционного уменьшения периода для основного тона $dP_0/dt =$

ПОИСК ЭВОЛЮЦИОННЫХ ИЗМЕНЕНИЙ

Таблица 5. Моменты максимума блеска TU Cas: первый обертон

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2417371.1564	0.0325	PG	-13772	0.0754	22	Данная работа
2419325.0044	0.0114	VIS	-12485	-0.0944	145	Ван Бисброк, Кастелс (1914)
2425073.2718	0.0071	VIS	-8699	-0.0406	518	Рыбка (1929)
2425232.6939	0.0081	PG	-8594	-0.0484	191	Загар (1928)
2425420.9577	0.0121	VIS	-8470	-0.0411	196	Кукаркин (1940)
2425618.2620	0.0088	VIS	-8340	-0.1134	173	Савье (1929)
2425721.5129	0.0126	VIS	-8272	-0.1056	204	Загар (1931)
2426221.1215	0.0162	VIS	-7943	-0.0116	123	Кукаркин (1940)
2426309.1209	0.0067	PG	-7885	-0.0830	243	Эренфойхт (1934)
2429880.0646	0.0162	PG	-5533	-0.1373	30	Данная работа
2431739.9947	0.0087	PG	-4308	-0.1020	179	Васильяновская (1955)
2432104.3138	0.0235	V	-4068	-0.1600	26	Гордон, Крон (1947)
2433507.2520	0.0052	V	-3144	-0.1138	342	Оостерхоф (1957)
2435210.8338	0.0019	V	-2022	-0.0438	176	Воли, Эгген (1957)
2436011.0165	0.0075	В	-1495	-0.0059	58	Банер, Мавридис (1971)
2436024.6269	0.0133	V	-1486	-0.0496	62	Банер, Мавридис (1971)
2436795.9011	0.0101	В	-978	-0.0728	41	Оостерхоф (1960)
2436797.4241	0.0095	V	-977	-0.0576	45	Оостерхоф (1960)
2436798.8868	0.0105	В	-976	-0.1236	68	AAVSO
2436798.9313	0.0090	V	-976	-0.0687	71	AAVSO
2436801.8925	0.0100	V	-974	-0.1441	26	Веавер и др. (1961)
2436801.9040	0.0097	В	-974	-0.1430	26	Веавер и др. (1961)
2436814.1745	0.0051	V	-966	-0.0083	324	Кокито, Мазани (1960)
2437787.3857	0.0111	VIS	-325	-0.0156	114	Лозен (1964)
2438227.6424	0.0255	V	-35	-0.0604	14	Кви, Браун (1967)
2438227.7175	0.0401	В	-35	0.0042	11	Кви, Браун (1967)
2438510.0968	0.0029	V	151	-0.0064	385	Васильяновская (1966)
2439105.2726	0.0102	В	543	-0.0073	31	Таказе (1969)
2439105.3063	0.0099	V	543	0.0367	31	Таказе (1969)
2440626.7540	0.0132	В	1545	0.1560	34	Фельтц, Мак Намара (1980)
2440634.2097	0.0138	V	1550	0.0308	32	Фельтц, Мак Намара (1980)
2442477.4392	0.0021	В	2764	0.0562	225	Гисекинг, Радеке (1978)
2442501.7704	0.0022	V	2780	0.1053	235	Гисекинг, Радеке (1978)

Таблица 5. Продолжение

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2443263.8717	0.0042	V	3282	0.0293	60	Нива, Шмидт (1979)
2443269.9429	0.0051	В	3286	0.0169	58	Нива, Шмидт (1979)
2443737.5277	0.0052	В	3594	-0.0289	49	Хенден (1980)
2443737.5533	0.0099	V	3594	0.0071	49	Хенден (1980)
2444437.5510	0.0107	В	4055	0.0666	56	Мофет, Бэрнс (1984)
2444439.0239	0.0058	V	4056	0.0316	57	Мофет, Бэрнс (1984)
2447131.0596	0.0040	V	5829	0.1543	141	Мэтьюз и др. (1992)
2447131.0612	0.0047	В	5829	0.1455	141	Мэтьюз и др. (1992)
2448013.0614	0.0049	V	6410	0.0346	107	Hipparcos
2448430.6025	0.0039	V	6685	0.0483	132	Hipparcos
2448804.1197	0.0477	V	6931	0.0682	7	Бердников и др. (1993)
2448881.5151	0.0013	В	6982	0.0209	260	Бердников, Ибрагимов (1994а)
2448881.5333	0.0022	V	6982	0.0495	262	Бердников, Ибрагимов (1994а)
2449226.1474	0.0034	В	7209	0.0033	99	Бердников, Ибрагимов (1994б)
2449226.1678	0.0048	V	7209	0.0341	99	Бердников, Ибрагимов (1994б)
2449628.4547	0.0041	В	7474	-0.0340	121	Бердников и др. (1995)
2449628.4696	0.0021	V	7474	-0.0087	121	Бердников и др. (1995)
2450794.4880	0.0149	V	8242	-0.0304	41	Игнатова, Возякова (2000)
2450799.0450	0.0087	В	8245	-0.0386	42	Игнатова, Возякова (2000)
2453427.1502	0.0101	V	9976	-0.0682	62	AAVSO
2453697.2952	0.0022	V	10154	-0.1774	768	AAVSO
2453712.5073	0.0004	V	10164	-0.1481	2105	AAVSO
2453753.5537	0.0008	В	10191	-0.1057	2005	AAVSO
2453753.5967	0.0043	V	10191	-0.0522	2036	AAVSO
2454070.8833	0.0056	V	10400	-0.0865	97	AAVSO
2454172.5397	0.0229	V	10467	-0.1549	237	AAVSO
2454473.2358	0.0080	V	10665	-0.0786	54	AAVSO
2454813.3066	0.0035	V	10889	-0.1028	94	AAVSO
2455139.7405	0.0068	V	11104	-0.0994	72	AAVSO
2455139.7434	0.0072	В	11104	-0.1069	72	AAVSO
2455546.5740	0.0117	V	11372	-0.1654	40	AAVSO
2455983.8921	0.0102	V	11660	-0.1123	46	AAVSO
2456237.3606	0.0087	V	11827	-0.1969	19	AAVSO

Таблица 5. Окончание

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2456723.2328	0.0058	V	12147	-0.1747	73	AAVSO
2457251.6467	0.0082	V	12495	-0.1228	145	ASAS-SN
2457659.9356	0.0139	V	12764	-0.2515	157	ASAS-SN
2458010.7900	0.0114	V	12995	-0.1202	158	ASAS-SN
2458182.2696	0.0015	V	13108	-0.2063	829	AAVSO
2458359.9636	0.0161	V	13225	-0.1512	104	ASAS-SN
2458416.0476	0.0070	g'	13262	-0.1783	154	ASAS-SN
2458441.8587	0.0084	В	13279	-0.2539	78	AAVSO
2458851.8765	0.0068	g'	13549	-0.0962	236	ASAS-SN
2458927.7362	0.0040	g'	13599	-0.1505	352	ASAS-SN
2459188.7867	0.0058	g'	13771	-0.2445	111	ASAS-SN

Рис. 4. Зависимость $P_{0i} = [(O - C)_{i+1} - (O - C)_i]/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для основного тона. Линия соответствует поведению остатков O - C на рис. 2.

= -0.039 (±0.004) с/год и первого обертона $dP_1/dt = -0.036$ (±0.007) с/год.

Значение \dot{P}_0 соответствует теоретическим расчетам для второго пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014), а величина \dot{P}_1 соответствует положению малоамплитудных цефеид (DCEPS), которые пульсируют в первом обертоне (см. также Бердников и др., 2000).

Для TU Cas величины \dot{P}_0 и \dot{P}_1 совпадают в пределах ошибок, что отличается от результатов исследования периодов AS Cas (Бердников и др.,

2021а), где период обертонных пульсаций меняется быстрее. Чтобы понять причины таких различий, мы намерены изучить периоды других бимодальных цефеид.

Следует отметить, что полученные здесь результаты основаны на конкретных стандартных кривых. Поэтому мы приводим их в табл. 6 и 7 с тем, чтобы их можно было использовать в будущих исследованиях, а также для установления связи с нашими данными, если будут использоваться другие стандартные кривые. Таблицы 6 и 7 содержат звездные величины TU Cas для основного тона и

БЕРДНИКОВ, ПАСТУХОВА

Фаза	В	V	g'	Фаза	В	V	g'	Фаза	В	V	g'
0.000	7.823	7.379	8.080	0.335	8.465	7.816	8.609	0.670	8.763	8.038	8.773
0.005	7.824	7.379	8.080	0.340	8.474	7.821	8.616	0.675	8.763	8.040	8.773
0.010	7.827	7.381	8.082	0.345	8.482	7.827	8.622	0.680	8.763	8.043	8.774
0.015	7.829	7.383	8.084	0.350	8.491	7.832	8.629	0.685	8.762	8.045	8.774
0.020	7.834	7.385	8.087	0.355	8.499	7.838	8.635	0.690	8.762	8.046	8.775
0.025	7.840	7.388	8.092	0.360	8.507	7.843	8.641	0.695	8.762	8.047	8.775
0.030	7.847	7.392	8.096	0.365	8.516	7.848	8.648	0.700	8.761	8.048	8.775
0.035	7.855	7.396	8.102	0.370	8.524	7.854	8.653	0.705	8.760	8.049	8.775
0.040	7.863	7.401	8.108	0.375	8.532	7.859	8.660	0.710	8.759	8.049	8.775
0.045	7.872	7.406	8.115	0.380	8.540	7.864	8.665	0.715	8.758	8.048	8.774
0.050	7.882	7.412	8.122	0.385	8.545	7.870	8.671	0.720	8.757	8.047	8.774
0.055	7.891	7.419	8.130	0.390	8.553	7.875	8.677	0.725	8.755	8.045	8.772
0.060	7.902	7.425	8.138	0.395	8.560	7.880	8.682	0.730	8.753	8.042	8.771
0.065	7.912	7.432	8.146	0.400	8.568	7.885	8.688	0.735	8.751	8.038	8.769
0.070	7.923	7.440	8.155	0.405	8.575	7.890	8.693	0.740	8.748	8.034	8.766
0.075	7.934	7.447	8.164	0.410	8.582	7.895	8.698	0.745	8.745	8.029	8.762
0.080	7.945	7.455	8.173	0.415	8.589	7.899	8.704	0.750	8.742	8.024	8.759
0.085	7.956	7.463	8.182	0.420	8.594	7.904	8.709	0.755	8.738	8.017	8.754
0.090	7.967	7.472	8.192	0.425	8.601	7.909	8.714	0.760	8.733	8.009	8.748
0.095	7.978	7.480	8.202	0.430	8.607	7.913	8.719	0.765	8.728	8.001	8.742
0.100	7.990	7.489	8.211	0.435	8.614	7.918	8.724	0.770	8.722	7.991	8.735
0.105	8.001	7.497	8.221	0.440	8.620	7.922	8.728	0.775	8.715	7.981	8.727
0.110	8.012	7.506	8.231	0.445	8.626	7.926	8.733	0.780	8.707	7.970	8.718
0.115	8.023	7.515	8.240	0.450	8.632	7.930	8.737	0.785	8.698	7.958	8.708
0.120	8.034	7.524	8.250	0.455	8.638	7.934	8.741	0.790	8.689	7.944	8.697
0.125	8.045	7.533	8.259	0.460	8.644	7.937	8.746	0.795	8.678	7.931	8.686
0.130	8.056	7.542	8.269	0.465	8.650	7.941	8.750	0.800	8.667	7.916	8.673
0.135	8.067	7.550	8.278	0.470	8.655	7.944	8.753	0.805	8.654	7.900	8.660
0.140	8.078	7.559	8.287	0.475	8.661	7.947	8.757	0.810	8.640	7.884	8.645
0.145	8.089	7.568	8.297	0.480	8.667	7.950	8.760	0.815	8.627	7.867	8.630
0.150	8.100	7.576	8.306	0.485	8.672	7.953	8.764	0.820	8.611	7.849	8.614
0.155	8.110	7.585	8.315	0.490	8.677	7.956	8.767	0.825	8.592	7.831	8.597
0.160	8.121	7.593	8.324	0.495	8.682	7.958	8.769	0.830	8.573	7.813	8.579

Таблица 6. Стандартные кривые основного тона TU Cas в фильтрах B, V и g'

Таблица 6. Окончание

Фаза	В	V	g'	Фаза	В	V	g'	Фаза	В	V	g'
0.165	8.132	7.601	8.333	0.500	8.688	7.961	8.772	0.835	8.552	7.794	8.561
0.170	8.143	7.609	8.341	0.505	8.693	7.963	8.774	0.840	8.530	7.775	8.542
0.175	8.154	7.617	8.350	0.510	8.698	7.965	8.776	0.845	8.506	7.756	8.522
0.180	8.164	7.625	8.359	0.515	8.702	7.968	8.778	0.850	8.481	7.736	8.502
0.185	8.175	7.633	8.368	0.520	8.707	7.970	8.779	0.855	8.454	7.717	8.482
0.190	8.186	7.640	8.376	0.525	8.711	7.971	8.781	0.860	8.427	7.698	8.461
0.195	8.197	7.648	8.385	0.530	8.715	7.973	8.782	0.865	8.398	7.678	8.440
0.200	8.207	7.655	8.393	0.535	8.720	7.975	8.782	0.870	8.367	7.659	8.419
0.205	8.218	7.662	8.402	0.540	8.724	7.977	8.783	0.875	8.336	7.640	8.398
0.210	8.228	7.669	8.410	0.545	8.727	7.979	8.783	0.880	8.304	7.621	8.377
0.215	8.239	7.676	8.419	0.550	8.731	7.980	8.783	0.885	8.271	7.602	8.356
0.220	8.249	7.682	8.427	0.555	8.734	7.982	8.783	0.890	8.237	7.584	8.335
0.225	8.260	7.689	8.436	0.560	8.738	7.984	8.783	0.895	8.202	7.567	8.314
0.230	8.270	7.695	8.444	0.565	8.741	7.985	8.783	0.900	8.167	7.550	8.294
0.235	8.280	7.701	8.453	0.570	8.744	7.987	8.782	0.905	8.132	7.534	8.275
0.240	8.290	7.708	8.461	0.575	8.746	7.989	8.781	0.910	8.095	7.518	8.256
0.245	8.300	7.714	8.470	0.580	8.749	7.991	8.781	0.915	8.079	7.503	8.238
0.250	8.310	7.720	8.478	0.585	8.751	7.993	8.780	0.920	8.052	7.489	8.220
0.255	8.320	7.726	8.486	0.590	8.753	7.995	8.779	0.925	8.024	7.476	8.204
0.260	8.330	7.732	8.495	0.595	8.755	7.997	8.778	0.930	7.998	7.463	8.188
0.265	8.340	7.738	8.503	0.600	8.757	7.999	8.777	0.935	7.974	7.451	8.173
0.270	8.349	7.743	8.511	0.605	8.759	8.002	8.776	0.940	7.951	7.440	8.159
0.275	8.358	7.749	8.519	0.610	8.760	8.004	8.775	0.945	7.930	7.430	8.146
0.280	8.368	7.755	8.527	0.615	8.760	8.007	8.774	0.950	7.911	7.421	8.135
0.285	8.377	7.760	8.535	0.620	8.760	8.010	8.774	0.955	7.894	7.413	8.124
0.290	8.386	7.766	8.543	0.625	8.761	8.012	8.773	0.960	7.878	7.406	8.115
0.295	8.395	7.772	8.551	0.630	8.762	8.015	8.772	0.965	7.865	7.399	8.106
0.300	8.404	7.777	8.558	0.635	8.762	8.018	8.772	0.970	7.853	7.394	8.099
0.305	8.413	7.783	8.566	0.640	8.762	8.021	8.772	0.975	7.844	7.389	8.093
0.310	8.422	7.788	8.573	0.645	8.763	8.024	8.772	0.980	7.836	7.386	8.088
0.315	8.431	7.794	8.581	0.650	8.763	8.027	8.772	0.985	7.830	7.383	8.085
0.320	8.439	7.799	8.588	0.655	8.763	8.030	8.772	0.990	7.826	7.381	8.082
0.325	8.448	7.805	8.595	0.660	8.763	8.033	8.772	0.995	7.824	7.379	8.080
0.330	8.457	7.810	8.602	0.665	8.763	8.035	8.772				

БЕРДНИКОВ, ПАСТУХОВА

Фаза	В	V	g'	Фаза	В	V	g'	Фаза	В	V	g'
0.000	8.159	7.615	8.344	0.335	8.423	7.786	8.571	0.670	8.502	7.844	8.594
0.005	8.159	7.615	8.344	0.340	8.427	7.788	8.574	0.675	8.498	7.841	8.591
0.010	8.159	7.615	8.344	0.345	8.431	7.791	8.577	0.680	8.494	7.837	8.588
0.015	8.160	7.616	8.345	0.350	8.435	7.794	8.580	0.685	8.490	7.834	8.584
0.020	8.161	7.616	8.346	0.355	8.439	7.796	8.583	0.690	8.485	7.831	8.580
0.025	8.162	7.617	8.347	0.360	8.442	7.799	8.586	0.695	8.480	7.827	8.576
0.030	8.163	7.618	8.347	0.365	8.446	7.802	8.589	0.700	8.475	7.823	8.572
0.035	8.165	7.619	8.349	0.370	8.450	7.804	8.592	0.705	8.470	7.819	8.568
0.040	8.167	7.620	8.350	0.375	8.453	7.807	8.595	0.710	8.464	7.815	8.564
0.045	8.168	7.621	8.352	0.380	8.457	7.809	8.597	0.715	8.459	7.812	8.559
0.050	8.171	7.623	8.354	0.385	8.460	7.812	8.600	0.720	8.453	7.807	8.555
0.055	8.173	7.624	8.356	0.390	8.463	7.814	8.602	0.725	8.447	7.803	8.551
0.060	8.176	7.626	8.358	0.395	8.467	7.817	8.605	0.730	8.441	7.799	8.546
0.065	8.178	7.628	8.360	0.400	8.470	7.819	8.607	0.735	8.434	7.794	8.541
0.070	8.181	7.630	8.362	0.405	8.473	7.822	8.609	0.740	8.428	7.790	8.537
0.075	8.184	7.632	8.365	0.410	8.476	7.824	8.612	0.745	8.421	7.785	8.532
0.080	8.188	7.634	8.368	0.415	8.479	7.826	8.614	0.750	8.414	7.781	8.527
0.085	8.191	7.636	8.370	0.420	8.482	7.829	8.616	0.755	8.408	7.776	8.522
0.090	8.195	7.638	8.373	0.425	8.485	7.831	8.618	0.760	8.401	7.771	8.517
0.095	8.199	7.641	8.377	0.430	8.488	7.834	8.620	0.765	8.394	7.766	8.512
0.100	8.203	7.643	8.380	0.435	8.491	7.836	8.621	0.770	8.386	7.762	8.507
0.105	8.207	7.646	8.383	0.440	8.494	7.838	8.623	0.775	8.379	7.757	8.502
0.110	8.211	7.648	8.387	0.445	8.497	7.840	8.625	0.780	8.372	7.752	8.496
0.115	8.215	7.651	8.390	0.450	8.499	7.843	8.626	0.785	8.365	7.747	8.491
0.120	8.219	7.654	8.394	0.455	8.502	7.845	8.628	0.790	8.357	7.742	8.486
0.125	8.224	7.657	8.398	0.460	8.504	7.847	8.629	0.795	8.350	7.737	8.481
0.130	8.228	7.660	8.402	0.465	8.507	7.849	8.630	0.800	8.342	7.732	8.476
0.135	8.233	7.663	8.406	0.470	8.509	7.851	8.632	0.805	8.335	7.727	8.470
0.140	8.238	7.666	8.410	0.475	8.512	7.853	8.633	0.810	8.328	7.723	8.465
0.145	8.243	7.669	8.414	0.480	8.514	7.855	8.634	0.815	8.320	7.718	8.460
0.150	8.247	7.672	8.418	0.485	8.516	7.856	8.635	0.820	8.313	7.713	8.455
0.155	8.252	7.675	8.422	0.490	8.518	7.858	8.636	0.825	8.306	7.708	8.450
0.160	8.257	7.678	8.427	0.495	8.521	7.860	8.637	0.830	8.298	7.704	8.445

Таблица 7. Стандартные кривые первого обертона TU Cas в фильтрах *B*, *V* и *g*'

Таблица 7. Окончание

Фаза	В	V	g'	Фаза	В	V	g'	Фаза	В	V	g'
0.165	8.262	7.682	8.431	0.500	8.522	7.861	8.637	0.835	8.291	7.699	8.439
0.170	8.267	7.685	8.435	0.505	8.524	7.863	8.638	0.840	8.284	7.695	8.435
0.175	8.272	7.688	8.440	0.510	8.526	7.864	8.638	0.845	8.277	7.690	8.430
0.180	8.277	7.691	8.444	0.515	8.528	7.866	8.639	0.850	8.270	7.686	8.425
0.185	8.283	7.695	8.448	0.520	8.529	7.867	8.639	0.855	8.264	7.681	8.420
0.190	8.288	7.698	8.453	0.525	8.531	7.868	8.639	0.860	8.257	7.677	8.415
0.195	8.293	7.701	8.457	0.530	8.532	7.869	8.639	0.865	8.250	7.673	8.411
0.200	8.298	7.704	8.462	0.535	8.533	7.870	8.639	0.870	8.244	7.669	8.406
0.205	8.303	7.708	8.466	0.540	8.535	7.871	8.639	0.875	8.238	7.665	8.402
0.210	8.308	7.711	8.471	0.545	8.535	7.872	8.639	0.880	8.232	7.662	8.398
0.215	8.313	7.714	8.475	0.550	8.536	7.872	8.639	0.885	8.226	7.658	8.394
0.220	8.318	7.717	8.480	0.555	8.537	7.873	8.638	0.890	8.221	7.654	8.390
0.225	8.323	7.721	8.484	0.560	8.538	7.873	8.638	0.895	8.215	7.651	8.386
0.230	8.328	7.724	8.489	0.565	8.538	7.873	8.637	0.900	8.210	7.648	8.382
0.235	8.333	7.727	8.493	0.570	8.538	7.873	8.636	0.905	8.205	7.645	8.379
0.240	8.338	7.730	8.498	0.575	8.538	7.873	8.635	0.910	8.201	7.642	8.375
0.245	8.343	7.733	8.502	0.580	8.538	7.873	8.634	0.915	8.196	7.639	8.372
0.250	8.348	7.736	8.506	0.585	8.538	7.873	8.633	0.920	8.192	7.636	8.369
0.255	8.353	7.740	8.510	0.590	8.538	7.872	8.632	0.925	8.188	7.634	8.366
0.260	8.358	7.743	8.515	0.595	8.537	7.872	8.631	0.930	8.184	7.631	8.363
0.265	8.363	7.746	8.519	0.600	8.536	7.871	8.629	0.935	8.181	7.629	8.361
0.270	8.367	7.749	8.523	0.605	8.535	7.870	8.627	0.940	8.177	7.627	8.358
0.275	8.372	7.752	8.527	0.610	8.534	7.869	8.626	0.945	8.174	7.625	8.356
0.280	8.377	7.755	8.531	0.615	8.532	7.867	8.624	0.950	8.172	7.623	8.354
0.285	8.381	7.758	8.535	0.620	8.531	7.866	8.622	0.955	8.169	7.622	8.352
0.290	8.386	7.760	8.539	0.625	8.529	7.865	8.620	0.960	8.167	7.620	8.350
0.295	8.390	7.763	8.543	0.630	8.527	7.863	8.617	0.965	8.165	7.619	8.349
0.300	8.394	7.766	8.546	0.635	8.524	7.861	8.615	0.970	8.163	7.618	8.348
0.305	8.399	7.769	8.550	0.640	8.522	7.859	8.613	0.975	8.162	7.617	8.347
0.310	8.403	7.772	8.554	0.645	8.519	7.857	8.610	0.980	8.161	7.616	8.346
0.315	8.407	7.775	8.557	0.650	8.516	7.854	8.607	0.985	8.160	7.616	8.345
0.320	8.411	7.778	8.561	0.655	8.513	7.852	8.604	0.990	8.159	7.615	8.344
0.325	8.415	7.780	8.564	0.660	8.510	7.849	8.601	0.995	8.159	7.615	8.344
0.330	8.420	7.783	8.568	0.665	8.506	7.847	8.598				

Рис. 5. Зависимость $P_{1i} = [(O - C)_{i+1} - (O - C)_i]/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для первого обертона. Линия соответствует поведению остатков O - C на рис. 3.

Рис. 6. Стандартные кривые основного тона TU Саз в ϕ ильтрах *B*, *V* и *g*'.

первого обертона, соответственно, для фаз от 0 до 0.995 с шагом 0.005 в фильтрах B, V и g'. Эти стандартные кривые графически изображены на рис. 6 и 7.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периодов основного тона и первого обертона TU Cas нами были сделаны 154 глазомерных оценки блеска на фотопластинках ГАИШ; кроме того, было собрано из раз-

Рис. 7. Стандартные кривые первого обертона TU Cas в фильтрах B, V и g'.

личных источников 13 716 фотографических, визуальных, фотоэлектрических и ПЗС-наблюдений. В результате обработки всех имеющихся данных, охватывающих временной интервал с 1904 по 2021 г., были определены 80 и 77 моментов максимального блеска для построения О – С диаграмм для основного тона и первого обертона TU Cas соответственно. Определены квадратичные элементы изменения блеска обоих колебаний и вычислены скорости эволюционных изменений их периодов: $dP_0/dt = -0.039 \ (\pm 0.004) \ c/$ год для основного тона и $dP_1/dt = -0.036~(\pm 0.007)$ с/год для первого обертона, что согласуется с результатами теоретических расчетов для второго пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность изменений периодов.

Данная работа осуществлялась при поддержке Российского фонда фундаментальных исследований (грант 19-02-00611). Мы благодарим AAVSO за использование наблюдений из их международной базы данных.

СПИСОК ЛИТЕРАТУРЫ

- 1. Банер, Мавридис (K. Bahner and L.N. Mavridis), Ann. Faculty Technol. Univer. Thessaloniki 5, 65 (1971).
- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- 3. Бердников Л.Н., Белинский А.А., Пастухова Е.Н., Бурлак М.А., Иконникова Н.П., Мишин Е.О. и Шатский Н.И., Письма в Астрон. журн. 47, 448 (2021a) (L.N Berdnikov, А.А. Belinskij, E.N. Pastukhova, M.A. Burlak, N.P. Ikonnikova, E.O. Mishin, and N.I. Shatskii), Astron. Lett. 47, № 6 (2021a).
- 4. Бердников и др. (L.N Berdnikov, A.A. Belinskij, E.N. Pastukhova, M.A. Burlak, N.P. Ikonnikova, E.O. Mishin, and N.I. Shatskii), Var. Stars **41**, № 2, 1 (20216).
- 5. Бердников и др. (L.N. Berdnikov, O.V. Vosyakova, and M.A. Ibragimov), Commis. 27 IAU Inform. Bull. Var. Stars № 4142, 1 (1995).
- 6. Бердников, Ибрагимов (L.N. Berdnikov and M.A. Ibragimov), Astron. Astrophys. Trans. 5, 317 (1994a).
- Бердников, Ибрагимов (L.N. Berdnikov and M.A. Ibragimov), Commis. 27 IAU Inform. Bull. Var. Stars No. 3987, 1 (19946).
- Бердников Л.Н., Игнатова В.В., Фадеев Ю.А., Б.В. Кукаркин: Переменные звезды — ключ к пониманию строения и эволюции Галактики (ред. Н.Н. Самусь, А.В. Миронов, Нижний Архыз: СYGNUS, 2000), с. 18.
- 9. Бердников Л.Н., Кулагин Ю.В., Пастухова Е.Н., Астрон. циркуляр № 1554, 17 (1993).
- Ван Бисброк, Кастелс (G. Van Biesbroeck and L. Kasteels), Ann. Observ. Roy. Belg. (Ser. 2) 13, 184 (1914).
- Васильяновская О., Бюлл. Инст. астрофиз. АН Тадж. ССР № 13, 28 (1955).
- 12. Васильяновская О., Бюлл. Инст. астрофиз. АН Тадж. ССР № 43-44, 21 (1966).
- 13. Веавер и др. (H. Weaver, D. Steinmetz, and R. Mitchell), Lowell Observ. Bull. **5**, 30 (1961).
- 14. Воли, Эгген (С.Е. Worley and O.J. Eggen), Astron. J. **62**, 104 (1957).
- 15. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).
- 16. Гисекинг, Радеке (F. Gieseking and H.W. Radeke), Astron. Astrophys. Suppl. Ser. **33**, 207 (1978).
- 17. Гордон, Крон (К.С. Gordon and G.E. Kron), Astrophys. J. **106**, 318 (1947).

- 18. EKA (ESA), The Hipparcos and Tycho catalogues, ESA SP-1200, Noordwijk: ESA, 1997.
- 19. 3arap (F. Zagar), Mem. RAS 4, 248 (1928).
- 20. 3arap (F. Zagar), Mem. RAS 5, 393 (1931).
- 21. Игнатова, Возякова (V.V. Ignatova and O.V. Vozyakova), Astron. Astrophys. Trans. **19**, 133 (2000).
- 22. Каннон, Пикеринг (A.J. Cannon and E.C. Pickering), Circ. Astron. Obs. Harvard College № 164, 1 (1911).
- 23. Kaфкa (S. Kafka), https://www.aavso.org.
- 24. Кви, Браун (К.К. Kwee and L.D. Braun), Bull. Astron. Inst. Netherl. Suppl. Ser. **2**, 77 (1967).
- 25. Кокито, Мазани (G. Cocito and A. Masani), Mem. RAS **31**, 161 (1960).
- 26. Кукаркин Б.В., Тр. ГАИШ 13, 118 (1940).
- 27. Лозен (E. Lohsen), Sonneberg Mitt. Ver. Sterne **2**, 52 (1964).
- 28. Ломбард, Коен (F. Lombard and C. Koen), MNRAS **263**, 309 (1993).
- 29. Мофет, Бэрнс (Т.J. Moffett and T.G. Barnes), Astrophys. J. Suppl. Ser. **55**, 389 (1984).
- 30. Мэтьюз и др. (J.M. Matthews, W.P. Gieren, J.D. Fernie, and N. Dinshaw), Astron. J. **104**, 748 (1992).
- 31. Нива, Шмидт (G.D. Niva and E.G. Schmidt), Astrophys. J. **234**, 245 (1979).
- 32. Оостерхоф (Р.Тh. Oosterhoff), Bull. Astron. Inst. Netherl. **13**, 320 (1957).
- 33. Оостерхоф (P.Th. Oosterhoff), Bull. Astron. Inst. Netherl. **15**, 199 (1960).
- 34. Поретти (E. Poretti), Astron. Astrophys. **285**, 524 (1994).
- 35. Рыбка (E. Rybka), Acta Astron. Ser.b 1, 21 (1929).
- 36. Савье (H.B. Sawyer), Circ. Astron. Observ. Harvard College No. 871, 9 (1929).
- 37. Симон (N.R. Simon), Astron. Astrophys. **75**, 140 (1979).
- Таказе (B. Takase), Ann. Tokyo Astron. Observ. II Ser. № 191, 2233 (1969).
- 39. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, and L.N. Berdnikov), Publ. Astron. Soc. Pacific 118, 410 (2006).
- Фадеев Ю.А., Письма в Астрон. журн. 40, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. 40, 301 (2014)].
- 41. Фельтц, Мак Намара (K.A. Feltz and D.H. McNamara), Publ. Astron. Soc. Pacific **92**, 609 (1980).
- 42. Xehgeh (A.A. Henden), MNRAS 192, 621 (1980).
- 43. Эренфойхт (W. Ehrenfeucht), Wilno Bull. 15, 8 (1934).
- 44. Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, Todd A. Thompson, J.L. Prieto, Dong Subo, et al.), MNRAS **485**, 961 (2019).