НОВЫЕ АКТИВНЫЕ ЯДРА ГАЛАКТИК, ОБНАРУЖЕННЫЕ ТЕЛЕСКОПАМИ ART-XC И еРОЗИТА ОБСЕРВАТОРИИ СРГ В ХОДЕ РЕНТГЕНОВСКОГО ОБЗОРА ВСЕГО НЕБА

© 2022 г. Г. С. Усков^{1*}, И. А. Зазнобин¹, С. Ю. Сазонов¹, А. Н. Семена¹, М. Р. Гильфанов^{1,2}, Р. А. Буренин¹, М. В. Еселевич³, Р. А. Кривонос¹, А. Р. Ляпин¹, П. С. Медведев¹, Г. А. Хорунжев¹, Р. А. Сюняев^{1,2}

¹Институт космических исследований РАН, Москва, Россия ²Институт астрофизики общества им. Макса Планка, Гархинг, Германия ³Институт солнечно-земной физики СО РАН, Иркутск, Россия Поступила в редакцию 03.12.2021 г. После доработки 28.12.2021 г.; принята к публикации 28.12.2021 г.

Представлены результаты отождествления 17 рентгеновских источников, обнаруженных в диапазоне энергий 4–12 кэВ телескопом ART-XC им. М.Н. Павлинского в течение первого года обзора всего неба обсерватории СРГ. Три из них были открыты телескопом ART-XC, а остальные уже были известны ранее как рентгеновские источники, однако их природа оставалась неизвестной. С помощью 1.6-м телескопа A3T-33ИК Саянской обсерватории ИСЗФ СО РАН и 1.5-м Российско-турецкого телескопа Национальной обсерватории TÜBITAK были получены оптические спектры девяти источников, расположенных на северном небе ($\delta > -20^{\circ}$). Для остальных объектов были проанализированы архивные оптические спектры, полученные в ходе обзора 6dF. Все исследованные объекты оказались сейфертовскими галактиками (8 — первого типа, 7 — второго типа и 2 — промежуточного типа 1.8) на красных смещениях до $z \approx 0.15$. По данным телескопов еROSITA и ART-XC обсерватории СРГ получены рентгеновские спектры в диапазоне 0.2–20 кэВ для восьми источников. У трех из них обнаружено значительное внутреннее поглощение ($N_{\rm H} > 10^{22}$ см⁻²), причем два из них, вероятно, являются сильно поглощенными ($N_{\rm H} \sim 10^{23}$ см⁻²). Эта статья является продолжением серии публикаций по оптическому отождествлению активных ядер галактик, обнаруженных телескопом ART-XC.

Ключевые слова: активные ядра галактик, обзоры неба, оптические наблюдения, красные смещения, рентгеновские наблюдения.

DOI: 10.31857/S032001082202005X

ВВЕДЕНИЕ

Орбитальная обсерватория Спектр-Рентген-Гамма (СРГ) (Сюняев и др., 2021) проводит обзор всего неба в рентгеновских лучах начиная с 12 декабря 2019 г. Всего запланировано провести восемь обзоров, каждый продолжительностью шесть месяцев. На борту СРГ находятся два телескопа с рентгеновской оптикой косого падения: еРОЗИТА (Предель и др., 2021) и ART-XC им. Павлинского (Павлинский и др., 2021а), работающие в диапазонах энергий 0.2–8 кэВ и 4–30 кэВ соответственно.

15 декабря 2020 г. завершился второй обзор неба обсерватории СРГ. По сумме двух обзоров

был составлен первый каталог источников, зарегистрированных в диапазоне энергий 4–12 кэВ телескопом ART-XC (Павлинский и др., 2021b). Этот каталог был скоррелирован с: 1) каталогами источников, обнаруженных в предыдущих рентгеновских обзорах неба, 2) предварительным каталогом источников, обнаруженных на половине небесной сферы $0 < |l| < 180^{\circ 1}$ в мягком рентгеновском диапазоне в ходе первых трех обзоров всего неба телескопа еРОЗИТА обсерватории СРГ, 3) каталогами астрофизических объектов в других диапазонах длин волн. В результате был составлен список объектов, открытых телескопом ART-

^{*}Электронный адрес: uskov@cosmos.ru

¹За обработку данных телескопа еРОЗИТА на этой части неба отвечают российские ученые.

XC, и ранее известных рентгеновских источников, подтвержденных с помощью телескопа ART-XC, природа которых оставалась неизвестной или плохо изученной. Большинство этих объектов также зарегистрированы телескопом еРОЗИТА обсерватории СРГ. Для установления природы этих объектов проводятся спектроскопические наблюдения на наземных оптических телескопах.

В настоящей работе представлены результаты отождествления девяти источников из первого каталога источников ART-XC с помощью наблюдений на 1.6-м телескопе АЗТ-ЗЗИК Саянской обсерватории ИСЗФ СО РАН и 1.5-м Российскотурецком телескопе (РТТ-150) Национальной обсерватории TÜBITAK. Эти объекты, расположенные на северном небе, оказались активными ядрами галактик (АЯГ). Представлены также результаты отождествления восьми источников ART-XC на южном небе по имеющимся архивным данным спектроскопического обзора 6dF, которые тоже оказались АЯГ. Кроме того, построены широкополосные (0.2-20 кэВ) рентгеновские спектры восьми северных объектов (с координатами в диапазоне $0 < |l| < 180^{\circ}$), полученные по данным телескопов еРОЗИТА и ART-XC в ходе первых трех полугодовых обзоров неба. С помощью этих спектров удалось выявить значительное внутреннее поглощение в нескольких объектах. Данная статья продолжает серию публикаций по отождествлению новых АЯГ и катаклизмических переменных из обзора всего неба телескопа ART-XC обсерватории СРГ, начатую в работах Зазнобин и др. (2021a,b).

Представленные оценки светимостей основаны на модели плоской Вселенной с параметрами $H_0 = 70, \Omega_m = 0.3.$

ВЫБОРҚА ОБЪЕКТОВ

Выборка 17 исследуемых объектов была произведена из каталога рентгеновских источников, обнаруженных телескопом ART-XC в течение первого года обзора всего неба (12 декабря 2019 г.-15 декабря 2020 г.) (Павлинский и др., 2021b). Рассматривались только точечные источники из этого каталога. Согласно критерию составления каталога, все такие источники были зарегистрированы на уровне значимости не менее 4.82 стандартных отклонений в диапазоне энергий 4–12 кэВ. Положения источников на небе измерены по данным ART-XC с точностью лучше 30 угл. сек. Для 8 источников из этой выборки, расположенных в области неба $0 < |l| < 180^\circ$, в нашем распоряжении есть также данные телескопа СРГ/еРОЗИТА, что позволило построить широкополосные рентгеновские спектры этих объектов по совокупности данных телескопов еРОЗИТА и ART-XC. Данные

еРОЗИТА для 9 остальных источников принадлежат немецкому консорциуму СРГ/еРОЗИТА и не рассматриваются в настоящей работе.

Для 9 из 17 рентгеновских источников, расположенных на северном небе ($\delta > -20^{\circ}$), нами были получены оптические спектры. Для оставшихся 8 источников, расположенных на южном небе, мы проанализировали имеющиеся архивные данные спектроскопического обзора галактик 6dF (Джонс и др., 2004). В табл. 1 и 2 для всех объектов приведены: координаты источника по данным ART-XC и еPO3ИTA (если имеются), координаты предполагаемого оптического партнера, расстояние между положениями рентгеновского источника и оптического партнера, рентгеновский поток в диапазоне энергий 4–12 кэВ.

РЕНТГЕНОВСКИЕ НАБЛЮДЕНИЯ

На текущий момент все источники выборки наблюдались в ходе первых трех обзоров всего неба обсерватории СРГ. Используя полученные телескопами еРОЗИТА и ART-XC объединенные данные этих обзоров, мы построили спектры 8 источников выборки, расположенных в области неба $0 < |l| < 180^\circ$, в диапазоне энергий от 0.2 до 20 кэВ. Переменность объектов не исследовалась.

Рентгеновские спектры ART-XC были получены с помощью программного обеспечения ARTPRODUCTS v0.9 (Павлинский и др., 2021а), используя калибровочные файлы версии 20200401. Данные со всех семи модулей телескопа ART-XC были объединены. Спектры источников извлекались в области радиусом 120" в трех диапазонах энергий: 4-8, 8-12 и 12-20 кэВ.

Данные телескопа еРОЗИТА были обработаны с помощью созданной и поддерживаемой в ИКИ РАН системы калибровки и обработки данных, построенной с использованием элементов пакета eSASS (eROSITA Science Analysis Software System) и математического обеспечения, разработанного в научной группе по рентгеновскому каталогу Российского консорциума телескопа еРО-ЗИТА. Спектры источников извлекались в круге радиусом R = 60'', а спектры фона — в кольце с внутренним радиусом $R_{\rm in}=120''$ и внешним радиусом $R_{\rm out} = 300''$ около источника. В случае, если в область фона попадали другие источники, они исключались с радиусом R = 40''. Спектры извлекались по данным всех семи модулей телескопа в диапазоне 0.2-9.0 кэВ. При аппроксимации спектров данные были сгруппированы таким образом, чтобы в каждом энергетическом канале было не менее 3 отсчетов.

No	Источник АРТ-ХС	Координаты eROSITA		Оптические координаты		r .	ra	F_{\star}^{4-12}	Открыт
01-	HEIOHIMK AI(1-AG	α	δ	α	δ	1 A	re	TA	Открыт
1	SRGA J025234.3+431004	_	_	43.14170	+43.16740	3.5''	_	$2.7^{+2.3}_{-1.8}$	Swift
2	SRGA J062627.2+072734	_	—	96.61250	+7.45806	$5.8^{\prime\prime}$	_	$1.7^{+3.6}_{-2.3}$	POCAT
3	SRGA J070636.4+635109	106.64528	+63.84891	106.64500	+63.84889	$16.8^{\prime\prime}$	1.4''	$5.4^{+3.6}_{-2.6}$	СРГ
4	SRGA J092021.6+860249	140.06928	+86.05057	140.06973	+86.05012	12.5''	2.3''	$5.1^{+2.5}_{-2.0}$	POCAT
5	SRGA J195702.4+615036	299.25991	+61.84267	299.26000	+61.84306	1.0''	0.4''	$3.4^{+1.4}_{-1.2}$	POCAT
6	SRGA J221913.2+362014	334.81076	+36.33471	334.81050	+36.33630	16.3''	4.4''	$5.4^{+3.0}_{-2.3}$	СРГ
7	SRGA J223714.9+402939	339.31426	+40.49534	339.31458	+40.49583	9.1''	1.5''	$5.0^{+2.9}_{-2.3}$	POCAT
8	SRGA J232037.8+482329	350.16453	+48.39126	350.16417	+48.39056	16.2''	1.0''	$1.6^{+2.0}_{-1.5}$	POCAT
9	SRGA J235250.6–170449	358.21433	-17.07735	358.21417	-17.07694	16.6''	1.4''	$6.6^{+4.0}_{-3.0}$	Swift

Таблица 1. Рентгеновские источники, для которых были проведены наблюдения на телескопах АЗТ-ЗЗИК и РТТ-150

Примечание. Столбец 1: порядковый номер источника в исследуемой выборке. Столбец 2: название источника в каталоге ART-XC (используемые в названиях координаты рентгеновских источников даны для эпохи J2000.0). Столбцы 3 и 4: координаты источника по данным телескопа ePO3ИTA. Столбцы 5 и 6: координаты предполагаемого оптического партнера. Столбец 7: расстояние между положениями источника ART-XC и оптического объекта. Столбец 8: расстояние между положениями источника ART-XC и оптического объекта. Столбец 8: расстояние между положениями источника ART-XC и оптического объекта. Столбец 8: расстояние между положениями источника ART-XC и оптического объекта. Столбец 8: расстояние между положениями источника ART-XC и оптического объекта. Столбец 9: рентгеновский поток в диапазоне 4–12 кэВ по данным первых двух обзоров неба телескопа ART-XC (Павлинский и др., 2021b), в единицах 10^{-12} эрг с⁻¹ см⁻². Столбец 10: рентгеновская обсерватория, впервые обнаружившая источник. Для SRGA J025234.3+431004 координаты ePO3ИTA не приведены из-за недостаточно значимого детектирования источника телескопом ePO3ИTA, а для SRGA J062627.2+072734 — из-за расположения источника на половине неба $180 < |l| < 360^\circ$, за обработку данных телескопа ePO3ИTA на которой отвечают немецкие ученые.

.No	Источник ART-XC	Оптические координаты		٣٨	F^{4-12}	Открыт	
012		α	δ	IA	$\Gamma_{\rm A}$	Открыт	
10	SRGA J030838.1–552041	47.15875	-55.34472	4.0''	$4.8^{+1.9}_{-1.5}$	СРГ	
11	SRGA J052959.8–340157	82.49669	-34.03293	7.5''	$4.6^{+2.0}_{-1.7}$	XMM-Newton	
12	SRGA J055053.7–621457	87.72339	-62.24863	2.2''	$1.4_{-0.5}^{+0.5}$	POCAT	
13	SRGA J060241.1–595152	90.67472	-59.86456	$6.3^{\prime\prime}$	$2.5^{+0.9}_{-0.8}$	XMM-Newton	
14	SRGA J061322.9–290027	93.35120	-29.00633	19.0''	$12.4_{-3.2}^{+3.9}$	POCAT	
15	SRGA J063324.9–561424	98.36091	-56.23914	14.8''	$3.4^{+1.4}_{-1.2}$	POCAT	
16	SRGA J064421.5-662620	101.09111	-66.43886	2.2''	$0.6^{+0.5}_{-0.5}$	POCAT	
17	SRGA J072823.5-440823	112.09742	-44.14005	1.6''	$4.6^{+2.5}_{-1.9}$	POCAT	

Таблица 2. Рентгеновские источники, для которых имеются архивные данные обзора 6dF

Примечание. Содержания столбцов аналогичны табл. 1. Источники расположены на половине неба 180 < |*l*| < 360°, поэтому информация по данным телескопа еРОЗИТА не приводится.

Среди 17 источников из каталога ART-XC, отобранных для исследований, 8 расположены на половине неба, за обработку данных еРОЗИТА на которой отвечает российский консорциум телескопа еРОЗИТА. Все источники детектируются телескопом еРОЗИТА как в мягком (0.3–2.2 кэВ), так и в жестком (4–9 кэВ) дипазонах, кроме SRGA J025234.3+431004, который надежно ($\gtrsim 5\sigma$) регистрируется только на энергиях $\gtrsim 2.2$ кэВ. Изображения всех 8 источников по данным еРОЗИТА в диапазонах энергий 0.3–2.2, 2.2–6.0 и 4.0–9.0 кэВ приведены на рис. 1.

Спектральный анализ проводился совместно по данным телескопов ART-XC и еРОЗИТА. Аппроксимация спектров проводилась в диапазоне 0.2–20 кэВ с помощью ПО XSPEC v12.11.0n² (Арнауд, 1996). Для подгонки моделей использовалась W-статистика — модифицированная Сстатистика (Кэш, 1979), в которой учитывается наличие пуассоновского фона вокруг источника.

При спектральном анализе данных телескопа ART-XC использовалась предварительная версия матрицы отклика, подготовленная по результатам наблюдений Крабовидной Туманности и ее пульсара. Для исследования относительной калибровки телескопов ART-XC и еРОЗИТА мы выбрали сравнительно яркие источники из нашей выборки и аппроксимировали одновременно их спектры степенными законами с поглощениями. При этом была добавлена кросс-калибровочная константа. Для телескопа ePO3ИTA она была зафиксирована на единице, а для телескопа ART-XC считалась одинаковой для всех источников. Мы получили значение константы 1.3 и соответствующий 90% доверительный интервал (1.0-1.7). Так как значение кросс-калибровочной константы совместимо с единицей, мы сделали вывод, что ее введение не требуется. Отметим, что работа по уточнению матрицы отклика телескопа ART-XC продолжается, и при анализе данных последующих выпусков может потребоваться значение кросс-калибровочной константы, отличное от единицы.

Рентгеновское излучение АЯГ может испытывать поглощение в газопылевом торе вокруг сверхмассивной черной дыры (СМЧД) и в межзвездной среде родительской галактики. Одной из целей исследования была оценка колонки вещества вдоль луча зрения $N_{\rm H}$ внутри исследуемых объектов. Для описания рентгеновских спектров мы использовали обычную для исследований АЯГ модель степенного континуума с завалом на низких энергиях в результате фотопоглощения в Галактике и в самом объекте. На энергиях ниже 2 кэВ в рентгеновских спектрах АЯГ часто наблюдается дополнительное

Рис. 1. Изображения еРОЗИТА для 8 источников, расположенных на половине неба, обрабатываемой Российским консорциумом телескопа еРОЗИТА, в диапазоне энергий 0.3-2.2 (слева), 2.2-6.0 (в центре) и 4.0-9.0 (справа) кэВ. Размер изображений 5×5 угл. мин. Кружками указаны положения источников, детектируемых еРОЗИТА на уровне достоверности выше 3σ . Положения обсуждаемых здесь источников по данным ART-XC показаны черным крестом.

²https://heasarc.gsfc.nasa.gov/xanadu/xspec/

Источник ART-XC	$N_{\rm H}^{MW}$	$N_{ m H}$	Г	$F_{\rm PL}^{4-12}$	$A_{\rm BB}, 10^{-6}$	Cstat (dof)	AIC		
	Модель PHA(ZPHA CFLUX PL)								
SRGA J025234.3+431004	1.0	78^{+391}_{-71}	$0.6^{+2.4}_{-1.3}$	$2.4^{+4.9}_{-1.2}$	_	12(10)	31.6		
SRGA J070636.4+635109	0.4	< 0.2	$1.1^{+0.2}_{-0.2}$	$1.9_{-0.7}^{+0.9}$	_	68 (53)	173.8		
SRGA J092021.6+860249	0.5	< 0.2	$2.2^{+0.1}_{-0.1}$	$1.0^{+0.2}_{-0.2}$	_	230 (212)	654		
SRGA J195702.4+615036	0.7	< 0.3	$1.7\substack{+0.1 \\ -0.1}$	$2.3^{+0.5}_{-0.4}$	—	289 (283)	854.9		
SRGA J221913.2+362014	1.0	80_{-41}^{+53}	$1.8^{+1.0}_{-0.9}$	$2.2^{+1.2}_{-0.9}$	_	19(14)	47		
SRGA J223714.9+402939	1.2	< 0.6	$1.4^{+0.1}_{-0.1}$	$5.2^{+1.1}_{-0.9}$	—	183 (189)	560.9		
SRGA J232037.8+482329	1.3	< 0.4	$1.5^{+0.2}_{-0.2}$	$1.4^{+0.5}_{-0.4}$	—	119 (92)	302.5		
SRGA J235250.6-170449	0.2	$1.7_{-0.6}^{+0.7}$	$1.3_{-0.2}^{+0.2}$	$6.0^{+2.1}_{-1.7}$	—	94 (120)	333.7		
Модель PHA(ZPHA CFLUX PL + BB)									
SRGAJ070636.4+635109	0.4	<4.8	$1.0_{-0.4}^{+0.5}$	$2.3^{+1.5}_{-1}$	$3.1^{+1.4}_{-2.1}$	61 (52)	165.4		
SRGAJ223714.9+402939	1.2	$2.3^{+1.6}_{-1.5}$	$1.7^{+0.3}_{-0.3}$	$4.1^{+1.5}_{-1.2}$	$14.1^{+5.6}_{-7.4}$	177 (189)	554.5		

Таблица 3. Рентгеновские спектральные параметры

Примечание. $N_{\rm H}^{MW}$, $N_{\rm H}$ — колонковые плотности газа в Галактике и в объекте соответственно, в единицах 10^{21} см⁻²; $F_{\rm PL}^{4-12}$ — поправленный за поглощение поток в энергетическом диапазоне 4–12 кэВ, создаваемый степенной компонентой, в единицах 10^{-12} эрг с⁻¹ см⁻²; $A_{\rm BB}$ — нормировка чернотельной компоненты.

излучение, природа которого дискутируется (см., например, Бойсай и др., 2016). Принимая во внимание сравнительно небольшое количество фотонов в изучаемых здесь спектрах, мы использовали простую феноменологическую модель чернотельного излучения с фиксированной температурой kT = 0.1 кэВ для описания мягкой компоненты в спектре. Таким образом, мы использовали две модели в XSPEC:

phabs(zphabs(cflux powerlaw)),

phabs(zphabs(cflux powerlaw) + blackbody),

где *phabs* — поглощение в Галактике по данным обзора HI4PI (Бехти и др., 2016), *zphabs* — поглощение на красном смещении *z* данного АЯГ (измеренном по оптическому спектру объекта), cflux — модель свертки, которая нормирует степенную компоненту по потоку в энергетическом диапазоне 4–12 кэВ (таким образом определяется поток, поправленный за поглощение).

Для сравнения качества аппроксимации между этими двумя моделями мы использовали информационный критерий Акаике (Акаике, 1974) AIC == 2k + cstat, где k — количество свободных параметров модели, cstat — значение функции правдоподобия $-2\log L_{\rm max}$, (Кэш, 1979). Если при добавлении чернотельной компоненты значение AIC уменьшалось на 5 и более (это соответствует тому, что вероятность реализации первой модели составляет не более 8% вероятности реализации второй), то предпочтение отдавалось двухкомпонентной модели.

Результаты аппроксимации спектров приведены в табл. 3. Доверительные интервалы значений параметров приведены на уровне 90%. Сами рентгеновские спектры представлены ниже в подразделах, посвященных отдельным источникам (рис. 2–10). При этом для лучшего зрительного восприятия некоторые спектры еРОЗИ-ТА были перебинированы. Для трех источников (SRGA J025234.3+431004, SRGA J221913.2+ 362014, SRGA J235250.6–170449), у которых по результатам спектрального анализа выявлено внутреннее поглощение, мы показываем также двумерные области значений наклона спектра Г и колонки поглощения.

При анализе рис. 2–10 можно заметить, что наблюдаемое значение потока в первом энергетическом канале телескопа ART-XC в спектрах семи источников из восьми превышает значение,

Рис. 2. Результаты наблюдений источника SRGA J025234.3+431004. Вверху слева: картинка наведения. Из-за недостаточно высокой значимости детектирования источника телескопом ePO3ИTA показана только область локализации по данным ART-XC синей окружностью, с радиусом 30". Стрелкой показан объект, для которого был получен оптический спектр. Вверху посередине: рентгеновский спектр по данным телескопов ART-XC (красным) и ePO3ИTA (черным), а также модель наилучшей аппроксимации (см. табл. 3). Стрелками показаны верхние пределы на уровне значимости 2σ. На нижней панели рентгеновского спектра показано отношение измерений к модели. Правее рентгеновского спектра изображены контуры правдоподобия cstat наилучшей модели рентгеновского спектра, для наклона Γ и колонковой плотности N_H. Внутренний красный контур соответствует 68% доверительному интервалу, зеленый — 90%, внешний синий — 99%. Внизу: оптический спектр, указаны основные линии излучения.

предсказанное моделью. В некоторых случаях это превышение значительное и статистически значимое. Часть наблюдаемого расхождения между данными ART-XC и моделью, вероятно, связана с эддингтоновским смещением, вызванным тем, что источники имеют в данных ART-XC невысокую значимость и находятся вблизи порога детектирования. Заметный вклад в наблюдаемое расхождение могут вносить также недостатки текущей калибровки телескопа ART-XC, которые будут устранены в последующих выпусках данных. В контексте интерпретации результатов совместного спектрального анализа данных телескопов еРОЗИТА и ART-XC, приведенных в данной работе, следует подчеркнуть, что интегральный отклик телескопа ART-XC в диапазоне 4-20 кэВ откалиброван по наблюдениям Краба достаточно хорошо и воспроизводит его поток с точностью $\sim 20\%$, что позволяет использовать эти данные для анализа широкополосных спектров. Также следует принимать во внимание, что для большинства источников спектральные параметры в значительной степени определяются данными телескопа еРО-ЗИТА, имеющими более высокую статистическую значимость.

ОПТИЧЕСКИЕ НАБЛЮДЕНИЯ

Спектроскопия объектов северного неба ($\delta > -20^{\circ}$) проводилась на телескопе РТТ-150 с использованием спектрографа *TFOSC*³ и на телескопе АЗТ-33ИК с использованием спектрографа низкого и среднего разрешения АДАМ (Афанасьев и др., 2016; Буренин и др., 2016) (см. журнал наблюдений в табл. 4). Использовались длинные щели шириной 2", 3" на спектрографе АДАМ и 2" на спектрографе *TFOSC*. Центр щели совмещался с центральной областью наблюдаемой галактики. После каждой экспозиции положение

³http://hea.iki.rssi.ru/rtt150/en/index.php?page=tfosc

Рис. 3. То же, что на рис. 2, но для SRGA J062627.2+072734. Данные телескопа еРОЗИТА (область локализации, рентгеновский спектр и контуры cstat) не показаны из-за расположения источника на половине неба $180 < |l| < 360^{\circ}$.

объекта смещалось вдоль щели на 10–15" в случайном направлении вверх или вниз при помощи фотогида. Оптические наблюдения выполнялись при качестве атмосферы лучше 2.5".

На спектрографе *TFOSC* в качестве диспергирующего элемента использовалась дифракционная пропускающая решетка $\mathbb{N} \ 15$ со спектральным диапазоном 3700—8700 Å, обеспечивающая спектральное разрешение 12 Å. Эта решетка позволяет получать на спектральных изображениях яркие линии бальмеровской серии для галактик вплоть до красного смещения z = 0.32. Позиционный угол щели спектрографа составляет 90 градусов. До и после получения серии спектроскопических изображений для каждого объекта мы получали изображения лампы с непрерывным спектром и линейчатый спектр Fe—Аг лампы.

На спектрографе АДАМ для получения спектров использовались объемные фазовые голографические решетки (VPHG), 600 штрихов на миллиметр. В качестве диспергирующего элемента мы использовали решетки VPHG600G спектрального диапазона 3650–7250 Å с разрешающей способностью 8.6 Å для 2"-щели и 12.9 Å для 3"-щели

и решетку VPHG600R спектрального диапазона 6460—10050 Å с разрешающей способностью 18.3 Å для 3"-щели. При использованиии решетки VPHG600R устанавливался фильтр OS11, который убирает с изображения второй порядок интерференции. На спектрографе установлена толстая ПЗС-матрица e2v CCD30-11, изготовленная по технологии глубокого обеднения. Это позволяет получать спектральные изображения на длине волны 10000 Å без интерференции на тонкой подложке матрицы. Все наблюдения выполнялись с позиционным углом щели, равным нулю. После каждой серии спектроскопических изображений для каждого объекта мы получали калибровочные изображения лампы с непрерывным спектром и линейчатый спектр Не-Ne-Ar лампы.

В каждую ночь наблюдений снимался спектр спектрофотометрических стандартов из списка ESO⁴ для всех используемых наборов дифракционных решеток и щелей. Спектрофотометричестандарты выбирались таким образом, чтобы они находились, приблизительно, на одинаковой высоте с наблюдаемым нами оптическим источником.

⁴https://www.eso.org/sci/observing/tools/standards

Рис. 4. Результаты наблюдений источника SRGA J070636.4+635109. Вверху слева: картинка наведения. Синей окружностью обозначена область локализации источника телескопом ART-XC, радиусом 30", красной окружностью — 98% область локализации телескопом ePO3ИTA. Стрелкой показан объект, для которого был получен оптический спектр. Вверху справа: рентгеновский спектр по данным телескопов ART-XC (красным) и ePO3ИTA (черным), а также модель наилучшей аппроксимации (см. табл. 3). Стрелками показаны верхние пределы на уровне значимости 2σ. На нижней панели рентгеновского спектра показано отношение измерений к модели. Внизу: оптический спектр, указаны основные линии излучения.

Обработка данных производилась с помощью ПО $IRAF^5$ и собственного ПО. Калибровка по потоку была выполнена стандартными процедурами IRAF из пакета onedspec.

РЕЗУЛЬТАТЫ НАБЛЮДЕНИЙ

Здесь обсуждаются полученные результаты наблюдений объектов северного неба. Эмиссионные спектральные линии аппроксимировались функцией Гаусса, в результате чего определялись такие параметры, как центр линии, ширина линии на полувысоте *FWHM*_{mes}, поток в линии и ее эквивалентная ширина *EW*. Спектральный континуум аппроксимировался полиномом, порядок которого зависел от формы спектра. Ширина широких бальмеровских линий корректировалась на спектральное разрешение прибо-

ра: $FWHM = \sqrt{FWHM_{mes}^2 - FWHM_{res}^2}$, где значения $FWHM_{res}$ определялись для каждого диспергирующего элемента и для каждой щели как ширина на полувысоте линий в спектре калибровочных ламп. Ширины узких линий согласуются с приборным уширением $FWHM_{res}$, поэтому для них в табл. 5–13 значения FWHM не приведены.

Для классификации сейфертовских галактик использовались стандартные критерии (Остерброк, 1981; Верон-Сетти и др., 2001). Ошибки измерений параметров линий излучения приводятся на уровне достоверности 68%.

Доверительный интервал красного смещения определялся как ошибка среднего красных смещений узких линий.

⁵http://iraf.noao.edu/

Рис. 5. То же, что на рис. 4, но для SRGA J092021.6+860249.

Рис. 6. То же, что на рис. 4, но для SRGA J195702.4+615036.

Рис. 7. То же, что на рис. 2, но для SRGA J221913.2+362014. На картинке наведения красной окружностью обозначена 98% область локализации источника телескопом ePO3ИTA. Оптический спектр показан на двух нижних рисунках: слева — спектр, полученный в решетке VPGH600G, справа — спектр, полученный в решетке VPGH600R.

Рис. 8. То же, что на рис. 4, но для SRGA J223714.9+402939.

Рис. 9. То же, что на рис. 4, но для SRGA J232037.8+482329.

Рис. 10. То же, что на рис. 2, но для SRGA J235250.6–170449. На картинке наведения красной окружностью обозначена 98% область локализации источника телескопом еРОЗИТА.

Таблица 4. Журнал оптических наблюдений

Источник ART-XC	Дата	Гризма	Щель	Экспозиция, с	Телескоп
SRGA J025234.3+431004	2021-09-29	VPHG600G	$2^{\prime\prime}$	3 imes 300	АЗТ-ЗЗИК
SRGA J062627.2+072734	2021-11-05	G15	2"	8×600	PTT-150
SRGA J070636.4+635109	2021-05-13	VPHG600G	2"	7×200	АЗТ-ЗЗИК
SRGA J092021.6+860249	2021-10-31	VPHG600G	$2^{\prime\prime}$	4×300	АЗТ-ЗЗИК
SRGA J195702.4+615036	2021-05-12	G15	2"	5×600	PTT-150
SRGA J221913.2+362014	2021-10-31	VPHG600G	3″	3 imes 600	АЗТ-ЗЗИК
	2021-10-31	VPHG600R	3″	3 imes 600	АЗТ-ЗЗИК
SRGA J223714.9+402939	2021-05-13	VPHG600G	3″	3×200	АЗТ-ЗЗИК
SRGA J232037.8+482329	2021-11-05	G15	$2^{\prime\prime}$	4×120	PTT-150
SRGA J235250.6–170449	2021-09-11	VPHG600G	2"	4×300	АЗТ-ЗЗИК

Таблица 5. Спектральные особенности SRGA J025234.3+431004

Линия	Длина волны, Å	Поток, 10^{-15} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM, 10^2$ км/с
Hβ	5109	1.8 ± 0.5	-11.5 ± 3.0	-
$[OIII]\lambda 4959$	5212	6.8 ± 0.5	-44 ± 3	-
[OIII]λ5007	5262	17.8 ± 0.1	-117 ± 4	_
[NII]λ6548	6884	1.2 ± 0.3	-5.9 ± 1.4	_
$H\alpha$	6900	9.3 ± 0.4	-46 ± 2	_
[NII]λ6584	6923	5.3 ± 0.4	-27 ± 2	_
[SII]λ6718	7061	2.6 ± 0.5	-13.2 ± 2.6	_
[SII]λ6732	7075	3.2 ± 0.6	-16.0 ± 3.1	-

SRGA J025234.3+431004

Этот источник был открыт в жестком рентгеновском обзоре неба прибора ВАТ обсерватории Swift (PBC J0252.3+4309 = SWIFT J0252.3+4312 (Кусумано и др., 2010; Оу и др., 2018). В области локализации ART-XC находится наблюдаемая с ребра галактика LEDA 90641 с инфракрасным цветом W1 - W2 = 0.77, который указывает на вероятное присутствие активного ядра. Согласно астрономической базе данных SIMBAD, красное смещение галактики z = 0.0518. В спектре галактики (рис. 2, табл. 5) присутствуют узкие эмиссионные линии Н β , [OIII] λ 4959, [OIII] λ 5007, [NII] λ 6548 Н α , [NII] λ 6584 и дублета серы, по которым можно уточнить красное смещение: $z = 0.05123 \pm 0.00024$. По положению на ВРТ-диаграмме (lg([OIII] λ 5007/H β) = 1.01 \pm 0.11 и lg([NII] λ 6584/H α) = -0.24 ± 0.04) объект можно отнести к сейфертовским галактикам, а отсутствие широких компонент линий означает, что это Sy2.

Линия	Длина волны, Å	Поток, 10^{-15} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	<i>FWHM</i> , 10 ² км/с
	F077		2 0 F	, , , , , , , , , , , , , , , , , , , ,
н⊅, узкая	5077	<0.3	>-2.5	_
${ m H}eta$, широкая	5077	7.9 ± 0.5	-64 ± 4	54 ± 4
[OIII]λ4959	5173	1.3 ± 0.2	-10.1 ± 1.3	_
[OIII]λ5007	5224	3.2 ± 0.2	-24 ± 1	_
$[NII]\lambda 6548$	6826	1.9 ± 0.3	-10.4 ± 1.6	_
${ m H}lpha$, широкая	6841	55 ± 1	-297 ± 5	53 ± 1
${ m H}lpha$, узкая	6841	2.5 ± 0.3	-13.2 ± 1.6	—
$[NII]\lambda 6584$	6859	2.3 ± 0.3	-12.2 ± 1.6	—
[SII]λ6718	7002	0.5 ± 0.2	-2.7 ± 1.0	_
[SII]λ6732	7017	0.5 ± 0.2	-2.8 ± 0.8	_

Таблица 6. Спектральные особенности SRGA J062627.2+072734

Таблица 7. Спектральные особенности SRGA J070636.4+635109

Линия	Длина волны, Å	Поток, 10^{-15} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM, 10^2$ км/с
Hβ	4930	<1.1	>-0.5	_
$[OIII]\lambda 4959$	5027	2.4 ± 0.8	-1.2 ± 0.4	_
[OIII]λ5007	5076	4.9 ± 0.9	-2.4 ± 0.4	_
$[NII]\lambda 6548$	6640	2.5 ± 0.6	-1.0 ± 0.2	_
$H\alpha$	6657	4.4 ± 0.7	-1.8 ± 0.3	_
${ m H}lpha$, широкая	6657	68 ± 5	-28 ± 2	61 ± 4
$[NII]\lambda 6584$	6676	11.4 ± 0.1	-4.7 ± 0.3	_
[SII]λ6718	6811	2.5 ± 0.5	-1.0 ± 0.2	_
[SII]λ6732	6826	4.0 ± 0.7	-1.6 ± 0.3	_

SRGA J062627.2+072734

Этот источник был открыт в ходе обзора всего неба обсерватории РОСАТ (2RXS J062625.8+ 072733). Он присутствует также в каталоге источников жесткого рентгеновского обзора Swift/BAT (SWIFT J0626.6+0729) (Оу и др., 2018). Объект находится на половине неба $180 < |l| < 360^\circ$, на которой мы не располагаем данными телескопа еРОЗИТА. В области локализации телескопа ART-XC находится галактика LEDA 136513 (рис. 3) с характерным для АЯГ ИК-цветом (W1 - W2 = 0.86).

В оптическом спектре галактики (рис. 3, табл. 6) присутствуют линии излучения $H\alpha$ и $H\beta$, имеющие мощные широкие компоненты, а также узкие запрещенные линии [OIII] λ 4959, [OIII] λ 5007, [NII] λ 6548, [NII] λ 6584 и дублета серы. По этим линиям определяется красное смещение: $z = 0.04254 \pm 0.00013$. Измеренные для узких компонент линий $H\alpha$ и $H\beta$ соотношения

Линия	Длина волны, Å	Поток, 10^{-14} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM$, 10^2 км/с
$ m H\gamma$, узкая	4581	< 0.2	>-1.6	_
$ m H\gamma$, широкая	4581	1.8 ± 0.4	-14.3 ± 3.0	32 ± 7
${ m H}eta$, узкая	5121	0.2 ± 0.1	-1.1 ± 0.5	_
${ m H}eta$, широкая	5121	4.2 ± 0.2	-30 ± 2	28 ± 2
$[OIII]\lambda 4959$	5222	0.4 ± 0.1	-2.8 ± 0.5	_
[OIII]λ5007	5272	1.3 ± 0.1	-9.0 ± 0.4	_
$[NII]\lambda 6548$	6894	<0.7	>-4.3	_
${ m H}lpha$, узкая	6910	<1.5	>-9.9	_
${ m H}lpha$, широкая	6910	10.5 ± 1.6	-70 ± 11	14.9 ± 0.6
$[NII]\lambda 6584$	6931	2.1 ± 0.6	-13.8 ± 3.8	_
[SII]λ6718	7072	0.19 ± 0.04	-1.5 ± 0.3	_
[SII]λ6732	7086	0.16 ± 0.03	-1.2 ± 0.3	_

Таблица 8. Спектральные особенности SRGA J092021.6+860249

Таблица 9. Спектральные особенности SRGA J195702.4+615036

Линия	Длина волны, Å	Поток, 10^{-14} эрг с $^{-1}$ см $^{-2}$	Экв. ширина, Å	$FWHM, 10^2$ км/с
${ m H}eta$, узкая	5146	0.7 ± 0.3	-1.7 ± 0.7	_
${ m H}eta$, широкая	5146	5.0 ± 0.7	-12.5 ± 1.7	35 ± 5
[OIII]λ4959	5249	5.5 ± 0.3	-13.7 ± 0.6	_
[OIII]λ5007	5299	14.5 ± 0.2	-36 ± 1	_
[OI]λ6300	6671	1.2 ± 0.1	-2.9 ± 0.3	_
$[NII]\lambda 6548$	6935	2.2 ± 0.7	-5.5 ± 1.7	_
${ m H}lpha$, узкая	6950	3.9 ± 1.0	-10.0 ± 2.5	_
${ m H}lpha$, широкая	6950	36 ± 3	-92 ± 6	27 ± 2
$[NII]\lambda 6584$	6970	6.9 ± 0.8	-17.6 ± 2.2	_
[SII]λ6718	7111	2.2 ± 0.3	-5.8 ± 0.7	_
[SII]λ6732	7126	2.0 ± 0.3	-5.4 ± 0.7	_

108

Линия	Длина волны, Å	Поток, 10^{-15} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM, 10^2$ км/с
Hβ	5572	2.9 ± 0.2	-23 ± 2	_
$[OIII]\lambda 4959$	5686	17.2 ± 0.3	-135 ± 2	_
$[OIII]\lambda 5007$	5741	51 ± 1	-403 ± 2	_
[OI]λ6300	7225	1.5 ± 0.2	-13.8 ± 2.2	_
[NII]λ6548	7505	0.2 ± 0.1	-12.4 ± 2.7	_
$H\alpha$	7526	18.0 ± 0.8	-132 ± 8	_
[NII]λ6584	7550	4.7 ± 0.3	-35 ± 4	_
[SII]λ6718	7702	5.0 ± 0.9	-56 ± 10	_
[SII]λ6732	7722	2.3 ± 0.9	-26 ± 10	_

Таблица 10. Спектральные особенности SRGA J221913.2+362014

Таблица 11. Спектральные особенности SRGA J223714.9+402939

Линия	Длина волны, Å	Поток, 10^{-14} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM, 10^2$ км/с
${ m H}eta$, узкая	5144	< 0.2	>-4.6	_
${ m H}eta$, широкая	5144	6.8 ± 0.7	-73 ± 8	161 ± 18
[OIII]λ4959	5247	0.9 ± 0.1	-9.5 ± 1.3	_
[OIII]λ5007	5298	2.9 ± 0.1	-31 ± 2	_
[OI]λ6300	6668	0.30 ± 0.07	-2.8 ± 0.7	_
[NII]λ6548	6929	0.6 ± 0.1	-5.3 ± 1.0	5.4*
${ m H}lpha$, узкая	6945	1.7 ± 0.1	-15.5 ± 1.1	_
${ m H}lpha$, широкая	6945	17.5 ± 1.0	-164 ± 9	97 ± 5
$[NII]\lambda 6584$	6967	1.8 ± 0.1	-16.7 ± 1.2	_
[SII]λ6718	7109	0.5 ± 0.1	-4.5 ± 0.6	_
[SII]λ6732	7124	0.5 ± 0.1	-4.8 ± 0.6	_

* Значение параметра при аппроксимации линии зафиксировано.

 $lg([OIII]\lambda 5007/H\beta) > 1.01, lg([NII]\lambda 6584/H\alpha) = -0.03 \pm 0.08$ характерны для АЯГ, а наличие широких компонент Н α и Н β с потоками на порядок выше потоков в узких компонентах позволяет отнести этот объект к сейфертовским галактикам 1-го типа (Sy1).

SRGA J070636.4+635109

Этот рентгеновский источник был открыт телескопом ART-XC обсерватории СРГ в ходе первого года обзора всего неба (Павлинский и др., 2021b). Он был также зарегистрирован гаммаобсерваторией ИНТЕГРАЛ в ходе проведения многолетнего жесткого рентгеновского обзора

Линия	Длина волны, Å	Поток, 10^{-15} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM, 10^2$ км/с
Hβ	5062	1.1 ± 0.4	-1.2 ± 0.5	-
$[OIII]\lambda 4959$	5164	5.1 ± 0.5	-5.6 ± 0.5	_
[OIII]λ5007	5213	11.5 ± 0.5	-12.7 ± 0.6	_
[OI]λ6300	6563	2.9 ± 0.4	-3.2 ± 0.4	-
[NII]λ6548	6819	4.4 ± 0.3	-5.0 ± 0.4	-
$H\alpha$	6836	11.2 ± 0.4	-12.9 ± 0.5	-
[NII]λ6584	6857	9.8 ± 0.4	-11.4 ± 0.4	-
[SII]λ6718	6997	3.1 ± 0.3	-3.8 ± 0.4	_
[SII]λ6732	7012	2.8 ± 0.3	-3.5 ± 0.4	_

Таблица 12. Спектральные особенности SRGA J232037.8+482329

Таблица 13. Спектральные особенности SRGA J235250.6-170449

Линия	Длина волны, Å	Поток, 10^{-15} эрг с ⁻¹ см ⁻²	Экв. ширина, Å	$FWHM, 10^2$ км/с
${ m H}eta$, узкая	5129	3.5 ± 0.5	-4.4 ± 0.6	_
${ m H}eta$, широкая	5129	67 ± 3	-85 ± 4	112 ± 5
[OIII]λ4959	5231	7.6 ± 0.5	-9.6 ± 0.7	_
[OIII]λ5007	5282	19.0 ± 0.5	-24 ± 1	_
[OI]λ6302	6648	3.9 ± 0.6	-4.7 ± 0.7	_
[NII]λ6548	6909	1.1 ± 0.7	-1.4 ± 1.0	_
${ m H}lpha$, узкая	6925	15.2 ± 0.8	-20 ± 1	_
${ m H}lpha$, широкая	6925	368 ± 4	-493 ± 6	93 ± 2
$[NII]\lambda 6584$	6946	1.3 ± 0.6	-1.7 ± 0.9	_
[SII]λ6718	7089	2.0 ± 0.7	-2.8 ± 0.9	_
[SII]λ6732	7105	2.5 ± 0.6	-3.6 ± 0.9	_

всего неба (см. Кривонос и др., 2021, в качестве обзора), на картах области галактики M81 (Мереминский и др., в стадии подготовки) с потоком $(8.6 \pm 2.0) \times 10^{-12}$ эрг с⁻¹ см⁻² в диапазоне энергий 17-60 кэВ. В области локализации ART-XC, уточненной по данным еРОЗИТА (рис. 4), находится галактика UGC 3660 на z = 0.0143 (согласно SIMBAD), с которой можно связать также

радиоисточник NVSS J070632+635101 (Кондон и др., 1998).

В спектре галактики (рис. 4, табл. 7) присутствуют узкие эмиссионные линии [OIII] λ 4959, [OIII] λ 5007, [NII] λ 6548, Н α , [NII] λ 6584 и дублета серы, видна широкая компонента Н α . При этом линия Н β не детектируется. В спектре присутствуют также линии поглощения G, MgI, NaD фраунгоферовской серии. Измеренное по линиям красное смещение объекта: $z = 0.01404 \pm 0.00019$.

По положению на ВРТ-диаграмме $(lg([OIII]\lambda 5007/H\beta) > 0.65, lg([NII]\lambda 6584/H\alpha) = 0.42 \pm 0.07)$ объект может быть отнесен к сейфертовским галактикам либо к галактикам типа LINER. Однако наличие широкой компоненты Н α и отсутствие линии Н β позволяют классифицировать объект как сейфертовскую галактику типа 1.8 (Sy1.8).

SRGA J092021.6+860249

Этот источник был открыт в ходе обзора всего неба обсерватории ROSAT (2RXS J092015.8+860253). В области локализации еРО-ЗИТА (рис. 5) находится галактика LEDA 2790304 с характерным для АЯГ ИК-цветом W1 – W2 = 0.64. С ней связан также радиоисточник NVSS J091958+860300.

В оптическом спектре (рис. 5, табл. 8) присутствуют линии излучения бальмеровской серии Н α , Н β , Н γ с широкими компонентами, узкие запрещенные линии [OIII] λ 4959, [OIII] λ 5007, [NII] λ 6584, [SII] λ 6718, [SII] λ 6732 и линия поглощения G. Измеренное красное смещение объекта $z = 0.05286 \pm 0.00013$. Отношения потоков в узких линиях lg([OIII] λ 5007/H β) = 0.9 \pm 0.2 и lg([NII] λ 6584/H α) > 0.01 характерны для АЯГ, а наличие широких компонент линий Н α , Н β и Н γ позволяет классифицировать объект как Sy1.

SRGA J195702.4+615036

Этот источник был открыт в ходе обзора всего неба обсерватории РОСАТ (2RXS J195702.4+615038). В области локализации еРО-ЗИТА (рис. 6) находится галактика LEDA 2625686 с характерным для АЯГ ИК-цветом W1 - W2 = 0.65.

В спектре галактики (рис. 6, табл. 9) видны эмиссионные линии $H\alpha$ и $H\beta$ с широкими компонентами, запрещенные линии [OIII] λ 4959, [OIII] λ 5007, [OI] λ 6300, [SII] λ 6718, [SII] λ 6732, а также фраунгоферова линия поглощения MgI. Измеренное красное смещение объекта z = $= 0.05857 \pm 0.00014$. Отношения потоков в узких линиях lg([OIII] λ 5007/H β) = 1.34 ± 0.19 и lg([NII] λ 6584/H α) = 0.24 ± 0.12 указывают на наличие активного ядра. Поток в широких компонентах линий $H\alpha$ и $H\beta$ значительно превышает поток в узких компонентах, что позволяет классифицировать объект как Sy1.

SRGA J221913.2+362014

Этот рентгеновский источник был открыт телескопом ART-XC обсерватории СРГ в ходе первого года обзора всего неба (Павлинский и др., 2021b). В области локализации ART-XC, уточненной по данным еРОЗИТА (рис. 4), находится оптический-ИК-радио источник NVSS J221914+362011 = = WISEA J221914.50+362010.5 с характерным для AЯГ ИК-цветом W1 - W2 = 1.2.

В оптическом спектре (рис. 7, табл. 10) видно много запрещенных линий излучения нейтрального и ионизованного кислорода, серы, неона, а также присутствуют узкие линии излучения бальмеровской серии водорода $H\alpha$, $H\beta$, $H\gamma$. Измеренное красное смещение: z = $= 0.14667 \pm 0.00003$. По положению на ВРТдиаграмме (lg([OIII] λ 5007/H β) = 1.25 ± 0.04 и lg([NII] λ 6584/H α) = -0.58 ± 0.04) объект можно отнести к сейфертовским галактикам, а отсутствие широких компонент бальмеровских линий означает, что это Sy2.

SRGA J223714.9+402939

Этот источник был открыт в ходе направленных наблюдений обсерватории POCAT (источник 1WGA J2237.2+4029) (Вайт и др., 2000). В области локализации еРОЗИТА (рис. 8) находится галактика LEDA 5060459 с характерным для АЯГ ИК цветом W1 - W2 = 0.73. Согласно SIMBAD, красное смещение галактики z = 0.0580.

В оптическом спектре (рис. 8, табл. 11) видны запрещенные линии излучения кислорода и серы, а также линии излучения $H\alpha$ и $H\beta$ с широкими компонентами. Уточненное красное смещение объекта: $z = 0.05818 \pm 0.00011$. По положению на ВРТ-диаграмме (lg([OIII] λ 5007/H β) > 1.14, lg([NII] λ 6584/H α) = 0.03 ± 0.04) объект можно отнести к сейфертовским галактикам, а наличие широких компонент линий H α и H β , поток в которых во много раз превышает поток в узких компонентах, позволяет классифицировать объект как Sy1.

SRGA J232037.8+482329

Этот источник был открыт в ходе обзора всего неба обсерватории РОСАТ (2RXS J232039.7+482317). В области локализации еРО-ЗИТА находится галактика LEDA 2316409 на z = 0.04150 (согласно SIMBAD), с которой связан радиоисточник NVSS J232039+482326.

В спектре галактики (рис. 9, табл. 12) видны запрещенные линии кислорода и серы, узкие линии излучения $H\alpha$ и $H\beta$, а также фраунгоферова линия поглощения MgI. Уточненное красное смещение

Рис. 11. Оптические изображения в фильтре *i* из обзора *SkyMapper* (Келлер и др., 2007) вокруг 8 рентгеновских источников ART-XC на южном небе. Синей окружностью обозначена область локализации телескопом ART-XC, радиусом 30". Стрелкой показаны галактики, для которых был получен спектр в обзоре 6dF.

галактики: $z = 0.04197 \pm 0.00017$. По положению на ВРТ-диаграмме (lg([OIII] λ 5007/H β) = 1.03 ± ±0.17, lg([NII] λ 6584/H α) = -0.06 ± 0.02) и отсутствию широких компонент линий Н α и Н β объект можно классифицировать как Sy2.

SRGA J235250.6-170449

Этот источник был открыт в жестком рентгеновском обзоре неба прибора ВАТ обсерватории Swift (Оу и др., 2018). В области локализации еРОЗИТА (рис. 10) присутствует галакти-

	°		Линия	Экв. ширина, Å	$FWHM$, 10^2 км/с	
Линия	Экв. ширина, А	<i>FWHM</i> , 10 ² км/с	S	SRGA J061322.9-	290027	
SRGA J030838.1–552041		$H\beta$	-3.1 ± 1.2	4.1 ± 1.5		
$H\beta$	-3.2 ± 1.3	2.8 ± 1.1	[OIII]λ4959	-8.2 ± 2.8	5.6 ± 1.3	
[OIII]λ4959	-12.6 ± 4.0	3.5 ± 1.1	[OIII]λ5007	-25 ± 5	5.1 ± 0.5	
$[OIII]\lambda 5007$	-41 ± 7	3.5 ± 0.3	[OI]λ6300	-5.2 ± 1.9	6.3 ± 1.3	
[NII]λ6548	$-4.3^{+3.0}_{-2.4}$	3.5 ± 1.3	$[NII]\lambda 6548$	-7.9 ± 2.4	6.1 ± 0.8	
$H\alpha$	-18.6 ± 2.0	4.2 ± 0.4	Hα	-16.8 ± 2.4	6.1 ± 0.8	
$[NII]\lambda 6584$	-14.3 ± 3.2	3.7 ± 0.5	$[NII]\lambda 6584$	-21 ± 3	6.0 ± 0.8	
[SII]λ6718	-5.0 ± 1.6	4.1 ± 1.7	[SII]λ6718	$-5.4^{+1.6}_{-3.0}$	5.4 ± 2.1	
[SII]λ6732	-4.6 ± 1.6	3.9 ± 1.7	[SII]λ6732	-8.2 ± 3.1	7.6 ± 2.0	
	SRGA J052959.8-	340157	S	SRGA J063324.9–561424		
[OII]λ3727	-16.6 ± 4.9	5.8 ± 0.9	[OIII]λ4959	$-7.8^{+3.6}_{-5.4}$	3.0 ± 1.2	
$H\beta$	-4.6 ± 1.8	6.0 ± 1.7	[OIII]\\25007	-29^{+10}_{-27}	3.0 ± 1.2	
$[OIII]\lambda 4959$	-21 ± 4	6.9 ± 0.6	[NII]λ6548	-11.8 ± 3.8	4.2 ± 1.4	
$[OIII]\lambda 5007$	-65 ± 9	6.3 ± 0.6	Нα	-23^{+6}_{-16}	4.2 ± 1.4	
$[NII]\lambda 6548$	-4.1 ± 0.9	6.3 ± 0.3	[NII]λ6584	-15.3 ± 4.9	4.2 ± 1.4	
${ m H}lpha$, узкая	-20.6 ± 0.9	6.3 ± 0.3	SRGA J064421.5–662620			
${ m H}lpha$, широкая	-62 ± 5	72 ± 6	$H\gamma$	-2.9 ± 0.9	3.7 ± 1.7	
$[NII]\lambda 6584$	-16.2 ± 0.9	6.3 ± 0.3	[OII]λ3727	-14.4 ± 4.8	7.6 ± 1.6	
SRGA J055053.7-621457		${ m H}eta$, узкая	-5.2 ± 1.4	2.9 ± 1.6		
${ m H}\delta$, широкая	-17.5 ± 1.9	32 ± 4	${ m H}eta$, широкая	-35 ± 2	58 ± 4	
$ m H\gamma$, широкая	-16.2 ± 1.2	22 ± 2	[OIII]λ4959	-8.6 ± 1.8	4.0 ± 0.9	
${ m H}eta$, узкая	<1.9	_	[OIII]λ5007	-31 ± 6	4.7 ± 0.8	
${ m H}eta$, широкая	-38 ± 2	24 ± 2	m Hlpha, узкая	-22 ± 1	2.8 ± 0.2	
$[OIII]\lambda 4959$	-6.3 ± 2.2	6.7 ± 1.6	$\mathrm{H} \alpha$, широкая	-130 ± 4	40 ± 2	
$[OIII]\lambda 5007$	-21 ± 2	6.7 ± 0.6	$[NII]\lambda 6584$	-12.2 ± 0.8	2.8 ± 0.2	
${ m H}lpha$, узкая	-6.4 ± 2.8	5.6 ± 0.8	SRGA J072823.5-440823		440823	
${ m H}lpha$, широкая	-90 ± 5	20 ± 1	$ m H\gamma$, широкая	-24 ± 2	32 ± 3	
[NII]λ6584	-12.8 ± 2.4	5.5 ± 0.8	${ m H}eta$, узкая	<1.4	_	
SRGA J060241.1–595152		${ m H}eta$, широкая	-55 ± 2	34 ± 2		
$H\beta$	-6.7 ± 2.3	3.1 ± 0.8	[OIII]λ4959	$-4.7^{+1.1}_{-3.4}$	4.6 ± 1.6	
$[OIII]\lambda 4959$	-14.0 ± 3.7	4.4 ± 0.5	[OIII]λ5007	-20^{+4}_{-6}	4.3 ± 0.9	
$[OIII]\lambda 5007$	-49 ± 11	3.7 ± 0.4	${ m H}lpha$, узкая	-12.5 ± 2.7	5.0 ± 0.8	
$H\alpha$	-19^{+9}_{-18}	4.9 ± 1.7	${ m H}lpha$, широкая	-210 ± 5	30 ± 1	
$[NII]\lambda 6584$	-14^{+7}_{-14}	4.9 ± 1.7	[NII]λ6584	-5.4 ± 1.8	5.0 ± 0.8	

Таблица 14. Спектральные особенности объектов из Таблица 14. Окончание обзора 6dF

Объект	$lg([OIII]\lambda 5007/H\beta)$	$lg([NII]\lambda 6584/H\alpha)$	
SRGA J030838.1–552041	1.05 ± 0.12	-0.11 ± 0.07	
SRGA J052959.8-340157	1.09 ± 0.07	-0.11 ± 0.03	
SRGA J055053.7-621457	>1.11	0.30 ± 0.21	
SRGA J060241.1–595152	0.89 ± 0.13	-0.15 ± 0.37	
SRGA J061322.9-290027	0.96 ± 0.15	0.09 ± 0.08	
SRGA J063324.9-561424	>0.87	-0.19 ± 0.24	
SRGA J064421.5-662620	0.85 ± 0.04	-0.26 ± 0.03	
SRGA J072823.5-440823	>1.14	-0.37 ± 0.17	

Таблица 15. Соотношение потоков в эмиссионных линиях объектов из обзора 6dF

Таблица 16. Свойства активных ядер галактик, спектры которых получены на телескопах АЗТ-33ИК и РТТ-150

Объект	Оптический тип	2	$\log L_{\rm X}^1$
SRGA J025234.3+431004	Sy2	0.05123 ± 0.00024	43.0 ± 0.4
SRGA J062627.2+072734	Sy1	0.04254 ± 0.00013	43.0 ± 0.4
SRGA J070636.4+635109	Sy1.8	0.01404 ± 0.00019	42.4 ± 0.3
SRGA J092021.6+860249	Sy1	0.05286 ± 0.00013	43.5 ± 0.2
SRGA J195702.4+615036	Sy1	0.05857 ± 0.00014	43.4 ± 0.2
SRGA J221913.2+362014	Sy2	0.14667 ± 0.00003	44.4 ± 0.2
SRGA J223714.9+402939	Sy1	0.05818 ± 0.00011	43.6 ± 0.3
SRGA J232037.8+482329	Sy2	0.04197 ± 0.00017	42.8 ± 0.4
SRGA J235250.6-170449	Sy1	0.05502 ± 0.00012	43.7 ± 0.3

¹ Светимость в наблюдаемом диапазоне энергий 4—12 кэВ в единицах эрг/с, без поправки за поглощение. Ошибка соответствует 68% доверительному интервалу.

ка 2MASS J23525142-1704372, ИК-цвет которой (W1 - W2 = 0.54) позволяет предположить наличие АЯГ.

В спектре галактики (рис. 10, табл. 13) присутствует много запрещенных линий излучения кислорода, серы, азота, линии бальмеровской серии Н α , Н β , Н γ , у первых двух из которых есть мощные широкие компоненты, также видны линии поглощения фраунгоферовской серии MgI, NaD. Измеренное красное смещение объекта $z = 0.05502 \pm 0.00012$. Хотя по положению на ВРТ-диаграмме (lg([OIII] λ 5007/H β) = 0.74 ± ± 0.06 , lg([NII] $\lambda 6584/H\alpha$) = -1.07 ± 0.22) объект нельзя однозначно отнести к сейфертовским галактикам, наличие мощных широких компонентов линий излучения $H\alpha$, $H\beta$ позволяет классифицировать его как Sy1.

Объекты южного неба

Восемь источников ART-XC южного неба ($\delta > -20^{\circ}$) отождествляются с галактиками (рис. 11), для которых имеются спектры, полученные в ходе обзора 6dF (Джонс и др.,

НОВЫЕ АКТИВНЫЕ ЯДРА ГАЛАКТИК

Объект	Оптический тип	z^1	$\log L_{\rm X}^2$
SRGA J030838.1–552041	Sy2	0.07791	43.8 ± 0.2
SRGA J052959.8-340157	Sy1.8	0.07900	43.8 ± 0.2
SRGA J055053.7-621457	Syl	0.05875	43.0 ± 0.2
SRGA J060241.1–595152	Sy2	0.10051	43.8 ± 0.2
SRGA J061322.9-290027	Sy2	0.07051	44.1 ± 0.1
SRGA J063324.9-561424	Sy2	0.04784	43.2 ± 0.2
SRGA J064421.5-662620	Syl	0.07843	42.9 ± 0.4
SRGA J072823.5-440823	Syl	0.08171	43.8 ± 0.2

Таблица 17. Свойства активных ядер галактик, спектры которых получены в ходе обзора 6dF

¹ Значения взяты из каталога красных смещений обзора 6dF.

² Светимость в наблюдаемом диапазоне энергий 4–12 кэВ в единицах эрг/с, без поправки за поглощение. Ошибка соответствует 68% доверительному интервалу, без учета погрешности *z*.

2004, 2009). Один из этих рентгеновских источников (SRGA J030838.1-552041), связанный с галактикой LEDA 410289, был открыт телеско-

Рис. 12. Расположение исследуемых АЯГ на ВРТдиаграмме (Балдвин и др., 1981), полученной по данным Слоановского обзора (выпуск 7, Сообщество СДСС 2009). На графике представлены доверительные интервалы отношений потоков. Стрелкой указаны нижние $2-\sigma$ пределы. Разграничительные линии между разными классами галактик взяты из работ: Кауффманн и др. (2003) — сплошная линия, Кеули и др. (2001) — пунктирная линия, Жавински и др. (2007) штриховая линия. Источники отмечены по номерам, указанным в табл. 1, 2.

пом ART-XC обсерватории СРГ (Павлинский и др., 2021b), два (SRGAJ052959.8-340157 = = XMMSL2 J052958.9 - 340159 = LEDA 668116.SRGAJ060241.1 - 595152 = XMMSL2 J060241.6 -595149 = LEDA 178859) были обнаружены впервые во время перенаведений обсерватории XMM-Newton (XMM-Newton slew survey. Исследовательский научный центр XMM-Newton 2018), а остальные пять (SRGÅJ055053.7-621457 = 2RXS J055054.2-621454 = LEDA 178653.SRGAJ061322.9 - 290027 = 2RXS J061324.1 -290029 = LEDA 734640, SRGAJ063324.9-561424 = 2RXS J063326.4 - 561427 = LEDASRGAJ064421.5-662620 148903. = 2RXS J064422.7 - 662623 = 2MASS J06442187 - 662627 - 66267 - 66267 - 66267 - 66267 - 66267 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 6627 - 66267 - 6627 - 66267 - 6627 -SRGAJ072823.5-440823 6626199. = 2RXS J072822.3 - 440821 = 2MASS J07282338 -4408241) были открыты в ходе обзора всего неба обсерватории РОСАТ (Боллер и др., 2016). Все перечисленные галактики характеризуются ИКцветом, характерным для сейфертовских галактик (значения $W_1 - W2$ от 0.5 до 1.0).

Обзор 6dF проводился на 1.2-м телескопе Шмидта UKST с помощью мультиволоконного спектрографа с полем зрения 5.7° , оснащенного двумя решетками низкого разрешения $R \approx 1000$ с перекрывающимися спектральными диапазонами. При этом был полностью покрыт диапазон 4000—7500 Å. Полученные в ходе обзора спектры не откалиброваны по потоку и представлены⁶ в отсчетах, что не позволяет измерять абсолютные

⁶http://www-wfau.roe.ac.uk/6dFGS/

Рис. 13. Зависимость наклона рентгеновского степенного континуума от внутренней колонки поглощения для 8 АЯГ, исследованных по данным телескопов ART-XC и еРОЗИТА (см. табл. 3). Стрелками показаны 90% верхние пределы. Источники указаны по номерам из табл. 1.

потоки в эмиссионных линиях. Однако эти данные могут использоваться для оценки эквивалентной ширины линий и соотношения потоков в парах близко расположенных линий (Н β , [OIII] λ 5007) и ([NII] λ 6584, Н α), которые используются для классификации АЯГ по ВРТ-диаграмме.

В табл. 14, 15 представлены определенные на основе спектров 6dF характеристики эмиссионных линий объектов нашей выборки. Погрешности приведены на уровне достоверности 68%. Ширины линий (FWHM) поправлены на приборное уширение, равное 5.75 Å. Красные смещения объектов взяты из каталога 6dF (Джонс и др., 2009).

СВОЙСТВА ОБНАРУЖЕННЫХ АЯГ

В табл. 16, 17 представлены основные свойства АЯГ, которые удалось отождествить в данной работе: красное смещение, оптический тип и рентгеновская светимость L_X в диапазоне энергий 4— 12 кэВ.

Рентгеновская светимость была получена на основе потока в диапазоне 4-12 кэВ (см. табл. 1, 2) из каталога рентгеновских источников (Павлинский и др., 2021b) первого года обзора СРГ/АRТ-ХС и фотометрического расстояния до объекта, рассчитанного по его красному смещению. Приведенные значения L_X не учитывают k-поправки и не исправлены за поглощение на луче зрения.

Все обсуждаемые объекты оказались близкими сейфертовскими галактиками со светимостью $L_{\rm X}\sim\sim3 imes10^{43}-3 imes10^{44}$ эрг/с и попадают в область

сейфертовских галактик на стандартной ВРТдиаграмме (рис. 12) отношений потоков в линиях [OIII] λ 5007/H β , [NII] λ 6584/H α . Хотя источники SRGA J070636.4+635109 и SRGA J235250.6– 170449 находятся на границе этой области, присутствие в спектрах этих галактик широких компонент бальмеровских линий водорода однозначно говорит о том, что это сейфертовские галактики 1-го типа.

На рис. 13 показана зависимость наклона степенного континуума Γ от колонки внутреннего поглощения $N_{\rm H}$ для 8 объектов выборки, для которых был проведен анализ рентгеновских спектров по данным телескопов ART-XC и еРОЗИТА обсерватории СРГ. Большинство полученных значений наклона согласуются в пределах ошибок с $\Gamma \sim 1.5-2$, что характерно для АЯГ.

ЗАКЛЮЧЕНИЕ

С помощью наблюдений, проведенных на телескопах АЗТ-ЗЗИК и РТТ-150, и архивных спектральных данных из обзора 6dF нам удалось отождествить 17 новых активных ядер галактик среди рентгеновских источников, зарегистрированных в течение первого года обзора всего неба телескопа ART-XC обсерватории СРГ. Все они оказались близкими сейфертовскими галактиками (8 Sy1, 2 Sy1.8, 7 Sy2) на красных смещениях от z = 0.014до z = 0.147.

Для 8 объектов, расположенных на половине неба $0 < l < 180^{\circ}$, были построены широкополосные (0.2-20 кэВ) рентгеновские спектры по данным телескопов ART-XC и еРОЗИТА обсерватории СРГ. В спектрах трех из этих объектов выявлено внутреннее поглощение, причем два из них (сейфертовские галактики 2-го типа SRGA J025234.3+431004 и SRGA J221913.2+362014) являются сильно поглощенными ($N_{\rm H} \sim 10^{23}~{\rm cm}^{-2}$), а третий (Sy1 SRGA J235250.6-170449) характеризуется относительно небольшим поглощением $(N_{\rm H} \sim 10^{22} {\rm ~cm^{-2}})$. Отметим, что сильно поглощенный источник SRGA J025234.3+431004 ассоциирован с галактикой (LEDA 90641), которая наблюдается с ребра, поэтому поглощение в этом случае может возникать не только в газопылевом торе около сверхмассивной черной дыры, но и в межзвездной среде галактики.

Обзор всего неба обсерватории СРГ продолжается. Ожидается, что к окончанию 4-летнего обзора телескоп ART-XC зарегистрирует около 5 тысяч источников в диапазоне энергий 4—12 кэВ, в основном активных ядер галактик на малых красных смещениях (Павлинский и др., 2021b), в том числе много ранее неизвестных. Как было продемонстрировано в данной работе и в предыдущей статье из этой серии (Зазнобин и др., 2021а), задачу по отождествлению новых АЯГ из обзора СРГ/АRТ-ХС можно эффективно решать с помощью оптических телескопов 1.5-м класса.

Работа выполнена при поддержке гранта РНФ 19-12-00396. Авторы благодарят TUBITAK, ИКИ РАН, КФУ и АН РТ за поддержку наблюдений на Российско-турецком 1.5-м телескопе (РТТ-150). Измерения на телескопе АЗТ-ЗЗИК выполнены при финансовой поддержке Минобрнауки России и получены с использованием оборудования Центра коллективного пользования "Ангара"⁷. В этом исследовании использованы данные наблюдений телескопов ART-XC и еРОЗИТА на борту обсерватории СРГ. Обсерватория СРГ изготовлена Роскосмосом в интересах Российской академии наук в лице Института космических исследований в рамках Российской федеральной научной программы с участием Германского центра авиации и космонавтики (DLR). Космический аппарат СРГ спроектирован, изготовлен, запущен и управляется НПО им. Лавочкина и его субподрядчиками. Прием научных данных осуществляется комплексом антенн дальней космической связи в Медвежьих озерах, Уссурийске и Байконуре и финансируется Роскосмосом. Рентгеновский телескоп еРОЗИ-ТА изготовлен консорциумом германских институтов во главе с Институтом внеземной астрофизики Общества им. Макса Планка при поддержке DLR. Использованные в настоящей работе данные телескопа еРОЗИТА обработаны с помощью программного обеспечения eSASS, разработанного германским консорциумом еРОЗИТА, и программного обеспечения для обработки и анализа данных, разработанного российским консорциумом телескопа еРОЗИТА.

СПИСОК ЛИТЕРАТУРЫ

- Акаике Х., IEEE Transactions on Automatic Control 19, 716 (1974) [Akaike H.723, 479].
- 2. Арнауд (K. Arnaud), ASP Conf. 101, 17 (1996).
- Афанасьев В.Л., Додонов С.Н., Амирханян В.Р., Моисеев А.В., Астрофиз. бюлл. 71, 514 (2016) [V.L. Afanasiev, et al., Astrophys. Bull. 71, 479].
- 4. Балдвин и др. (J.A. Baldwin, M.M. Phillips, R. Terlevich), Publ. Astron. Soc. Pacific **93**, (1981).
- 5. Бехти и др., Astron. Astrophys. 594, A116 (2016).
- 6. Боллер и др. (Th. Boller, M.J. Freyberg, J. Trümper, F. Haberl, W. Voges, and K. Nandra), Astron. Astrophys. **588**, A103 (2016).
- 7. Бойсай и др. (R. Boissay, C. Ricci, S. Paltani), Astron. Astrophys. **588**, A70 (2016).

- Буренин Р.А., Амвросов А.Л., Еселевич М.В., Григорьев В.М., Арефьев В.А., Воробьев В.С. и др., Письма в Астрон. журн. 42, 5 (2016). [R.А. Burenin, A.L. Amvrosov, M.V. Eselevich, V.M. Grigor'ev, V.A. Aref'ev, V.S. Vorob'ev, et al., Astron. Lett. 42, 333 (2016)].
- 9. Вайт и др. (N.E. White, P. Giommi, L. Angelini), VizieR On-line Data Catalog: IX/31, (2000).
- 10. Верон-Сетти и др. (М.-Р. Véron-Cetty, P. Véron, and A.C. Gonçalves), Astron. Asrtophys. **372**, (2001).
- 11. Джонс и др. (D.H. Jones, W. Saunders, M. Colless, M.A. Read, Q.A. Parker, F.G. Watson, et al..), MNRAS **355**, 747 (2004).
- Джонс и др. (D.H. Jones, M.A. Read, W. Saunders, M. Colless, T. Jarrett, Q.A. Parker, et al.), MNRAS 399, 683 (2009).
- 13. Жавински и др. (K. Schawinski, D. Thomas, M. Sarzi, C. Maraston, S. Kaviraj, S.-J. Joo, S.K. Yi, and J. Silk), MNRAS **382**, 4 (2007).
- Зазнобин И.А., Усков Г.С., Сазонов С.Ю., Буренин Р.А., Медведев П.С., Хорунжев Г.А. и др., Письма в Астрон. журн. 47, 71 (2021). [I.A. Zaznobin, G.S. Uskov, S.Yu. Sazonov, R.A. Burenin, P.S. Medvedev, G.A. Khorunzhev, et al., Astron. Lett. 47, 71 (2021)].
- Зазнобин и др. (I. Zaznobin, S. Sazonov, R. Burenin, G. Uskov, A. Semena, M. Gilfanov, et al.) ArXiv:2107.05611, Astron. Astrophys. Special issue "The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG mission" (2021).
- 16. Исследовательский научный центр XMMNewton, VizieR On-line Data Catalog IX/53, (2018).[The XMM-Newton Survey Science Centre].
- 17. Кауффманн и др. (G. Kauffmann, T.M. Heckman, C. Tremonti, J. Brinchmann, S. Charlot, S.D.M. White, et al.), MNRAS **346**, 4 (2003).
- 18. Келлер и др. (S.C. Keller, B.P. Schmidt, M.S. Bessell, P.G. Conroy, P. Francis, A. Granlund, et al.), Publ. Astron. Soc. Australia **24**, 1 (2007).
- 19. Кеули и др. (L.J. Kewley, M.A. Dopita, R.S. Sutherland, C.A. Heisler, and J. Trevena), Astron. J. **556**, 1 (2001).
- 20. Кондон и др. (J.J. Condon, W.D. Cotton, E.W. Greisen, Q.F. Yin, R.A. Perley, et al.), Astron. J. 115, 1693 (1998).
- 21. Кривонос и др. (R.A. Krivonos, A.J. Bird, E.M. Churazov, J.A. Tomsick, A. Bazzano, V. Beckmann, G. Bélanger, et al.), New Astron. Rev. **92**, 101612 (2021).
- 22. Кусумано и др. (G. Cusumano, V. La Parola, A. Segreto, C. Ferrigno, A. Maselli, et al.), Astron. Astrophys. **524**, A64 (2010).
- 23. Кэш (W. Cash), Astrophys. J. 228, 939 (1979).
- 24. Оу и др. (К. Oh, M. Koss, C.B. Markwardt, K. Schawinski, W.H. Baumgartner, et al.), Astrophys. J. Suppl. Ser. **235**, 4 (2018).

⁷http://ckp-rf.ru/ckp/3056/

- 25. Остерброк (D.E. Osterbrock), Astrophys. J. **241**, 462 (1981).
- 26. Павлинский и др. (M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, O. Batanov, et al.), Astron. Astrophys. **650**, 18 (2021).
- 27. Павлинский и др. (M. Pavlinsky, S. Sazonov, R. Burenin, E. Filippova, R. Krivonos, V. Arefiev, et al.), https://doi.org/10.1051/0004-6361/202141770, Astron. Astrophys. Special issue "The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG mission" (2021).
- 28. Предель и др. (P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, M. Becker et al.), Astron.

Astrophys. 647, 16 (2021).

- Сообщество СДСС, Astrophys. J. Suppl. Ser. 182, 2 (2009) [SDSS Collaboration: K.N. Abazajian, J.K. Adelman-McCarthy, M.A. Agüeros, S.S. Allam, P.C. Allende Prieto, et al.].
- Сюняев и др. (R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al.), https://doi.org/10.1051/0004- 6361/202141779, Astron. Astrophys. Special issue "The Early Data Release of eROSITA and Mikhail Pavlinsky ART-XC on the SRG mission" (2021).