ОЦЕНКА ПАРАМЕТРОВ ГАЛАКТИЧЕСКОЙ СПИРАЛЬНОЙ ВОЛНЫ ПЛОТНОСТИ ПО СКОРОСТЯМ ОВ2-ЗВЕЗД ИЗ КАТАЛОГА GAIA EDR3

© 2022 г. В. В. Бобылев^{1*}, А. Т. Байкова¹

¹Главная (Пулковская) астрономическая обсерватория РАН, Санкт-Петербург, Россия

Поступила в редакцию 26.11.2021 г.

После доработки 05.12.2021 г.; принята к публикации 28.12.2021 г.

Проведен анализ кинематики 9750 OB2-звезд с собственными движениями и параллаксами, отобранными Сюем и др. из каталога Gaia EDR3. Относительные ошибки параллаксов этих звезд не превышают 10%. По всей выборке звезд найдены скорости $(U, V)_{\odot} = (7.17, 7.37) \pm (0.16, 0.24)$ км/с, а также компоненты угловой скорости вращения Галактики: $\Omega_0 = 29.700 \pm 0.076$ км/с/кпк, $\Omega'_0 = -4.008 \pm \pm 0.022$ км/с/кпк² и $\Omega''_0 = 0.671 \pm 0.011$ км/с/кпк³, где линейная скорость вращения Галактики на околосолнечном расстоянии составляет $V_0 = 240.6 \pm 3.0$ км/с для принятого значения $R_0 = 8.1 \pm \pm 0.1$ кпк. Имеются 1812 OB2-звезд с измеренными лучевыми скоростями, и по ним вычислены пространственные скорости V_R и $\Delta V_{\rm circ}$. На основе спектрального анализа независимо радиальных и остаточных тангенциальных скоростей получены следующие оценки: $f_R = 4.8 \pm 0.7$ км/с, $f_{\theta} = 4.1 \pm 0.9$ км/с, $\lambda_R = 2.1 \pm 0.2$ кпк и $\lambda_{\theta} = 2.2 \pm 0.4$ кпк, $(\chi_{\odot})_R = -116 \pm 12^\circ$ и $(\chi_{\odot})_{\theta} = -156 \pm 14^\circ$, для принятой модели четырехрукавного (m = 4) спирального узора. Таким образом, обе амплитуды возмущенной скорости отличны от нуля на высоком уровне значимости.

Ключевые слова: ОВ-звезды, кинематика, спиральная волна плотности, вращение Галактики.

DOI: 10.31857/S0320010822020024

ВВЕДЕНИЕ

Звезды спектрального класса О и ранние В — это очень молодые (несколько млн лет) массивные (более $10M_{\odot}$) звезды высокой светимости. Благодаря этим свойствам, они представляют большой интерес для изучения структуры и кинематики Галактики на различных масштабах.

В настоящей работе наш основной интерес связан с оценкой параметров галактической спиральной волны плотности. Оценки этих параметров мы делаем в рамках линейной теории спиральной структуры Линя, Шу (1964). Различные выборки OB-звезд, зон HII (где центральными возбуждающими являются звезды спектрального класса O) и OB-ассоциаций неоднократно служили для решения такой задачи (Крезе, Меннесье, 1973; Бил, Oвенден, 1978; Мельник и др., 2001; Фернандес и др., 2001; Заболотских и др., 2002; Руссейль, 2003; Бобылев и др., 2018).

Есть, конечно, и другие индикаторы спиральной структуры в Галактике. Это, например, долгопериодические цефеиды, молодые рассеянные звездные скопления (РЗС) или источники мазерного излучения. Такие молодые объекты также часто используют для определения структурных и кинематических параметров галактической спиральной волны плотности (Бертон, 1971; Мишуров и др., 1997; Мишуров, Зенина, 1999; Лепине и др., 2001; Попова, Локтин, 2005; Сиберт и др., 2012; Грив и др., 2014; Грив, Жанг, 2015; Расторгуев и др., 2017; Рид и др., 2019; Локтин, Попова, 2019; Сюй и др., 2018; 2021; Баррос и др., 2021).

Результаты кинематического анализа OB-звезд сильно зависят от качества измерительных данных. Точности собственных движений звезд непрерывно улучшаются и измерены в настоящее время для большого количества OB-звезд. Лучевые скорости для OB-звезд измерены для существенно меньшего их количества. Обычно при анализе пространственного распределения и кинематики OB-звезд использовались их фотометрические расстояния. Ситуация изменилась совсем недавно с публикацией более точных и более надежных тригонометрических параллаксов миллионов звезд, измеренных

^{*}Электронный адрес: vbobylev@gaoran.ru

в результате выполнения космического эксперимента Gaia (Прусти и др., 2016).

В настоящее время опубликована версия каталога Gaia EDR3 (Gaia Early Data Release 3, Браун и др., 2021), в которой по сравнению с предыдущей версией (Gaia DR2, Браун и др., 2018) примерно на 30% уточнены значения тригонометрических параллаксов и собственных движений для около 1.5 млрд звезд. Тригонометрические параллаксы для примерно 500 млн звезд измерены с ошибками менее 0.2 миллисекунд дуги (мсд). Для звезд со звездными величинами $G < 15^m$ случайные ошибки измерения собственных движений лежат в интервале 0.02–0.04 миллисекунд дуги в год (мсд/год), и они сильно возрастают у более слабых звезд. В целом собственные движения около половины звезд каталога измерены с относительной ошибкой менее 10%. Новых измерений лучевых скоростей в каталоге Gaia EDR3 нет.

В работе Сюя и др. (2021) сформирована большая выборка OB2-звезд с собственными движениями и тригонометрическими параллаксами из каталога Gaia EDR3. Целью настоящей работы является переопределение параметров галактической спиральной волны плотности с использованием новейших данных о звездах спектральных классов О и В.

МЕТОД

Из наблюдений имеем три составляющие скорости звезды: лучевую скорость V_r и две проекции тангенциальной скорости $V_l = 4.74r\mu_l \cos b$ и $V_b = 4.74r\mu_b$, направленные вдоль галактической долготы l и широты b соответственно. Все три скорости выражены в км/с. Здесь коэффициент 4.74 является коэффициентом размерности, а r — гелиоцентрическое расстояние звезды в кпк. Компоненты собственного движения $\mu_l \cos b$ и μ_b выражены в мсд/год. Через компоненты V_r, V_l, V_b вычисляются скорости U, V, W, направленные вдоль прямоугольных галактических осей координат:

$$U = V_r \cos l \cos b - V_l \sin l - V_b \cos l \sin b, \quad (1)$$
$$V = V_r \sin l \cos b + V_l \cos l - V_b \sin l \sin b,$$
$$W = V_r \sin b + V_b \cos b,$$

где скорость U направлена от Солнца к центру Галактики, V - в направлении вращения Галактики и W - на северный галактический полюс. Две скорости: V_R , направленную радиально от галактического центра, и ортогональную ей скорость $V_{\rm circ}$, направленную в направлении вращения Галактики, можем найти на основе следующих соотношений:

$$V_{\text{circ}} = U \sin \theta + (V_0 + V) \cos \theta, \qquad (2)$$
$$V_R = -U \cos \theta + (V_0 + V) \sin \theta,$$

где позиционный угол θ удовлетворяет соотношению tg $\theta = y/(R_0 - x)$, x, y, z — прямоугольные гелиоцентрические координаты звезды (вдоль соответствующих осей x, y, z направлены скорости U, V, W), V_0 — линейная скорость вращения Галактики на солнечном расстоянии R_0 .

Для определения параметров кривой галактического вращения используем одно условное уравнение с компонентой скорости V_l в левой части. Это уравнение получено из формул Боттлингера, где проведено разложение угловой скорости вращения Галактики Ω в ряд до членов второго порядка малости r/R_0 :

$$V_{l} = U_{\odot} \sin l - V_{\odot} \cos l - r\Omega_{0} \cos b + (3) + (R - R_{0})(R_{0} \cos l - r \cos b)\Omega_{0}' + + 0.5(R - R_{0})^{2}(R_{0} \cos l - r \cos b)\Omega_{0}'' + + \tilde{v}_{R} \sin(l + \theta) + \tilde{v}_{\theta} \cos(l + \theta),$$

где R — расстояние от звезды до оси вращения Галактики $R^2 = r^2 \cos^2 b - 2R_0 r \cos b \cos l + R_0^2$. Скорости $(U, V, W)_{\odot}$ являются средней групповой скоростью выборки, берутся с обратным знаком и отражают пекулярное движение Солнца. Так как только по компонентам V_l нельзя хорошо определить скорость W_{\odot} , то ее значение мы принимаем равным 7 км/с; Ω_0 является угловой скоростью вращения Галактики на солнечном расстоянии R_0 , параметры Ω'_0 и Ω''_0 — соответствующие производные угловой скорости, $V_0 = R_0\Omega_0$.

В настоящей работе значение R_0 принимается равным 8.1 ± 0.1 кпк, согласно обзору Бобылева, Байковой (2021), где оно было выведено как средневзвешенное из большого количества современных индивидуальных оценок. Отметим также наиболее высокоточное современное индивидуальное измерение R_0 , полученное Абутером и др. (2019) из анализа шестнадцатилетнего ряда наблюдений движения звезды S2 вокруг массивной черной дыры Sgr A* в центре Галактики, $R_0 = 8.178 \pm \pm 0.013$ (стат.) ± 0.022 (сист.) кпк.

Учет влияния галактической спиральной волны плотности в уравнении (3) основан на линейной теории, в которой возмущение потенциала имеет вид бегущей волны (Линь, Шу, 1964; Линь и др., 1969). Учет этого влияния осуществляется в форме, предложенной Крезе, Меннесье (1973). Влияние спиральной волны плотности в радиальных V_R скоростях определяется скоростью \tilde{v}_R , а в остаточных тангенциальных скоростях $\Delta V_{\rm circ}$ скоростью \tilde{v}_{θ} :

$$\tilde{v}_R = -f_R \cos \chi,$$

$$\tilde{v}_\theta = f_\theta \sin \chi,$$
(4)

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 48 № 3 2022

186

где

$$\chi = m[\operatorname{ctg}(i)\ln(R/R_0) - \theta] + \chi_{\odot}$$

— фаза спиральной волны, m — количество спиральных рукавов, i — угол закрутки спирального узора (i < 0 для закручивающейся спирали), χ_{\odot} — радиальная фаза Солнца в спиральной волне; f_R и f_{θ} — амплитуды возмущений радиальных и тангенциальных скоростей, которые считаются положительными.

Знак минус при $\cos \chi$ в первом уравнении (4) показывает, что в центре спирального рукава в области внутри солнечного круга скорость f_R направлена к центру Галактики. Это соответствует известной иллюстрации Рольфса (1980), где указаны направления скоростей возмущений в спиральной волне плотности в области, расположенной внутри солнечного круга.

Знак фазового угла Солнца χ_{\odot} может быть как положительным, так и отрицательным в зависимости от точки отсчета. При отсчитывании этого угла от спирального рукава Киля—Стрельца ($R \sim 7$ кпк) он будет отрицательным. При отсчитывании от рукава Персея ($R \sim 9.5$ кпк) угол фазы Солнца будет положительным.

Длина волны λ (расстояние между соседними отрезками спиральных рукавов, отсчитываемое вдоль радиального направления) вычисляется на основе соотношения

$$2\pi R_0 / \lambda = m \operatorname{ctg}(|i|). \tag{5}$$

Решая методом наименьших квадратов (МНК) систему условных уравнений вида (3), можем определить значения скоростей $(U, V)_{\odot}$, Ω_0 , Ω'_0 , Ω''_0 , \tilde{v}_R и \tilde{v}_{θ} . Чтобы оценить амплитуды скоростей возмущения f_R и f_{θ} , необходимо знать значения угла закрутки *i* и фазу Солнца χ_{\odot} (либо, согласно соотношению (5), длину волны λ и χ_{\odot}).

Такой подход был осуществлен, например, Мишуровым, Зениной (1999) при анализе цефеид. Для определения f_R и f_{θ} путем минимизации функции χ -квадрат проводилось варьирование в достаточно широких пределах двух переменных *i* и χ_{\odot} . Примерно так же был осуществлен поиск значений f_R и f_{θ} в работах Мельник и др. (2001) при изучении кинематики OB-ассоциаций, а также Поповой, Локтина (2005) при анализе рассеянных звездных скоплений и OB-звезд.

Имеется и другой подход для определения таких параметров спиральной волны плотности, как f_R , f_{θ} , λ (или *i*) и χ_{\odot} , из анализа радиальных V_R и остаточных тангенциальных $\Delta V_{\rm circ}$ скоростей звезд. Подход основан на применении модифицированного спектрального анализа (Байкова, Бобылев, 2012). Здесь остаточные скорости $\Delta V_{\rm circ}$ получены из тангенциальных скоростей $V_{\rm circ}$ путем вычитания кривой вращения с предварительно найденными параметрами.

Пусть имеется ряд измеренных скоростей V_{R_n} (это могут быть как радиальные V_R , так и тангенциальные $\Delta V_{\rm circ}$ скорости), $n = 1, 2, \ldots, N$, где N число объектов. Задачей спектрального анализа является выделение периодичности из ряда данных в соответствии с принятой моделью, описывающей спиральную волну плотности с параметрами f, λ (или i) и χ_{\odot} .

В результате учета логарифмического характера спиральной волны, а также позиционных углов объектов θ_n , наш спектральный (периодограммный) анализ рядов возмущений скоростей сводится к вычислению квадрата амплитуды (спектра мощности) стандартного преобразования Фурье (Байкова, Бобылев, 2012):

$$\bar{V}_{\lambda_k} = \frac{1}{N} \sum_{n=1}^{N} V'_n(R'_n) \exp\left(-j\frac{2\pi R'_n}{\lambda_k}\right), \quad (6)$$

где \bar{V}_{λ_k} — k-я гармоника преобразования Фурье с длиной волны $\lambda_k = D/k$, D — период анализируе-мого ряда,

$$R'_n = R_0 \ln(R_n/R_0), \qquad (7)$$

$$V'_n(R'_n) = V_n(R'_n) \exp(jm\theta_n).$$

Пиковому значению спектра мощности S_{peak} соответствует искомая длина волны λ . Угол закрутки спиральной волны плотности находится из выражения (5). Амплитуду и фазу возмущений мы находим в результате подгонки гармоники с найденной длиной волны к измеренным данным. Для оценки амплитуды возмущений может быть использовано соотношение

$$f_R(f_\theta) = 2\sqrt{S_{\text{peak}}}.$$
 (8)

В настоящей работе используются оба описанных метода. Для этого применяем следующий подход. На первом шаге ищем МНК-решение системы условных уравнений вида (3) с целью оценки шести параметров $(U, V)_{\odot}$, Ω_0 , Ω'_0 и Ω''_0 . С найденными значениями этих скоростей формируем радиальные V_R и остаточные скорости вращения $\Delta V_{\rm circ}$.

На втором шаге проводим спектральный анализ скоростей V_R и ΔV_{circ} и находим значения f_R , f_{θ} , λ и χ_{\odot} . Этот метод учитывает как логарифмический характер спиральной структуры Галактики, так и позиционные углы объектов, что позволяет проводить точный анализ скоростей объектов, распределенных в широком диапазоне галактоцентрических расстояний. Кроме того, этим методом можем получить оценки как только по радиальным скоростям λ_R и (χ_{\odot})_R, так и по остаточным тангенциальным скоростям λ_{θ} и (χ_{\odot})_{θ}.

Рис. 1. Распределение OB2-звезд с лучевыми скоростями на галактической плоскости *XY*, показан четырехрукавный спиральный узор с углом закрутки $i = -13^{\circ}$.

На третьем шаге ищем МНК-решение системы условных уравнений вида (3) с целью оценки семи параметров $(U, V)_{\odot}$, Ω_0 , Ω'_0 , Ω''_0 , \tilde{v}_R и \tilde{v}_{θ} . Зная λ и χ_{\odot} , найденные на втором шаге, получаем новые оценки f_R и f_{θ} .

ДАННЫЕ

Используем выборку OB-звезд, для которых собственные движения и тригонометрические параллаксы были взяты Сюем и др. (2021) из каталога Gaia EDR3. Для этого с каталогом Gaia EDR3 этими авторами были отождествлены спектрально подтвержденные Скифом (2014) 9750 звезд спектральных классов от O до B2. Причем были отобраны звезды с относительными ошибками тригонометрических параллаксов менее 10%. Звезды, расположенные выше 300 пк над галактической плоскостью, в выборку не включались.

В работе Сюя и др. (2018) была сформирована выборка из 5772 звезд спектральных классов О– В2 с кинематическими параметрами из каталога Gaia DR2. Отбирались звезды с относительными ошибками тригонометрических параллаксов менее 10%. Для более 2500 OB-звезд эти авторы взяли значения лучевых скоростей из электронной базы SIMBAD ¹.

Мы отождествили выборки OB-звезд из работ Сюя и др. (2018) и Сюя и др. (2021), и в новой выборке обнаружили 1812 звезд с лучевыми скоростями. Лучевые скорости OB-звезд в каталоге Сюя и др. (2018) даны относительно местного стандарта покоя, поэтому мы переводим их обратно в гелиоцентрические с известными параметрами стандартного движения Солнца $(U, V, W)_{\odot} =$ = (10.3, 15.3, 7.7) км/с.

На рис. 1 дано распределение 1812 OB2-звезд в проекции на галактическую плоскость XY. Использована система координат, в которой ось Xнаправлена от центра Галактики на Солнце, направление оси Y совпадает с направлением вращения Галактики. Показан четырехрукавный спиральный узор с углом закрутки $i = -13^{\circ}$ (Бобылев, Байкова, 2014а), построенный со значением $R_0 =$ = 8.1 кпк, римскими цифрами пронумерованы следующие отрезки спиральных рукавов: I — Щита,

¹http://simbad.u-strasbg.fr/simbad/

Рис. 2. Радиальные скорости V_R в зависимости от расстояния R выборки OB2-звезд с лучевыми скоростями (a), спектр мощности этой выборки (б), остаточные скорости вращения ΔV_{circ} звезд этой выборки (в) и их спектр мощности (г).

II — Киля-Стрельца, III — Персея и IV — Внешний рукав.

РЕЗУЛЬТАТЫ

На первом шаге система условных уравнений вида (3) решается относительно пяти неизвестных методом наименьших квадратов с весами вида $w_l =$ $= S_0/\sqrt{S_0^2 + \sigma_{V_l}^2}$, где S_0 — "космическая" дисперсия, σ_{V_l} — дисперсия ошибок наблюдаемых скоростей. Значение S_0 сопоставимо со среднеквадратической невязкой σ_0 (ошибка единицы веса) при решении условных уравнений вида (3). Мы приняли $S_0 = 10$ км/с. Система уравнений решалась в несколько итераций с применением критерия 3σ для исключения звезд с большими невязками.

По всей выборке из 9750 OB2-звезд с собственными движениями и параллаксами найдены две скорости $(U, V)_{\odot} = (7.17, 7.37) \pm (0.16, 0.24)$ км/с, а также следующие компоненты угловой скорости вращения Галактики:

$$Ω_0 = 29.700 \pm 0.076 \text{ км/c/кпк},$$
(9)

$$\Omega_0' = -4.008 \pm 0.022$$
 км/с/кпк²,

 $\Omega_0'' = 0.671 \pm 0.011$ км/с/кпк³.

Здесь $V_0 = 240.6 \pm 3.0$ км/с для принятого значения $R_0 = 8.1 \pm 0.1$ кпк.

На втором шаге формируем скорости V_R и $\Delta V_{\rm circ}$ с использованием найденных в решении (9) параметров. Далее проводим спектральный анализ скоростей V_R и $\Delta V_{\rm circ}$. Результаты отражены на рис. 2, где даны скорости V_R и $\Delta V_{\rm circ}$ в зависимости от расстояния R для выборки OB2-звезд с лучевыми скоростями, а также соответствующие спектры мощности. По этим данным получены следующие оценки: $f_R = 4.8 \pm 0.7$ км/с, $f_{\theta} = 4.1 \pm 0.9$ км/с, $\lambda_R = 2.1 \pm 0.2$ кпк $(i_R = -9.4 \pm 0.9^{\circ}$ для m = 4) и $\lambda_{\theta} = 2.2 \pm 0.4$ кпк $(i_{\theta} = -9.8 \pm 1.8^{\circ}$ для m = 4), $(\chi_{\odot})_R = -116 \pm 12^{\circ}$ и $(\chi_{\odot})_{\theta} = -156 \pm 14^{\circ}$.

На третьем шаге используем всю выборку из 9750 OB2-звезд с собственными движениями и параллаксами. С учетом соотношений (4)–(5), а также того, что уже известны значения λ и χ_{\odot} , уравнение (3) можно записать в более удобной для непосредственного определения параметров f_R и f_{θ} форме

$$V_l = U_{\odot} \sin l - V_{\odot} \cos l - r\Omega_0 \cos b + \tag{10}$$

$$+ (R - R_0)(R_0 \cos l - r \cos b)\Omega'_0 + + 0.5(R - R_0)^2(R_0 \cos l - r \cos b)\Omega''_0 - - f_R \cos \chi \sin(l + \theta) + f_\theta \sin \chi \cos(l + \theta)$$

где

$$\chi = \frac{2\pi R_0}{\lambda} \ln(R/R_0) - m\theta + \chi_{\odot}.$$

В результате МНК-решения условных уравнений вида (10) найдены две скорости $(U, V)_{\odot} =$ = (6.18, 6.40) ± (0.25, 0.51) км/с, а также

$$Ω_0 = 30.98 \pm 0.17 \text{ км/с/кпк}, \quad (11)$$

$$Ω'_0 = -4.175 \pm 0.027 \text{ км/с/кпк}^2, \quad Ω''_0 = 0.697 \pm 0.011 \text{ км/с/кпк}^3, \quad f_R = 4.43 \pm 0.56 \text{ км/c}, \quad f_\theta = 1.30 \pm 0.62 \text{ км/c}$$

с принятыми значениями $\lambda = 2.1$ кпк и $\chi_{\odot} = -120^{\circ}$. В этом решении $V_0 = 250.9 \pm 3.4$ км/с для $R_0 = 8.1 \pm 0.1$ кпк.

Отметим, что скорости f_R и f_{θ} очень сильно зависят от принятого значения фазы Солнца χ_{\odot} . Эффект проиллюстрирован данными табл. 1, где даны кинематические параметры модели (10), полученные при четырех значениях χ_{\odot} . Хорошо видна связь найденных значений f_R и f_{θ} со скоростями U_{\odot} и V_{\odot} . Это обусловлено близостью (см. уравнение (10)) значений sin l и sin $(l + \theta)$, а также cos l и cos $(l + \theta)$ при малых углах θ . Довольно подробно такая связь между этими параметрами была изучена в работе Бобылева, Байковой (2014б).

Дадим еще решение, полученное в результате МНК-решения условных уравнений вида (10) с принятыми значениями $\lambda = 2.1$ кпк и $\chi_{\odot} = -125^{\circ}$. В нем найдены две скорости $(U, V)_{\odot} = (5.69, 7.28) \pm (0.26, 0.46)$ км/с, а также

$$Ω_0 = 31.03 \pm 0.16 \text{ km/c/kmk},$$
(12)
$$Ω'_0 = -4.183 \pm 0.027 \text{ km/c/kmk}^2,$$

$$Ω''_0 = 0.699 \pm 0.011 \text{ km/c/kmk}^3,$$

$$f_R = 5.07 \pm 0.55 \text{ km/c},$$

$$f_θ = 0.11 \pm 0.58 \text{ km/c}.$$

В качестве наилучших мы выбрали решения (11) и (12) по следующим соображениям. Во-первых, в этих решениях были использованы наиболее близкие к реальности для этой выборки звезд значения фазы Солнца $\chi_{\odot} = -120^{\circ}$ и $\chi_{\odot} = -125^{\circ}$. Действительно, на основе спектрального анализа точнее значение этого угла определяется по радиальным скоростям, $(\chi_{\odot})_R = -116^{\circ}$. В уравнении (10) должно входить значение, которое удовлетворяет как радиальным, так и тангенциальным

компонентам скоростей, т.е. близкое к среднему $[(\chi_{\odot})_R + (\chi_{\odot})_{\theta}]/2 = -136^{\circ}$. Для спирального узора, показанного на рис. 1, значение фазы Солнца известно точно, $\chi_{\odot} = -140^{\circ}$ (Бобылев, Байкова, 2014а). Таким образом, значение χ_{\odot} необходимо выбирать из интервала $[-116^{\circ}, -136^{\circ}]$.

Во-вторых, важно иметь правильное соотношение скоростей U_{\odot} и V_{\odot} . Мы ориентируемся на те, что получены в решении (9). Как видно из табл. 1, значения скоростей U_{\odot} и V_{\odot} могут очень сильно изменяться в зависимости от принятой фазы χ_{\odot} . Главный вывод из анализа таблицы заключается в том, что в этом методе при использовании ошибочного значения угла фазы Солнца можем получить очень далекие от реальности значения скоростей возмущения. Отметим, что параметры, полученные с фазой $\chi_{\odot} = -130^{\circ}$, все еще удовлетворяют нашим требованиям.

Анализ результатов решения условных уравнений вида (10) позволяет сделать ряд заключений. Наиболее вероятное значение фазы Солнца χ_{\odot} для рассматриваемой выборки OB2-звезд лежит в интервале [$-120^{\circ}, -130^{\circ}$]. Значение амплитуды радиальных возмущений f_R лежит в интервале [4.4, 5.9] км/с и определяется с ошибками ± 0.6 км/с.

Что касается угловой скорости вращения Галактики Ω_0 и ее производных Ω'_0 , Ω''_0 , то они хорошо определяются как без параметров f_R и f_θ , так и с их включением в список определяемых неизвестных. Отметим, что по сравнению с решением (9) в решении (11) и в табл. 1 существенно возросла ошибка определения Ω_0 .

ОБСУЖДЕНИЕ

Параметры вращения Галактики

Значения параметров галактического вращения Ω_0 и ее производных Ω'_0 , Ω''_0 , найденные в решении (9), характерны для очень молодых объектов тонкого диска Галактики и находятся в очень хорошем согласии с их оценками, полученными другими авторами.

Например, Расторгуевым и др. (2017) по данным о 130 галактических мазерах с измеренными тригонометрическими параллаксами были найдены компоненты скорости Солнца (U_{\odot}, V_{\odot}) = = (11.40, 17.23) ± (1.33, 1.09) км/с и следующие значения параметров кривой вращения Галактики: $\Omega_0 = 28.93 \pm 0.53$ км/с/кпк, $\Omega'_0 = -3.96 \pm \pm 0.07$ км/с/кпк² и $\Omega''_0 = 0.87 \pm 0.03$ км/с/кпк³, $V_0 = 243 \pm 10$ км/с, для найденного значения $R_0 = = 8.40 \pm 0.12$ кпк.

В работе Рида и др. (2019) по выборке из 147 мазеров были найдены следующие значения

БОБЫЛЕВ, БАЙКОВА

Параметры	$\chi_{\odot} = -100^{\circ}$	$\chi_{\odot} = -110^{\circ}$	$\chi_{\odot} = -130^{\circ}$	$\chi_{\odot} = -140^{\circ}$
U_{\odot} , км/с	7.79 ± 0.18	7.15 ± 0.22	5.07 ± 0.27	4.30 ± 0.29
V_{\odot} , км/с	-0.34 ± 0.68	3.61 ± 0.60	8.02 ± 0.42	8.61 ± 0.35
Ω_0 , км/с/кпк	30.02 ± 0.17	30.65 ± 0.17	31.22 ± 0.15	31.18 ± 0.14
Ω_0^\prime , км/с/кпк 2	-4.089 ± 0.027	-4.149 ± 0.028	-4.198 ± 0.027	-4.193 ± 0.025
Ω_0'' , км/с/кпк 3	0.669 ± 0.011	0.688 ± 0.011	0.703 ± 0.011	0.701 ± 0.011
f_R , км/с	-0.39 ± 0.57	2.55 ± 0.58	5.86 ± 0.54	6.32 ± 0.51
$f_{ heta}, \kappa$ м/с	9.13 ± 0.76	4.69 ± 0.70	-1.03 ± 0.55	-2.36 ± 0.49

Таблица 1. Кинематические параметры, найденные по ОВ2-звездам на основе уравнения (10)

Таблица 2. Оценки параметров галактической спиральной волны плотности, найденные различными авторами

Выборка	Ref	f_R , км/с	$f_{ heta},$ км/с	λ , кпк	<i>і</i> , град.	χ_{\odot} , град.	m
ОВ-зв., цеф., РЗС	[1]	3.6 ± 0.4	4.7 ± 0.6		-4.2 ± 0.2	-165 ± 1	2
Цефеиды	[2]	6.3 ± 2.4	4.4 ± 2.4		-6.8 ± 0.7	-70 ± 16	2
Цефеиды	[3]	3.5 ± 1.7	7.5 ± 1.8		-11.4 ± 12	-20 ± 9	4
ОВ-ассоциации	[4]	6.6 ± 1.4	1.8 ± 1.4	2.0 ± 0.2			
Цефеиды	[5]	6.7 ± 2.3	1.4 ± 1.6		-6.0 ± 0.7	-85 ± 15	2
РЗС	[5]	5.5 ± 2.3	0.2 ± 1.6		-12.2 ± 0.7	-88 ± 15	4
ОВ-звезды	[5]	6.6 ± 2.5	0.4 ± 2.3		-6.6 ± 0.9	-97 ± 18	2
РЗС, НІ, НІІ	[6]	5.9 ± 1.1	4.6 ± 0.5	2.1 ± 0.5		-119	
Мазеры	[7]	7.7 ± 1.6		2.2 ± 0.3	-5.0 ± 0.5	-147 ± 10	2
Мазеры	[8]	6.9 ± 1.4	2.8 ± 1.0		-10.4 ± 0.3	-125 ± 10	4
ОВ-звезды	[9]	7.1 ± 0.3	6.5 ± 0.4	2.8 ± 0.2		-128 ± 6	4
РЗС	[10]	4.6 ± 0.7	1.1 ± 0.4				4
Настоящая работа І		4.8 ± 0.7	4.1 ± 0.9	2.1 ± 0.2	-9.4 ± 0.9	-116 ± 12	4
Настоящая работа II		4.4 ± 0.6	1.3 ± 0.6	2.1		[-120, -130]	4

Примечание. [1] — Бил, Овенден (1978); [2] — Мишуров и др. (1997); [3] — Мишуров, Зенина (1999); [4] — Мельник и др. (2001); [5] — Заболотских и др. (2002); [6] — Бобылев и др. (2008); [7] — Байкова, Бобылев (2012); [8] — Расторгуев и др. (2017); [9] — Бобылев и др. (2018); [10] — Локтин, Попова (2019).

двух важнейших кинематических параметров: $R_0 = 8.15 \pm 0.15$ кпк и $\Omega_{\odot} = 30.32 \pm 0.27$ км/с/кпк, где $\Omega_{\odot} = \Omega_0 + V_{\odot}/R$. Значение скорости $V_{\odot} = 12.2$ км/с было взято из работы Шонриха и др. (2010). Эти авторы использовали разложение в ряд линейной скорости вращения Галактики.

По собственным движениям около 6000 OBзвезд из списка Сюя и др. (2018) с собственными движениями и параллаксами из каталога Gaia DR2 в работе Бобылева, Байковой (2019) найдены $(U_{\odot}, V_{\odot}) = (6.53, 7.27) \pm (0.24, 0.31)$ км/с, $\Omega_0 = 29.70 \pm 0.11$ км/с/кпк, $\Omega'_0 = -4.035 \pm 0.031$ км/с/кпк² и $\Omega''_0 = 0.620 \pm \pm 0.014$ км/с/кпк³, где $V_0 = 238 \pm 5$ км/с для принятого $R_0 = 8.0 \pm 0.15$ кпк.

Параметры волны плотности

В табл. 2 даны параметры галактической спиральной волны плотности, найденные различными авторами с использованием разнообразных измерительных данных.

Бил, Овенден (1978) определили значения этих параметров по выборке из 797 звезд спектральных классов от О7 до А5, они привлекли также 145 цефеид и 76 РЗС. Всего было использовано 1018 лучевых скоростей этих молодых объектов.

В работах Мишурова и др. (1997), Мишурова, Зениной (1999) была рассмотрена выборка из примерно 120 цефеид. Использовались как их лучевые скорости, так и собственные движения. Здесь для определения скоростей возмущений f_R и f_{θ} осуществлялся поиск минимума функции χ -квадрат, и при этом проводилось варьирование сразу двух переменных i и χ_{\odot} . В оригинальных работах отсчет фазы Солнца проводился от рукава Персея, но мы привели эти значения к нашему способу отсчета.

Мельник и др. (2001) проанализировали кинематику выборки из 70 ОВ-ассоциаций, расположенных в околосолнечной области радиуса 3 кпк. Использовались как лучевые скорости, так и собственные движения этих ассоциаций.

В работе Заболотских и др. (2002) были рассмотрены разнообразные молодые галактические объекты. В кинематическую выборку вошли 113 классических цефеид с периодами пульсации более 9 сут, 89 молодых ($\log t < 7.6$) РЗС, 102 голубых сверхгиганта, а также лучевые скорости облаков водорода НІ в тангенциальных точках и лучевые скорости зон НІІ.

В работе Бобылева и др. (2008) были использованы данные о молодых (≤50 млн лет) РЗС, лучевые скорости облаков нейтрального водорода НІ в тангенциальных точках и лучевые скорости зон НІІ. В итоге было получено довольно хорошее покрытие внутренней области Галактики. Применялся фурье-анализ, немного отличающийся от используемого в настоящей работе.

В работе Байковой, Бобылева (2012) использовалась выборка из 44 галактических мазеров с измеренными тригонометрическими параллаксами. В работе Расторгуева и др. (2017) уже рассмотрена выборка из 131 мазерного источника. Кинематические параметры спиральной структуры были определены так же, как и в настоящей работе, на основе спектрального анализа. Как и в настоящей работе, Бобылев и др. (2018) рассмотрели выборку 495 ОВ-звезд с данными из каталога Gaia DR2, где на основе спектрального анализа был осуществлен поиск параметров раздельно по радиальной и тангенциальной составляющими скоростей. Поэтому в таблице указаны усредненные значения λ и χ_{\odot} .

В работе Локтина, Поповой (2019) проанализирована кинематика около 1000 РЗС из "Однородного каталога параметров рассеянных звездных скоплений" (Локтин, Попова, 2019) с собственными движениями звезд из каталога Gaia DR2. Лучевые скорости измерены для 522 РЗС из этой выборки.

В нижних двух строках табл. 2 даны параметры, которые в настоящей работе а) определены по радиальным скоростям звезд на основе спектрального анализа — обозначены как метод I; и б) получены на основе решения уравнения (10) — обозначены как метод II. В целом можем видеть, что имеется хорошее согласие найденных в настоящей работе значений f_R и λ , углов *i* и χ_{\odot} с другими их определениями. Плохое согласие имеется только в определении f_{θ} . Но из таблицы видно, что эта скорость неуверенно определяется любыми методами.

ЗАКЛЮЧЕНИЕ

Для изучения кинематики Галактики использована выборка OB2-звезд из работы Сюя и др. (2021) с собственными движениями и тригонометрическими параллаксами из каталога Gaia EDR3. Для 1812 звезд из этой выборки имеются значения лучевых скоростей, взятые из литературных источников.

По собственным движениям и параллаксам всей выборки из 9750 OB2-звезд найдены скорости $(U, V)_{\odot} = (7.17, 7.37) \pm (0.16, 0.24)$ км/с, а также компоненты угловой скорости вращения Галакти-ки: $\Omega_0 = 29.700 \pm 0.076$ км/с/кпк, $\Omega'_0 = -4.008 \pm 0.022$ км/с/кпк² и $\Omega''_0 = 0.671 \pm 0.011$ км/с/кпк³, где линейная скорость вращения Галактики на околосолнечном расстоянии составляет $V_0 = 240.6 \pm 3.0$ км/с для принятого значения $R_0 = 8.1 \pm 0.11$ кпк. Значения этих параметров характерны

для молодых объектов тонкого диска Галактики и находятся в очень хорошем согласии с их оценками, полученными другими авторами. Но в нашем случае, благодаря использованию огромного количества звезд, они определены с очень маленькими ошибками.

По данным о 1812 ОВ2-звездах с лучевыми скоростями вычислены пространственные скорости V_R и $\Delta V_{\rm circ}$. Проведен спектральный анализ независимо радиальных и остаточных тангенциальных скоростей. Получены следующие оценки: $f_R = 4.8 \pm 0.7$ км/с, $f_{\theta} = 4.1 \pm 0.9$ км/с, $\lambda_R = 2.1 \pm 0.2$ кпк ($i_R = -9.4 \pm 0.9^{\circ}$ для m = 4) и $\lambda_{\theta} = 2.2 \pm 0.4$ кпк ($i_{\theta} = -9.8 \pm 1.8^{\circ}$ для m = 4), (χ_{\odot}) $_R = -116 \pm 12^{\circ}$ и (χ_{\odot}) $_{\theta} = -156 \pm 14^{\circ}$. Видим, что более надежно эти параметры определяются по радиальным скоростям звезд.

Основное кинематическое уравнение было решено также с включением в качестве дополнительных неизвестных скоростей возмущений f_R и f_{θ} . В итоге мы пришли к заключению о том, что наиболее вероятное значение фазы Солнца χ_{\odot} для рассматриваемой выборки OB2-звезд лежит в интервале $[-120^{\circ}, -130^{\circ}]$. Значение амплитуды радиальных возмущений f_R лежит в интервале [4.4, 5.9] км/с и определяется этим методом с ошибками ± 0.6 км/с.

В целом мы заключили, что имеется хорошее согласие найденных в настоящей работе двумя методами значений f_R и λ , углов *i* и χ_{\odot} как между собой, так и с результатами их определения другими авторами. Меньшее согласие имеется в определении f_{θ} . Мы больше доверяем подходу с использованием спектрального анализа, $f_{\theta} = 4.1 \pm \pm 0.9$ км/с. Таким образом, обе найденные амплитуды скоростей возмущения отличны от нуля на высоком уровне значимости.

Отметим, что метод оценки скоростей возмущений f_R и f_{θ} , основанный на использовании кинематической модели (10), предложен Крезе, Меннесье (1973) при ряде упрощений, которые ограничивают размер области применения метода. В частности, отношение R/R_0 было разложено в ряд с использованием только первого члена ряда.

Метод, основанный на периодограммном фурьеанализе (Байкова, Бобылев, 2012), учитывает как логарифмический характер спиральной структуры Галактики, так и позиционные углы объектов. В нем не используются какие-либо упрощения и допущения, что позволяет проводить наиболее точный анализ скоростей объектов, распределенных в широком диапазоне галактоцентрических расстояний. Таким образом, этот метод более надежный.

Авторы благодарны Ю.Н. Мишурову за полезное и глубокое обсуждение результатов работы.

СПИСОК ЛИТЕРАТУРЫ

- Абутер и др. (GRAVITY Collaboration, R. Abuter, A. Amorim, N. Bauböck, J.P. Berger, H. Bonnet, W. Brandner, Y. Clénet, V. Coudé du Foresto, et al.), Astron. Astrophys. 625, L10 (2019).
- Байкова А.Т., Бобылев В.В., Письма в Астрон. журн. 38, 617 (2012) [А.Т. Вајкоvа, V.V. Bobylev, Astron. Lett. 38, 549 (2012)].
- 3. Баррос и др. (D.A. Barros, A. Perez-Villegas, T.A. Michtchenko, and J.R.D. Lepine), Front. Astron. Space Sci. **8**, 48 (2021).
- 4. Бертон (W.B. Burton), Astron. Astrophys. 10, 76 (1971).
- 5. Бил, Овенден (J. Byl and M.W. Ovenden), Astrophys. J. **225**, 496 (1978).
- Бобылев В.В., Байкова А.Т., Степанищев А.С., Письма в Астрон. журн. 34, 570 (2008) [V.V. Bobylev, et al., Astron. Lett. 34, 515 (2008)].
- Бобылев, Байкова (V.V. Bobylev and A.T. Bajkova), MNRAS 437, 1549 (2014а).
- 8. Бобылев, Байкова (V.V. Bobylev and A.T. Bajkova), MNRAS **441**, 142 (20146).
- Бобылев В.В., Байкова А.Т., Письма в Астрон. журн. 44, 739 (2018) [V.V. Bobylev, et al., Astron. Lett. 44, 676 (2018)].
- Бобылев В.В., Байкова А.Т., Письма в Астрон. журн. 45, 379 (2019) [V.V. Bobylev, et al., Astron. Lett. 45, 331 (2019)].
- Бобылев В.В., Байкова А.Т., Астрон. журн. 98, 497 (2021а) [V.V. Bobylev, А.Т. Вајкоva, Astron. Rep. 65, 498 (2021а)].
- Браун и др. (Gaia Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, C.A.L. Bailer-Jones, M. Biermann, D.W. Evans, et al.), Astron. Astrophys. 616, 1 (2018).
- Браун и др. (Gaia Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, M. Biermann, O.L. Creevely, D.W. Evans, et al.), Astron. Astrophys. 649, 1 (2021).
- 14. Грив и др. (E. Griv, C.-C. Lin, C.-C. Ngeow, and I.-G. Jiang), New Astron. **29**, 9 (2014).
- 15. Грив, Жанг (E. Griv and I.-G. Jiang), Astron. Nachr. **336**, 196 (2015).
- Заболотских М.В., Расторгуев А.С., Дамбис А.К., Письма в Астрон. журн. 28, 516 (2002) [M.V. Zabolotskikh, et al., Astron. Lett. 28, 454 (2002)].
- 17. Крезе, Меннесье (M. Crézé and M.O. Mennessier), Astron. Astrophys. 27, 281 (1973).
- 18. Лепине и др. (J.R.D. Lépine, Yu. Mishurov and S.Yu. Dedikov), Astrophys. J. **546**, 234 (2001).
- 19. Линь, Шу (С.С. Lin and F.H. Shu), Astrophys. J. **140**, 646 (1964).
- 20. Линь и др. (С.С Lin, С. Yuan, and F.H. Shu), Astrophys. J. 155, 721 (1969).
- Локтин А.В., Попова М.Э., Астрофиз. Бюлл. 72, 282 (2017) [A.V. Loktin, М.Е. Ророva, Astrophys. Bull. 72, 257 (2017)].

- Локтин А.В., Попова М.Э., Астрофиз. Бюлл. 74, 289 (2019) [A.V. Loktin, M.E. Popova, Astrophys. Bull. 74, 270 (2019)].
- Мельник А.М., Дамбис А.К., Расторгуев А.С., Письма в Астрон. журн. 27, 611 (2001) [А.М. Mel'nik, et al., Astron. Lett. 27, 521 (2001)].
- 24. Мишуров и др. (Yu.N. Mishurov, I.A. Zenina, A.K. Dambis, A.M. Mel'nik, and A.S. Rastorguev), Astron. Astrophys. **323**, 775 (1997).
- 25. Мишуров, Зенина (Yu.N. Mishurov and I.A. Zenina), Astron. Astrophys. **341**, 81 (1999).
- Попова М.Э., Локтин А.В., Письма в Астрон. журн. 31, 743 (2005). [М.Е. Ророvа, А.V. Loktin, Astron. Lett. 31, 663 (2005)].
- 27. Прусти и др., (Gaia Collaboration, T. Prusti, J.H.J. de Bruijne, A.G.A. Brown, A. Vallenari, C. Babusiaux, C.A.L. Bailer-Jones, U. Bastian, M. Biermann, et al.), Astron. Astrophys. **595**, 1 (2016).
- Расторгуев А.С., Заболотских М.В., Дамбис А.К., Уткин Н.Д., Бобылев В.В., Байкова А.Т., Астрофиз. Бюллетень 72, 134 (2017) [A.S. Rastorguev, et al., Astrophys. Bulletin 72, 122 (2017)].
- 29. Рид и др. (M.J. Reid, K.M. Menten, A. Brunthaler, X.W. Zheng, T.M. Dame, Y. Xu, J. Li, N. Sakai, et al.), Astrophys. J. **885**, 131 (2019).

- 30. Рольфс К., *Лекции по теории волн плотности* (М.: Мир, 1980).
- 31. Руссейль (D. Russeil), Astron. Astrophys. **397**, 133 (2003).
- 32. Сиберт и др. (A. Siebert, B. Famaey, J. Binney, B. Burnett, C. Faure, I. Minchev, M.E.K. Williams, O. Bienaymé, et al.), MNRAS **425**, 2335 (2012).
- 33. Скиф (B.A. Skiff), VizieR Online Data Catalog, B/mk (2014).
- 34. Сюй и др. (Y. Xu, S.B. Bian, M.J. Reid, J.J. Li, B. Zhang, Q.Z. Yan, T.M. Dame, K.M. Menten, et al.), Astron. Astrophys. **616**, L15 (2018).
- 35. Сюй и др. (Y. Xu, L.G. Hou, S. Bian, C.J. Hao, D.J. Liu, J.J. Li, and Y.J. Li), Astron. Astrophys. **645**, L8 (2021).
- 36. Фернандес и др. (D. Fernández, F. Figueras, and J. Torra), Astron. Astrophys. **372**, 833 (2001).
- 37. Шонрих и др. (R. Schönrich, J.J. Binney, and W. Dehnen), MNRAS **403**, 1829 (2010).