SN 2019edo: СВЕРХНОВАЯ ТИПА II-Р С БЫСТРЫМ ПОДЪЕМОМ БЛЕСКА И КОРОТКОЙ СТАДИЕЙ ПЛАТО

© 2022 г. Д. Ю. Цветков^{1*}, А. А. Белинский¹, Н. П. Иконникова¹, М. А. Бурлак¹, И. М. Волков^{1,2}, Н. Н. Павлюк¹, П. В. Бакланов^{3,4,5}, С. И. Блинников^{3,1}, М. Г. Ушакова¹, В. А. Ечеистов¹

¹ Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

³НИЦ "Курчатовский институт", Москва, Россия

⁴Национальный исследовательский ядерный университет (МИФИ), Москва, Россия

⁵Институт прикладной математики им. М.В. Келдыша РАН, Москва, Россия

Поступила в редакцию 27.01.2022 г.

После доработки 05.03.2022 г.; принята к публикации 05.03.2022 г.

Представлены результаты *BVRI* фотометрии сверхновой типа II-P 2019еdо в NGC 4162, полученные за период с 29 апреля 2019 г. по 26 января 2020 г. на нескольких телескопах, в том числе на 60-см телескопе Кавказской Горной обсерватории ГАИШ МГУ. Форма кривых блеска типична для SN II-P, однако плато продолжалось около 76 сут, что меньше характерного значения для SNe этого класса, а рост светимости до максимума оказался необычно быстрым. Абсолютная величина в максимуме в фильтре V составила -16^{m} 9, что близко к среднему для SNe II-P значению. Скорость падения блеска на поздней стадии несколько выше ожидаемой для излучения, обусловленного распадом 56 Co. В результате радиационно-газодинамического моделирования вспышки сверхновой кодом STELLA удалось согласованно воспроизвести стадии начального роста и стадии плато на кривых блеска. Полученная модель сверхновой имеет параметры: масса выброса $M_{\rm env} = 6.6 M_{\odot}$, радиус предсверхновой $R_0 = 500 R_{\odot}$, масса радиоактивного 56 Ni $\approx 0.05 M_{\odot}$. Предсверхновая находилась внутри кокона — звездного ветра — с полной массой $M_{\rm wind} \approx 0.01 M_{\odot}$ и радиусом $R_{\rm wind} = 10^{15}$ см. Энерговыделение при взрыве составило $E_{\rm burst} = 0.8 \times 10^{51}$ эрг.

Ключевые слова: сверхновые, SN 2019еdo.

DOI: 10.31857/S0320010822040064

ВВЕДЕНИЕ

Сверхновые (SNe) II типа возникают при взрывах массивных ($M > 8M_{\odot}$) звезд, вызываемых коллапсом ядра. Если взрываются сверхгиганты с массивной, богатой водородом оболочкой, возникают SNe II-P, которые характеризуются наличием в спектре сильных линий водорода и формой кривых блеска: светимость остается почти постоянной на протяжении 80-120 сут. Более 20 предсверхновых SNe II-P были отождествлены на архивных изображениях, в результате было установлено, что вспыхивают красные сверхгиганты с начальными массами от 8 до $\sim 17M_{\odot}$ (Смартт и др., 2009; Смартт, 2015). SNe II-P показывают большой

разброс светимостей и параметров кривых блеска, однако были предложены методы, позволяющие использовать их как независимые индикаторы внегалактических расстояний (Киршнер, Кван, 1974; Хамуи, Пинто, 2002). В связи с этим важно подробно исследовать различия фотометрических характеристик SN II-P и их связь с физическими параметрами предсверхновых.

SN 2019еdo была открыта при обзоре неба по программе ASAS-SN (Шаппи и др., 2014) 2019-04-27.32 UT, ее блеск в фильтре g составил 16^m7, координаты SN: $\alpha = 12^{h}11^{m}51^{s}566, \delta =$ = +24°08'11″.67, расстояние от центра галактики NGC 4162 равно 48″.12 (Бримакомб и др., 2019).

Спектр SN был получен 2019-04-30.7 UT на 2.16-м телескопе Национальной астрономической

²Институт астрономии РАН, Москва, Россия

^{*}Электронный адрес: tsvetkov@sai.msu.su

Рис. 1. Изображение SN 2019еdо и звезд сравнения, полученное на телескопе К60 в фильтре R.

обсерватории Китая. Он показал, что SN принадлежит ко II типу, наибольшее сходство обнаружилось со спектром SN II-Р 1999ет в фазе 5 сут после взрыва, получена оценка скорости расширения оболочки около 11 500 км с⁻¹ по смещению линии поглощения $H\alpha$ (Саи и др., 2019).

Фотометрические наблюдения на спутнике Gaia в полосе G проводились с 2019-04-29.0 UT по 2019-12-20.3 UT¹.

В статье представлены результаты мониторинга SN 2019еdo в оптических диапазонах, осуществленного на четырех обсерваториях. Удалось построить достаточно подробные кривые блеска в полосах *BVRI* и кривые цвета. Проведено моделирование кривых блеска с использованием многогруппового радиационно-гидродинамического численного кода STELLA.

¹http://gsaweb.ast.cam.ac.uk/alerts/alert/Gaia19bph/followup

НАБЛЮДЕНИЯ

Фотометрические наблюдения SN 2019еdo были начаты 2019-04-29.88 UT немедленно после открытия. ПЗС-изображения в фильтрах *BVRI* были получены в четырех обсерваториях, использовались следующие телескопы: 60-см телескоп Кавказской Горной обсерватории ГАИШ (К60), (Бердников и др., 2020), 1-м телескоп Симеизской обсерватории (S100) (Николенко и др., 2019), 60-см телескоп Крымской астрономической станции ГАИШ (С60), 70-см телескоп ГАИШ в Москве (М70). Все телескопы были оснащены ПЗСкамерами и наборами *BVRI* фильтров Джонсона— Кузинса.

Стандартная обработка и фотометрия осуществлялись с помощью пакета программ IRAF². Звездные величины SN были получены апертурной или PSF-фотометрией относительно местных стандартов. ПЗС-изображение SN 2017еdo и

²IRAF распространяется NOAO, управляемой AURA по соглашению с NSF.

Рис. 2. Кривые блеска SN 2019do в фильтрах *BVRI*. Показаны оценки от ASAS-SN, Gaia и верхний предел блеска от ATLAS (символ V).

местных звезд сравнения показано на рис. 1. Величины gri звезд сравнения были взяты из базы данных Pan-STARRS³, величины *BVRI* вычислены, используя соотношения из работы Костова и Бонева (2018).

Фотометрия была приведена к стандартной системе Джонсона—Кузинса с помощью инструментальных цветовых уравнений, определенных по наблюдениям фотометрических стандартов. Величины звезд сравнения приведены в табл. 1, фотометрия представлена в табл. 2.

КРИВЫЕ БЛЕСКА И ЦВЕТА

Кривые блеска SN 2019еdo показаны на рис. 2. Результаты для всех телескопов достаточно хорошо согласуются. Наши наблюдения, начавшиеся в эпоху JD 2458603.4, не показывают восходящей ветви кривых блеска, однако данные о характере роста блеска имеются. При открытии SN программой ASAS-SN была получена оценка блеска в фильтре g (система AB) 16^m7 в JD 2458600.8, а обзор ATLAS сообщил оценку верхнего предела на

³https://catalogs.mast.stsci.edu/panstarrs/

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 48 № 4 2022

блеск SN в JD 2458599.9: в фильтре "orange" SN была слабее 19^m63. Эти данные получены в полосах, не совпадающих с используемыми в наших

Таблица 1. Величины звезд сравнения для SN 2019edo

Звезда	В	V	R	Ι	
1	15.21	14.60	14.24	13.90	
2	16.41	15.87	15.55	15.23	
3	17.74	17.06	16.65	16.26	
4	18.06	16.55	15.63	14.84	
5	16.86	16.06	15.58	15.14	
6	16.22	15.32	14.77	14.33	
7	17.01	15.98	15.35	14.81	
8	16.92	15.92	15.30	14.87	
9	16.56	16.08	15.78	15.45	
10	17.52	16.26	15.49	14.91	
11	14.36	13.70	13.31	12.96	
12	17.09	16.60	16.30	15.98	
13	16.96	16.27	15.84	15.48	
14	16.76	15.41	14.58	13.94	

Таблица 2. BVRI-фотометрия SN 2019edo

JD-2450000	В	σ_B	V	σ_V	R	σ_R	Ι	σ_I	Телескоп
603.38	16.46	0.03	16.37	0.03	16.20	0.04	16.09	0.03	K60
604.31	16.52	0.03	16.41	0.02	16.21	0.02	16.07	0.02	K60
604.34	16.45	0.05	16.41	0.02	16.13	0.03	16.00	0.04	M70
610.26	16.63	0.03	16.43	0.02	16.16	0.03	16.05	0.03	K60
610.32	16.69	0.05	16.55	0.04	16.16	0.03	16.10	0.06	M70
611.33	16.77	0.05	16.60	0.04	16.17	0.02	15.99	0.05	M70
611.41	16.75	0.03	16.52	0.02	16.27	0.02	16.14	0.03	K60
612.26	16.74	0.03	16.52	0.02	16.24	0.02	16.10	0.02	K60
614.46	16.91	0.03	16.60	0.02	16.31	0.03	16.23	0.03	K60
615.35	16.83	0.03	16.56	0.02	16.23	0.04	16.12	0.03	K60
618.23	17.02	0.05	16.60	0.04	16.22	0.04	16.22	0.08	K60
619.25	17.03	0.03	16.62	0.04	16.33	0.04	16.20	0.07	K60
620.25	17.08	0.03	16.63	0.02	16.29	0.03	16.09	0.05	K60
621.25	17.06	0.04	16.55	0.03	16.18	0.03	16.02	0.05	K60
621.36	17.21	0.08	16.68	0.04	16.20	0.03	16.00	0.09	M70
622.27	—	_	16.51	0.06	16.17	0.06	16.06	0.07	K60
625.32	17.24	0.03	16.63	0.03	_	_	—	_	K60
629.30	17.49	0.03	16.76	0.02	16.35	0.02	16.18	0.03	K60
630.29	17.45	0.05	16.81	0.04	16.35	0.04	16.12	0.05	K60
630.35	—	_	16.74	0.09	16.37	0.08	_	_	M70
633.34	17.56	0.17	16.77	0.06	16.33	0.05	—	_	M70
634.26	17.66	0.03	16.81	0.02	16.40	0.02	16.19	0.02	K60
635.30	17.66	0.03	16.75	0.03	16.35	0.03	16.13	0.03	K60
636.37	17.71	0.03	16.79	0.03	16.37	0.03	16.16	0.03	K60
639.36	_	_	16.87	0.04	16.31	0.04	16.05	0.08	M70

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 48 № 4 2022

Таблица 2. Окончание

JD-2450000	В	σ_B	V	σ_V	R	σ_R	Ι	σ_I	Телескоп
641.37	_	_	16.92	0.10	16.33	0.06	_	_	M70
643.29	17.80	0.04	16.75	0.04	16.30	0.03	16.03	0.05	K60
650.28	17.95	0.04	16.77	0.04	16.34	0.04	16.05	0.04	K60
651.28	17.91	0.05	16.74	0.04	16.29	0.04	16.00	0.05	K60
653.27	17.91	0.05	16.77	0.03	16.29	0.03	16.00	0.04	K60
653.28	18.03	0.07	16.88	0.06	16.36	0.03	16.13	0.04	S100
654.30	17.98	0.05	16.80	0.06	16.30	0.06	16.02	0.17	K60
654.32	_	_	16.93	0.07	16.31	0.05	_	_	M70
655.29	18.02	0.11	16.83	0.03	16.38	0.03	16.16	0.03	S100
655.32	18.09	0.03	16.87	0.02	16.42	0.03	16.15	0.03	K60
656.29	18.03	0.07	16.86	0.03	16.38	0.02	16.15	0.03	S100
657.29	18.06	0.04	16.86	0.03	16.37	0.04	16.07	0.03	K60
659.29	18.03	0.04	16.83	0.03	16.33	0.03	16.06	0.05	K60
662.31	18.14	0.04	16.85	0.03	16.34	0.04	16.08	0.04	K60
666.29	18.23	0.03	16.86	0.02	16.37	0.03	16.10	0.04	K60
667.29	18.18	0.05	16.87	0.07	16.34	0.07	16.08	0.05	K60
668.29	18.20	0.04	16.84	0.03	16.34	0.03	16.08	0.03	K60
681.27	_	_	17.24	0.19	16.34	0.10	16.27	0.10	S100
683.28	_	_	17.49	0.10	16.64	0.07	16.44	0.15	S100
789.53	_	_	_	_	18.81	0.22	_	_	C60
804.58	_	_	19.92	0.16	18.80	0.08	_	_	C60
843.51	—	—	_	_	19.24	0.11	18.97	0.16	K60
849.53	21.10	0.34	20.39	0.10	19.44	0.05	19.23	0.09	K60
854.61	—	—	20.33	0.07	19.29	0.06	19.03	0.11	K60
874.50	—	_	20.94	0.10	19.95	0.06	19.32	0.10	K60

Рис. 3. Кривые цвета SN 2019еdo и сравнение с кривыми цвета трех SN II-P, все данные исправлены за полное поглощение света.

наблюдениях, однако можно оценить величины в фильтрах BVR, используя соотношения между величинами в разных системах из работ Жорди и др. (2006), Тонри и др. (2018). Необходимые для этого показатели цвета можно оценить, экстраполируя построенные нами кривые цвета (рис. 3). Получены результаты: в JD 2458600.8 $B = 16^{m}.9, V =$ $= 16^{m}.8, R = 16^{m}.7$ (с точностью около $0^{m}.2 - 0^{m}.3$); в JD 2458599.9 $R > 19^{m}5, V > 19^{m}6, B > 19^{m}7.$ Базин и др. (2009) показали, что кривые блеска (в потоках) на ранних стадиях SN разных типов можно представить выражением $f(t) = A e^{-(t-t_0)/\tau_{\text{fall}}}/(1+$ $+e^{-(t-t_0)/ au_{
m rise}})+B$, мы применили его для анализа кривых блеска в фильтрах BVR и нашли, что эпоха начала возрастания светимости JD 2458599.5 ± 0.5 , а точки максимумов блеска: $B_{\text{max}} = 16^m 46 \pm 0^m 10$, $V_{\text{max}} = 16^{\frac{m}{2}}36 \pm 0^{\frac{m}{2}}07, \ t_{\text{max}} = \text{JD}\,2458603.5 \pm 1.5.$ Блеск в полосе R, I в то же время вышел на плато $R_{\rm pl} = 16^m \cdot 20 \pm 0^m \cdot 10, I_{\rm pl} = 16^m \cdot 04 \pm 0^m \cdot 10.$ Таким образом, можно получить оценку времени возрастания блеска $t_{\rm rise} = 4 \pm 1.6$ сут, что меньше типичных значений для SNe II-Р (Гонзалес-Гайтан и др., 2015).

Плато закончилось около JD 2458680, т.е. продолжалось примерно 76 сут, что меньше обычного значения ~100 сут. К сожалению, точно оценить величину падения блеска после плато и время выхода на линейный хвост кривой блеска невозможно из-за отсутствия наблюдений на этом этапе. Наблюдения в фильтрах V, R в период 200—350 сут после максимума позволяют приблизительно оценить скорость падения блеска: 0^m13/100^d. Почти такое же значение скорости падения блеска дают наблюдения Gaia: 0^m12/100^d, что несколько быстрее скорости, ожидаемой для излучения, обусловленного распадом ⁵⁶Со.

Кривые показателей цвета B - V, V - R, R - I для SN 2019еdo и их сравнение с соответствующими кривыми для хорошо исследованных SNe II-P 1999ет (Элмхамди и др., 2003), 2004еt (Магуайр и др., 2010), 2017еаw (Цветков и др., 2018) показаны на рис. 3. Характер кривых для всех SNe практически одинаков, можно оценить покраснение SN 2019еdo $E(B - V) = 0^m 1 \pm 0^m 05$. Поглощение света в Галактике дает избыток цвета $E(B - V)_{Gal} = 0^m 031$, следовательно, незначительное поглощение в родительской галактике присутствует.

На рис. 4 показана кривая блеска SN 2019еdо в абсолютных *R*-величинах. Расстояние до галактики вычислено по лучевой скорости, при постоянной Хаббла $H_0 = 73$ км с Мпк⁻¹, модуль расстояния равен $\mu = 32.94$. Для сравнения показаны кривые блеска SN II-Р, имеющих как большую, так и меньшую светимость в максимуме: SNe 1999ет, 1999gi, 2004et, 2009N, 2017еаw (Элмхамди и др., 2003; Леонард и др., 2002; Магуайр и др., 2010; Такатс и др., 2014; Цветков и др., 2018). По максимальной светимости SN 2019еdо является типичной SN II-Р с абсолютной величиной $M_{B max} =$

Рис. 4. Кривая блеска SN 2019do в абсолютных *R*-величинах и сравнение с кривыми для 5 SN II-Р.

 $= M_{V \max} = -16^{m}$ 9, $M_{R \max} = -17^{m}$ 0. Она имеет меньшую светимость, чем SNe 2004et, 2017еаw и похожа на SNe 1999ет, 1999gi.

МОДЕЛИРОВАНИЕ

Анализируя кривые блеска SN 2019edo на рис. 4, можно заметить два существенных отличия SN 2019edo от классических SN II-Р, образцом которых служит близкая, хорошо отнаблюденная SN 1999ет (Утробин, 2007). Первое отличие состоит в укороченной стадии плато $\Delta t_{
m plateau} =$ $=76^{
m d}$ против $\Delta t_{
m plateau}=110^{
m d}$ для SN 1999еm (Надёжин, 2003). Второе отличие заключается в необычайно быстрой скорости роста на раннем этапе эволюции кривых блеска. У SN 2019edo время до максимума в полосе V составляет $t_{rise} =$ $= 4^{d}$, что существенно меньше значения $t_{rise} = 10^{d}$ для SN 1999ет (Гонзалес-Гайтан и др., 2015). Теоретические модели для разных сверхновых типа II-Р, изученные нами в работах Бакланова и др. (2005), Цветкова и др. (2018), Никифоровой и др. (2021), демонстрируют t_{rise} , примерно как у SN 1999ет в полосе V, поэтому они не могут

воспроизвести крайне быстрый рост кривых блеска SN 2019edo. Требовалось добавить новые физические предположения в наши модели для описания этого различия. Естественным объяснением быстрого роста кривых блеска является модель взрыва сверхновой в коконе околозвездного вещества (Грасберг, Надёжин, 1986; Чугай и др., 2004). Для расчетов мы использовали код многогрупповой радиационной гидродинамики STELLA (Блинников, Сорокина, 2004; Бакланов и др., 2005; Блинников и др., 2006), который успешно применяется для расчета сверхновых всех типов, включая Ib/c (Бакланов и др., 2015), II-Р (Цветков и др., 2018), сверхмощных сверхновых (Бакланов и др., 2015; Сорокина и др., 2016). Способность STELLA моделировать сверхновые типа IIn (Бакланов и др., 2013) с узкими эмиссионными компонентами спектральных линий, связанными с взаимодействием ударной волны с околозвездной оболочкой, оказалась необходимым качеством для объяснения кривых блеска SN 2019edo.

Модели предсверхновых строились в предположении неэволюционного гидростатического равновесия, как было описано в работе Бакланова

Рис. 5. Профиль плотности (сплошная линия) модели предсверхновой R500M08W по массовой координате (а) и по радиусу (б). Пунктирными и штриховыми линиями показан химический состав оболочки в тех же координатах. На (б) виден излом в плотности, соответствующий окруженной ветром оболочке предсверхновой с $\rho_{wind} \propto R^{-2}$.

и др. (2005) со степенной зависимостью температуры от плотности: $T \propto \rho^{\alpha}$. При полной ионизации и однородном химическом составе оболочки предсверхновой такое гидростатическое состояние близко к политропному соотношению между давлением и плотностью с индексом $1/\alpha$, в котором мы полагали $\alpha = 0.33$. Предварительные оценки массы оболочки по длительности плато показали, что оптимальное значение полной массы $M \sim 8 M_{\odot}$, поэтому распределение химических элементов по оболочке предсверхновой мы сделали качественно подобным эволюционным моделям схожих масс из работ Мория и др. (2014), Козыревой и др. (2021). Нейтронный остаток (прото-нейтронная звезда) массой $M_{\rm NS} = 1.4 M_{\odot}$ поверх тонкого слоя Не $M_{
m He}=0.2 M_{\odot}$ окружался однородной оболочкой с

преимущественным содержанием водорода и гелия. Однородность состава оболочки эмулировала сильное турбулентное перемешивание, возникающее из-за неустойчивости Рэлея—Тейлора при прохождении ударной волны. Структура оболочки в разрезе по массовой координате и по радиусу для нашей оптимальной модели R500M08W показана на рис. 5.

Длительность плато

Форма и время нахождения кривых блеска на стадии плато определяются длительностью прохождения волны охлаждения и рекомбинации, которая, главным образом, зависит от массы водородной облочки, ее начального радиуса и энергии

Рис. 6. *BVRI* кривые блеска модели без ветра R500M08. Точки — наблюдения, линии — результаты модельных расчетов. Точки, обозначенные *bvri* — квазиболометрические величины, полученные интегрированием потока в фильтрах от *B* до *I*. Вставка демонстрирует, что данная модель плохо описывает начальную стадию роста на кривых блеска. На нижнем графике сплошная линия соответствует скорости вещества на уровне фотосферы. У сильных линий, таких как Hα, минимум абсорбции не соответствует скорости фотосферы, а сдвинут в голубую область. Поэтому необходимо, чтобы скорость Hα (показана синим ромбом) была выше модельной скорости фотосферы. Однако этого не наблюдается, что говорит о недостатке модели R500M08.

взрыва сверхновой (Литвинова, Надёжин, 1983, 1985). Светимость на стадии плато определяется потоком излучения, высвечивающим тепловую энергию и энергию рекомбинации, при прохождении по оболочке волны охлаждения и рекомбинации (Грасберг, Надёжин, 1976). Длительность стадии плато у SN 2019edo составила 76 дней, что меньше, чем у классического представителя SN II-P сверхновой SN 1999em. Это свидетельствует о меньшей массе выброшенной взрывом оболочки. Это утверждение подтвердилось после того, как мы рассчитали сетку моделей без околозвездного вещества в пространстве параметров (R, $M, M_{56}_{\rm Ni}, E$) для поиска модели, воспроизводящей стадию плато. На рис. 6 видно, что стадия плато с наблюдаемыми свойствами воспроизводится у модели с параметрами: масса полная $M_{\rm tot} = 8M_{\odot}$, масса выброса $M_{\rm env} = 6.6 M_{\odot}$, радиус предсверхновой $R_0 = 500 R_{\odot}$, масса радиоактивного ${}^{56}{\rm Ni} \approx$ $\approx 0.05 M_{\odot}$, металличность Z = 0.004. Взрыв SN

Рис. 7. *BVRI* кривые блеска SN 2019еdo для модели R500M08W. Точки — наблюдения, линии — результаты модельных расчетов. Вставка демонстрирует начальную стадию роста на кривых блеска. Эволюция скорости вещества на уровне фотосферы показана на нижнем графике. Оценка скорости разлета вещества в линии Нα изображена синим ромбом.

симулировался выделением $E_{\rm exp} = 8 \times 10^{50}$ эрг в форме "тепловой бомбы" во внутренней части выброса. За 400 дней с момента взрыва в электромагнитном канале излучилось $E_{\rm rad} = 1.4 \times 10^{49}$ эрг. Подавляющая часть энергии взрыва перешла в кинетическую энергию разлетающейся оболочки $E_{\rm kin} = 7.8 \times 10^{50}$ эрг.

Фаза быстрого роста кривых блеска

Для объяснения начальной стадии быстрого роста кривых блеска оболочку предсверхновой мы окружали коконом звездного ветра, параметризуемую граничным радиусом R_{wind} и плотностью на

внутренней границе ветра $\rho_{\rm wind}(R_{\rm env})$. Распределение плотности ветра по радиусу определяется законом $\rho(r) \propto r^{-2}$.

Варьируя параметры ветра, мы нашли оптимальную модель R500M08W, согласующуюся с наблюдениями как на стадии плато, так и на начальной стадии быстрого роста кривых блеска (рис. 7). Взрыв сверхновой, как следует из модельных расчетов, начался в эпоху $t_{exp} = JD2458598.5 \pm 0.4$.

Ударная волна за 1 день пробегает через оболочку сверхновой и входит в звездный ветер, по которому распространяется еще $t_{\rm wind} \sim 12$ дней. На этой куполообразной стадии светит плотный

Рис. 8. Болометрическая (черная) и широкополосные *BV* кривые блеска, рассчитанные для модели с ветром R500M08W и без ветра R500M08.

тонкий слой вещества, сгребенного ударной волной при прохождении через звездный ветер. Затем вещество ветра быстро охлаждается, слой просветляется и кривые блеска выходят на классическую стадию охлаждения-рекомбинации, которая наблюдалась бы в отсутствие ветра. Это хорошо видно по болометрической кривой блеска, показанной на рис. 8, в дополнение к широкополосным фильтрам *BV*.

На рис. 9 показано, что при заданной структуре предсверхновой и энергии взрыва длительность стадии прохождения ударной волны по звездному ветру и, соответственно, длительность купола на оптических кривых блеска определяются протяженностью звездного ветра в диапазоне $R_{\rm wind} = (0.7-2) \times 10^{15}$ см. Оптимальная модель R500M08W имеет $R_{\rm wind} = 10^{15}$ см. Заметим, что эта величина близка к определенному по эмиссионным линиям значению $R_{\rm wind} \sim 10^{15}$ см для iPTF 13dqy (SN 2013fs) (Ярон и др., 2017).

ВЫВОДЫ

Представлены кривые блеска и цвета SN 2019edo. Наши наблюдения начались сразу после открытия, фотометрическая эволюция была прослежена на стадии плато и до линейного падения блеска. Определены основные параметры кривых блеска, дана оценка светимости в максимуме. Форма кривых блеска и максимальная светимость SN 2019edo характерны для класса SN II-P.

Наилучшее согласие наших расчетов с наблюдениями получено для модели R500M08W с параметрами: масса выброса $M_{\rm env} = 6.6 M_{\odot}$, энергия взрыва $E = 0.8 \times 10^{51}$ эрг, радиус предсверхновой $R_0 = 500 R_{\odot}$, масса радиоактивного Ni $M_{56\rm Ni} =$ $= 0.05 M_{\odot}$, металличность Z = 0.004. Для объяснения быстрого роста кривых блеска необходимо предположить наличие у предсверхновой плотного звездного ветра с полной массой $M_{\rm wind} \approx 0.01 M_{\odot}$, распределением плотности по радиусу $\rho_{\rm wind} \propto r^{-2}$

Рис. 9. Зависимость модельных кривых блеска от радиуса звездного ветра $R_{\rm wind}$. Длительность наблюдаемого купола на кривых блеска воспроизводится при $R_{\rm wind} = 10^{15}$ см (синия штриховая линия). Оранжевая штриховая линия соответствует малому радиусу $R_{\rm wind} = 7 \times 10^{14}$ см, а зеленая штриховая линия — протяженному ветру с $R_{\rm wind} = 2 \times 10^{15}$ см. Для сравнения красной штриховой линией показана модель без ветра.

и $R_{\rm wind} = 10^{15}$ см. Наличие околозвездного вещества должно проявляться в спектрах в виде узких эмиссионных линий водорода, характерных для сверхновых типа IIn. Спектральные данные позволяют оценить фотосферные скорости и динамику разлетающейся оболочки, что существенно ограничивает область допустимых модельных параметров. К сожалению, для SN 2019edo оценка скорости в оболочки приводится только в одном сообщении в ATel (Саи и др., 2019). В нем нет ссылки на график со спектром, и он не может рассматриваться как полноценная публикация спектральных данных. Для SN 2019edo нет ни наших спектральных наблюдений, ни опубликованных данных других авторами.

В нашем моделировании радиус оболочки R_0 и полная масса $M_{\rm tot}$ принимались свободными параметрами, определяемыми из соответствия модельных широкополосных кривых блеска наблюдаемым. Любопытно, что найденные значения $R_0 = 500 R_{\odot}$ и $M_{\text{tot}} = 8 M_{\odot}$ для нашей оптимальной модели R500M08W соответствуют корреляции между R - M, вытекающей из эволюционных расчетов кодами KEPLER и MESA (Морозова и др., 2016).

Значения радиуса, полной массы, энергии взрыва у модели R500M08W близки к значениям эволюционной модели m1515rot8, исследованной в работе Koзыревой и др. (2020). Фотосферные скорости m1515rot8 существенно превосходят таковые у SN 2019edo, оцененные по линии H α для единственного спектрального наблюдения. Если эволюционные модели типа m1515rot8 удастся в самосогласованном расчете получить с коконом околозвездного вещества, то скорость в первые дни взрыва упадет, как это демонстрируется выше на рис. 6 и 7. Такая модель позволит избежать нефизичных разрывов при распределении плотности по радиусу между оболочкой и ветром. Следствием этого станет исчезновение ненаблюдаемых скачков потока излучения на кривых блеска на стадии плато. Эти утверждения требуют дальнейших исследований.

Работа выполнена с использованием оборудования, приобретенного за счет средств Программы развития Московского государственного университета им. М.В. Ломоносова. Работа поддержана Научно-образовательной школой МГУ им. М.В. Ломоносова "Фундаментальные и прикладные исследования космоса". Авторы выражают благодарность за поддержку от Программы развития МГУ им. М.В. Ломоносова. Работа П. Бакланова по теоретическому моделированию кривых блеска SN 2019еdо поддержана грантом РНФ № 21-52-12032. Работа С. Блинникова и М. Ушаковой по развитию и приложениям кода STELLA поддержана грантом РНФ № 19-12-00229.

СПИСОК ЛИТЕРАТУРЫ

- 1. Базин и др. (G. Bazin, N. Palanque-Delabrouille, J. Rich, V. Ruhlmann-Kleider, E. Aubourg, L. Le Guillou, P. Astier, C. Balland, et al.), Astron. Astrophys. **499**, 653 (2009).
- Бакланов П.В., Блинников С.И., Павлюк Н.Н., Письма в Астрон. журн. **31**, 483 (2005) [P.V. Baklanov, S.I. Blinnikov, and N.N. Pavlyuk, Astron. Lett. **31**, 429 (2005)].
- Бакланов П.В., Блинников С.И., Поташов М.Ш., Долгов А.Д., Письма в ЖЭТФ 98, 489 (2013).
- Бакланов П.В., Сорокина Е.И., Блинников С.И. Письма в Астрон. журн. 41, 113 (2015) [P.V. Baklanov, E.I. Sorokina, S.I. Blinnikov, Astron. Lett. 41, 95 (2015)].
- Бердников Л.Н., Белинский А.А., Шатский Н.И., Бурлак М.А., Иконникова Н.П., Мишин Е.О., Черязов Д.В., Жуйко С.В., Астрон. журн. 97, 284 (2020).
- 6. Блинников, Сорокина (S. Blinnikov and E. Sorokina), Astrophys. Space Sci. **290**, 13 (2004).
- Блинников и др. (S.I. Blinnikov, F.K. Ropke, E.I. Sorokina, M. Gieseler, M. Reinecke, C. Travaglio, W. Hillebrandt, and M. Stritzinger), Astron. Astrophys. 453, 229 (2006).
- 8. Бримакомб и др. (J. Brimacombe, B. Nicholls, P. Cacella, R.G. Farfan, R. Cornect, M.R. Kendurkar, W. Wiethoff, P. Vallely, et al.), Astron. Telegram **12713** (2019).
- Гонзалес-Гайтан и др. (S. Gonzalez-Gaitan, N. Tominaga, J. Molina, L. Galbany, F. Bufano, J.P. Anderson, C. Gutierrez, F. Forster, et al.), MNRAS 451, 2212 (2015).
- Грасберг, Надёжин (Е.К. Grassberg and D.K. Nadyozhin), Astrophys. Space Sci. 44, 409 (1976).

- 11. Грасберг Е.К., Надёжин Д.К., Письма в Астрон. журн. **12**, 168 (1986).
- 12. Жорди и др. (K. Jordi, E.K. Grebel, and K. Ammon), Astron. Astrophys. **460**, 339 (2006).
- 13. Касен, Вусли (D. Kasen and S.E. Woosley), Astrophys. J. **703**, 2205 (2009).
- 14. Киршнер, Кван (R.P. Kirshner and J. Kwan), Astrophys. J. **193**, 27 (1974).
- Козырева и др. (A. Kozyreva, E. Nakar, R. Waldman, S. Blinnikov, and P. Baklanov), MNRAS 494, 3927 (2020).
- Козырева и др. (A. Kozyreva, P. Baklanov, S. Jones, R. Stockinger, and H.-T. Janka), MNRAS 503, 797 (2021).
- 17. Костов, Бонев (А. Kostov and T. Bonev), Bulgar. Astron. J. **28**, 3 (2018).
- Леонард и др. (D.C. Leonard, A.V. Filippenko, W. Li, Th. Matheson, R.P. Kirshner, R. Chornock, S.D. Van Dyk, P. Berlind, et al.), Astron. J. 124, 2490 (2002).
- Литвинова, Надёжин (I.Yu. Litvinova and D.K. Nadyozhin), Astrophys. Space Sci. 89, 89 (1983).
- 20. Литвинова, Надёжин (I.Yu. Litvinova and D.K. Nadyozhin), Sov. Astron. Lett. **11**, 25 (1985).
- 21. Магуайр и др. (K. Maguire, E. Di Carlo, S.J. Smartt, A. Pastorello, D.Yu. Tsvetkov, S. Benetti, S. Spiro, A.A. Arkharov, et al.), MNRAS **404**, 981 (2010).
- 22. Мория и др. (T.J. Moriya, N. Tominaga, N. Langer, K. Nomoto, S.I. Blinnikov, and E.I. Sorokina), Astron. Astrophys. **569**, A57 (2014).
- 23. Морозова и др. (V. Morozova, A.L. Piro, M. Renzo, and C.D. Ott), Astrophys. J. **829**, 109 (2016).
- 24. Надёжин (D.K. Nadyozhin), MNRAS 346, 97 (2003)
- 25. Никифорова и др. (A.A. Nikiforova, P.V. Baklanov, S.I. Blinnikov, D.A. Blinov, T.S. Grishina, Yu.V. Troitskaya, D.A. Morozova, E.N. Kopatskaya, E.G. Larionova, and I.S. Troitsky), MNRAS **504**, 3544 (2021).
- 26. Николенко И.В., Крючков С.В., Барабанов С.И., Волков И.М., Науч. тр. Ин-та астрономии РАН 4, 85 (2019).
- 27. Саи и др. (H. Sai, X. Zhang, X. Wang, H. Lin, H. Wang, T. Zhang, and J. Zhang), Astron. Telegram 12708 (2019).
- 28. Смартт и др. (S.J. Smartt, J.J. Eldridge, R.M. Crockett, and J.R. Maund), MNRAS **395**, 1409 (2009).
- 29. Смартт (S.J. Smartt), Publ. Astron. Soc. Australia 32, 16 (2015).
- 30. Сорокина и др. (E. Sorokina, S. Blinnikov, K. Nomoto, R. Quimby, and A. Tolstov), Astrophys. J. **829**, 17 (2016).
- 31. Такатс и др. (K. Takats, M.L. Pumo, N. Elias-Rosa, A. Pastorello, G. Pignata, E. Paillas, L. Zampieri, J.P. Anderson, et al.), MNRAS **438**, 368 (2014).

- 32. Тонри и др. (J.L. Tonry, L. Denneau, A.N. Heinze, et al.), Publ. Astron. Soc. Pacific **130**, 064505 (2018).
- 33. Утробин (V.P. Utrobin), Astron. Astrophys. **461**, 233 (2007).
- 34. Хамуи, Пинто (М. Hamuy and P.A. Pinto), Astrophys. J. **566**, L63 (2002).
- 35. Цветков Д.Ю., Шугаров С.Ю., Волков И.М. и др., Письма в Астрон. журн. 44, 338 (2018) [D.Yu. Tsvetkov, et al., Astron. Lett. 44, 315 (2018)].
 36. Чугай и др. (N.N. Chugai, S.I. Blinnikov,
- 36. Чугай и др. (N.N. Chugai, S.I. Blinnikov, R.J. Cumming, et al.), MNRAS **352**, 1213 (2004).
- 37. Шаппи и др. (B.J. Shappee, J.L. Prieto, D. Grupe, C.S. Kochanek, K.Z. Stanek, G. De Rosa, S. Mathur, Y. Zu, et al.), Astrophys. J. **788**, 48 (2014).
- Элмхамди и др. (A. Elmhamdi, I.J. Danziger, N. Chugai, A. Pastorello, M. Turatto, E. Cappellaro, G. Altavilla, S. Benetti, F. Patat, and M. Salvo), MNRAS 338, 939 (2003).
- 39. Ярон и др. (O. Yaron, D.A. Perley, A. Gal-Yam, J.H. Groh, A. Horesh, E.O. Ofek, S.R. Kulkarni, J. Sollerman, et al.), Nature Phys. **13**, 510 (2017).