СИЛЬНОПЕРЕМЕННЫЕ АКТИВНЫЕ ЯДРА ГАЛАКТИК В ОБЗОРЕ НЕБА СРГ/еРОЗИТА: І. ПОСТРОЕНИЕ ВЫБОРКИ И КАТАЛОГ ОБЪЕКТОВ, ЗАДЕТЕКТИРОВАННЫХ В НИЗКОМ СОСТОЯНИИ

© 2023 г. П. С. Медведев^{1*}, М. Р. Гильфанов^{1,2}, С. Ю. Сазонов¹, Р. А. Сюняев^{1,2}, Г. А. Хорунжев¹

¹Институт космических исследований РАН, Москва, Россия ²Институт астрофизики Общества им. Макса Планка, Гаршинг, Германия Поступила в редакцию 02.12.2022 г. После доработки 02.12.2022 г.; принята к публикации 08.12.2022 г.

Представлены результаты поиска сильно переменных активных ядер галактик (АЯГ), рентгеновский поток от которых изменился более чем на порядок в ходе обзора всего неба телескопом еРОЗИТА обсерватории СРГ. Используя данные, полученные телескопом еРОЗИТА в период с декабря 2019 г. по февраль 2022 г., мы нашли 1325 источников, рентгеновский поток от которых в диапазоне энергий 0.3–2.3 кэВ менялся более чем в 10 раз на уровне достоверности не менее чем 99.73%. Из них 635 объектов были классифицированы как АЯГ или как кандидаты в АЯГ. Мы описываем процедуру поиска сильно переменных источников и отбор среди них внегалактических объектов, а также описываем статистические свойства полученного каталога. Приводим каталог из 49 источников, для которых был статистически значимо задетектирован поток в низком состоянии. Для последних мы приводим кривые блеска, рентгеновские спектры и подробно обсуждаем наиболее интересные из них.

Ключевые слова: сверхмассивные черные дыры, аккреция, активные ядра галактик, рентгеновские источники.

DOI: 10.31857/S0320010823010059, EDN: PKNPHI

1. ВВЕДЕНИЕ

Одной из особенностей активных ядер галактик (АЯГ) является значительная переменность их излучения на всех длинах волн. В частности, в рентгеновском диапазоне переменность излучения АЯГ наблюдается в широком диапазоне характерных временных масштабов от недель до десятков лет (см., например, Марковиц, Эдельсон, 2004; Вагнетти и др., 2011, 2016; Шеммер и др., 2014). Типичные значения среднеквадратичного отклонения на временных масштабах, доступных для наблюдения современными рентгеновскими телескопами, составляют $\approx 10-20\%$, а относительная амплитуда переменности редко превышает фактор ~2 (см., например, Гибсон, Брант, 2012; Миддей и др., 2017; Тимлин и др., 2020), без признаков явной зависимости амплитуды переменности от красного смещения АЯГ (Ланцуизи и др., 2014; Шеммер и др., 2017). Известно, что рентгеновская

переменность АЯГ имеет спектр мощности красного шума (см., например, Лоуренс и др, 1987; Макхарди, Черни, 1987; Аттли и др., 2002), иными словами, на бо́льших временных масштабах наблюдаются бо́льшие амплитуды переменности. В то же время есть указания на то, что амплитуда рентгеновской переменности антикоррелирует со светимостью АЯГ (Шеммер и др., 2017). Анализ долговременной рентгеновской переменности используется для исследования режимов неустойчивостей аккреционных дисков в АЯГ (см., например, Петерсон, 2001).

Крайне редко наблюдаются экстремальные по амплитуде изменения рентгеновского потока от АЯГ на фактор ≥ 10 на временной шкале порядка года. Такие события значительно выбиваются из общей картины переменности АЯГ. Физическая интерпретация таких событий в рамках стандартной модели дисковой аккреции (Шакура, Сюняев, 1973) сталкивается с большими трудностями, так как характерное вязкое время аккреционного диска с параметрами, типичными для АЯГ, составляет

^{*}Электронный адрес: tomedvedev@iki.rssi.ru

 $\sim 10^3$ лет (Шакура, Сюняев, 1973; Ричи и др., 2020). Несмотря на неоднократные сообщения о регистрации подобных резких изменений рентгеновского потока, систематические поиск и исследование таких событий до сих пор не проводились из-за их редкости.

Одним из возможных сценариев, объясняющих, по крайней мере (небольшую) часть подобных явлений, могут быть переходы между различными состояниями АЯГ, включая АЯГ переменного типа ("changing look AGN", например, Мэтт и др., 2003; Ричи и др., 2016). Это объекты, меняющие свою спектральную классификацию между АЯГ 1-го и 2-го типов. В рамках унифицированной модели АЯГ (Антонуччи, 1993) такие переходы должны быть вызваны изменениями плотности поглощающего вещества на луче зрения, блокирующего наиболее близкие к СМЧД области образования широких линий (см., например, Штерн и др., 2018). Однако, как станет ясно из нижеследующего, это явление может объяснить лишь небольшую долю сильно переменных АЯГ. В этом контексте рентгеновская переменность АЯГ также представляет большой интерес, так как позволяет исследовать вариации поглощающего вещества на луче зрения по рентгеновским спектрам (см., например, Пучетти и др., 2014).

Понимание характеристик долговременной рентгеновской переменности АЯГ также важно для оценок эффектов селекции на статистические выводы, сделанные для популяции источников на основе измерений одной эпохи.

13 июля 2019 г. с космодрома Байконур была запущена космическая рентгеновская обсерватория Спектр-Рентген-Гамма (СРГ, Сюняев и др., 2021). В состав обсерватории входят два уникальных зеркальных телескопа, работающие по принципу косого падения рентгеновских лучей: телескоп еРОЗИТА (Предель и др., 2021), работающий в мягком рентгеновском диапазоне 0.2-9.0 кэВ, и телескоп АРТ-ХС им. М.Н. Павлинского (Павлинский и др., 2021), работающий в более жестком диапазоне энергий 4.0-30.0 кэВ. Телескоп еРОЗИТА обладает большим полем зрения диаметром ~1 градус и хорошим угловым разрешением, которое в режиме сканирования неба составляет ~30 угл. сек (диаметр круга, внутри которого регистрируется половина фотонов от точечного источника). Благодаря таким характеристикам ожидатеся, что в ходе четырехлетнего обзора неба телескоп еРОЗИТА получит уникальную по глубине и полноте выборку рентгеновских АЯГ и квазаров. Благодаря стратегии обзора, состоящего из восьми индивидуальных обзоров неба продолжительностью 6 мес каждый, будет также получена обширная информация о переменности открываемых объектов.

Настоящая работа посвящена поиску сильно переменных АЯГ и квазаров, изменивших свою светимость в стандартном рентгеновском диапазоне более чем в 10 раз по итогам первых двух лет обзора всего неба телескопом еРОЗИТА обсерватории СРГ. Ниже будет описана процедура поиска таких источников, отбор внегалактических объектов из полученного списка сильно переменных источников, представлен каталог и проведен детальных анализ тех из них, для которых статситичестки значимо детектируется излучение в низком состоянии. В работе использованы данные, полученные телескопом еРОЗИТА на восточной галактической полусфере $0 < l < 180^{\circ}$, за обработку и анализ данных в которой отвечает российский консорциум СРГ/еРОЗИТА.

2. РЕНТГЕНОВСКИЕ ДАННЫЕ

Исследование переменности рентгеновского неба проводилось ПО данным телескопа СРГ/еРОЗИТА, полученным в ходе пяти последовательных обзоров всего неба, проводившихся в период с 8 декабря 2019 г. по 20 февраля 2022 г. К этому моменту обсерватория завершила четыре полных обзора неба и осмотрела примерно треть неба в пятом обзоре ($\approx 38\%$ полного покрытия). Накопленная виньентированная экспозиция и достигнутая чувствительность обзора лежат в диапазонах от ~ 600 с и $\sim (1-2) \times 10^{-14}$ эрг с⁻¹ см⁻² вблизи эклиптического экватора и достигают $\geq 10^4$ с и $\sim (3-5) \times 10^{-15}$ эрг с⁻¹ см⁻² (с учетом эффекта путаницы) на площади ~1000 кв. градусов вокруг полюсов эклиптики в диапазоне энергий 0.3-2.3 кэВ.

Для обработки данных использовались результаты наземных калибровок, а также полетные калибровки, полученные в период тестовых наблюдений в октябре-ноябре 2019 г. Калибровка данных и детектирование источников производились с помощью отдельных компонент программного обеспечения eSASS, разработанного немецким консорциумом СРГ/еРОЗИТА (Бруннер и др., 2022) и программного обеспечения российского консорциума СРГ/еРОЗИТА, разработанного в ИКИ РАН. Регистрация рентгеновских источников проводилась путем аппроксимации распределения отсчетов по данным суммы всех обзоров неба методом максимального правдоподобия с использованием функции отклика телескопа еРОЗИТА с помощью программы ermldet ПО eSASS (Бруннер и др., 2022).

В диапазоне 0.3–2.3 кэВ телескоп еРОЗИТА задетектировал более 2 млн рентгеновских источников с правдоподобием детектирования ≥ 6 , что примерно соответствует значимости $\approx 3\sigma$ для

гауссова распределения. Темп счета, регистрируемый детекторами еРОЗИТА, был преобразован в единицы энергетического потока в предположении степенного спектра с фотонным индексом $\Gamma = 2.0$ и поглощением $n_{\rm H} = 3 \times 10^{20}$ см⁻². Более подробное описание каталога источников и процедуры детектирования будет дано в отдельной работе. Каталог рентгеновских источников еРОЗИТА, полученный по совокупности всех данных обзоров неба (далее суммарный каталог), использовался для поиска переменных источников.

В настоящей работе мы исследуем переменность потока от источников, усредненного по индивидуальным обзорам. Ограничимся источниками, расположенными на эклиптических широтах $l_e \leq 87^{\circ}$. На бо́льших эклиптических широтах продолжительность сканирования источника в течение одного обзора неба превышает 20 дней, что значительно больше, чем для источников на эклиптическом экваторе (~1 день) и допускает более детальное исследование их переменности. Эти источники будут исследованы отдельно в будущих публикациях.

В работе также исследуются спектральные характеристики сильно переменных источников. Для этого спектры источников по данным суммарного каталога извлекались для отдельных обзоров еРОЗИТА с использованием апертуры с радиусом 60 угл. сек. Для оценки спектра фона использовалось кольцо вокруг источника с внутренним и внешним радиусами 120 и 350-600 угл. сек соответственно. Внешний радиус выбирался так, чтобы в регионе фона было не меньше 200 зарегистрированных отсчетов. Источники, зарегистрированные в области фона, маскировались с помощью круговой апертуры с радиусом 30-60 угл. сек в зависимости от их потоков. Непосредственная процедура извлечения спектров источников проводилась с помощью программы srctool ПО eSASS. Дальнейшая аппроксимация полученных спектров выполнялась с помощью стандартных инструментов программного пакета ХЅРЕС (версия 12.12, Арнауд и др., 1996) с использованием систатистики (Кэш, 1979) для данных с пуассоновским фоном (W-статистика в XSPEC). Для этого энергетические каналы спектров предварительно группировались так, чтобы число зарегистрированных отсчетов в каждом соответствующем канале спектра фона было не меньше 5. Эта процедура проводилась с помощью стандартного инструмента ftgrouppha в составе ПО HEASOFT (v6.29). После оптимизации функции правдоподобия для наилучших параметров спектральной модели мы запускали Монте-Карло симуляции по схеме марковских цепей (МСМС) для более точной оценки ошибок на параметры модели. В качестве схемы МСМС мы использовали алгоритм Гудмана-Вира

(Гудман, Вир, 2010). При запуске МСМС мы задавали длину цепочки 2×10^5 шагов и 5000 шагов для предварительного "разогрева". Сходимость цепочек проверяли с помощью меры сходимости Гьюке (Гьюке, 1992): для каждого параметра модели эта величина находилась в пределах от -0.2 до 0.2. Ошибки на спектральные параметры приведены на 90% уровне достоверности и определялись из результатов МСМС, наилучшие параметры определялись из процедуры максимизации правдоподобия. Качество описания данных моделью оценивалось методом бутстреппинга со 100 000 случайных реализаций и тестовой статистикой Cramer-von Mises (Крамер, 1928; Андерсон, 1962) с помощью команды goodness в XSPEC с опциями "nosim" и "fit".

3. ПОИСК СИЛЬНО ПЕРЕМЕННЫХ ИСТОЧНИКОВ

3.1. Рентгеновские кривые блеска

Для построения кривых блеска рентгеновских источников еРОЗИТА использовался метод принудительной PSF-фотометрии. Принудительная PSF-фотометрия проводилась по данным каждого из индивидуальных полугодовых обзоров неба, при этом положения и протяженности источников были зафиксированы на значениях, найденных по сумме всех обзоров. Таким образом, процедура повторной подгонки использовалась только для оценки потока F_i в *i*-м обзоре неба и 68% верхнего и нижнего пределов на этот поток — F_i^l и F_i^u соответственно. Отметим, что общее число источников фиксировалось согласно суммарному каталогу, и фильтрация по значимости детектирования на этапе принудительной фотометрии не проводилась. При этом нижняя граница потока для некоторых источников могла быть равна нулю.

3.2. Метод отбора

Для определения достоверности изменения потоков между обзорами мы предполагали, что измеряемый поток от источника является случайной величиной f_i с нормальным распределением плотности вероятности и средним значением F_i . Среднеквадратичное отклонение σ_i нормального распределения аппроксимировалось средней ошибкой на поток для источников, нижний предел на поток которых был выше нуля: $\sigma_i = (F_i^u - F_i^l)/2$. Так как нижняя граница величины потока в процедуре оптимизации метода максимального правдоподобия задавалась равной нулю, распределение вероятности потока для слабых источников с $F_i \sim \sigma_i$ становится несимметричным и существенно отклоняется от нормального распределения. В этой работе мы такими отклонениями пренебрегаем, используя для вычисления среднеквадратичного отклонения для самых слабых источников только верхний предел на поток: $\sigma_i = F_i^u - F_i$. Это приводит к некоторой недооценке статистической значимости детектирования переменности потока относительно обзоров с низкими потоками, полученными методом принудительной фотометрии, но не влияет существенным образом на отбор источников с $F_i > 3\sigma_i$, о которых в основном и пойдет речь в данной работе. В будущей публикации, посвященной полному каталогу сильно переменных АЯГ, включающему источники с $F_i < 3\sigma_i$ в любом из обзоров, будет учтено реалистичное распределение вероятности потока для ситуаций с низкими потоками.

Предполагая, что измерения потока от источника в обзорах i и j являются полностью независимыми, распределение вероятности их отношения, $r = f_i/f_j$, может быть записано следующим образом:

$$p_r(r) = \int_{-\infty}^{+\infty} |f_j| p_{f,i}(rf_j) p_{f,j}(f_j) df_j.$$
(1)

Используя нормальное приближение для распределения потока $p_{f,i} = N(F_i, \sigma_i)$, точное решение уравнения (1) будет иметь следующий вид (см., например, Хинкли, 1969):

$$p_r = \frac{b(r)d(r)}{a^3(r)} \frac{1}{\sqrt{2\pi\sigma_i\sigma_j}} \times$$
(2)

$$\times \left[\Phi\left(\frac{b(r)}{a(r)}\right) - \Phi\left(-\frac{b(r)}{a(r)}\right) \right] +$$
$$+ \frac{1}{a^2(r)\pi\sigma_i\sigma_j} e^{-c/2},$$

где

$$a(r) = \sqrt{\frac{1}{\sigma_i^2}r^2 + \frac{1}{\sigma_j^2}},$$

$$b(r) = \frac{F_i}{\sigma_i^2}r + \frac{F_j}{\sigma_j^2},$$

$$c = \frac{F_i^2}{\sigma_i^2} + \frac{F_j^2}{\sigma_j^2},$$

$$d(r) = e^{\frac{b^2(r) - ca^2(r)}{2a^2(r)}}$$

и Φ — кумулятивная функция нормального распределения

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-(1/2)y^2} \, dy. \tag{3}$$

Для каждого источника из суммарного каталога и для каждой пары обзоров, используя уравнение (2), мы вычисляли кумулятивную вероятность того, что отношение потоков $r = f_i/f_j > 0.1$ при условии, что в *j*-м обзоре источник был ярче, чем *i*-м обзоре, т.е. $F_j > F_i$. Иными словами, мы вычисляли вероятность того, что истинный поток от источника в двух обзорах изменился менее, чем в 10 раз. Эта вероятность рассчитывалась для всех возможных комбинаций из пяти обзоров. Источник проходил критерий отбора и попадал в нашу выборку сильно переменных источников, если для хотя бы для одной пары обзоров описанная выше вероятность была меньше, чем 2.7×10^{-3} . Отметим, что в качестве порога по вероятности мы произвольно выбрали значение, соответствующее уровню достоверности 3 одля гауссова распределения. Принимая во внимание, что число испытаний (т.е. число всевозможных пар обзоров) равно 10, мы ожидаем, что в финальном каталоге сильно переменных АЯГ будет несколько процентов объектов, чья истинная амплитуда переменности несколько меньше 10.

3.3. Полученная выборка

Полученная таким образом выборка сильно переменных источников содержит 1325 источников. На рис. 1 изображено распределение потоков для полученной выборки источников в диапазоне энергий 0.3-2.3 кэВ. Черной гистограммой показаны потоки, найденные методом принудительной фотометрии в обзорах, в которых регистрировался максимальный поток (будем называть такие моменты времени ярким состоянием источника). Красной гистограммой изображены потоки источников или верхние пределы на потоки в обзорах, относительно которых было получено наиболее значимое изменение потока (тусклое состояние источника). При этом, если значимость детектирования источника в тусклом состоянии была меньше порога детектирования (по величине правдоподобия <6), то в качестве потока источника для гистограммы красного цвета на рис. 1 использовался 3σ верхний предел, полученный из карт чувствительности обзоров еРОЗИТА¹ (вклад таки источников показан синей штриховоой гистограммой). Далее в работе для параметризации максимальной амплитуды переменности, задетектированной по всем обзорам неба, доступным для данного источника, мы будем использовать величину R_X , определенную как отношение потока от источника в ярком состоянии (черная гистограмма) к потоку или верхнему пределу на поток от источника в тусклом состоянии (гистограмма красного цвета).

¹Карты чувствительности обзора неба рассчитываются на основе карт экспозиций и карт фона в диапазоне энергий 0.3—2.3 кэВ для модели точечных источников с учетом функции отклика и порога правдоподобия, равного шести, с помощью программы ersensmap ПО eSASS.

Рис. 1. Распределение выборки сильно переменных источников по потокам в диапазоне энергий 0.3—2.3 кэВ. Черной гистограммой изображены максимальные потоки, зарегистрированные для каждого источника среди пяти обзоров неба СРГ/еРОЗИТА. Красной гистограммой изображены минимальные зарегистрированные потоки для каждого источника, либо верхние пределы на поток (также отдельно показанные синей штриховой линией), в случае, если в обзоре, относительно которого получено наиболее значимое изменение потока в ярком состоянии, источник не детектировался с уровнем правдоподобия, превышающим пороговое значение 6.

Рис. 2. Распределение выборки сильно переменных источников по максимальной амплитуде переменности R_X , зарегистрированной по данным пяти обзоров СРГ/еРОЗИТА в диапазоне энергий 0.3–2.3 кэВ. На левой панели показаны источники, которые детектируются в обзорах, в которых зарегистрирован их наименьший поток (правдоподобие \geq 6). В этом случае R_X определяется как отношение максимального к минимальному потоку среди всех обзоров. На правой панели показаны источники, не детектируемые в обзорах, относительно которых получено наиболее значимое изменение потока. Для этих источников величина R_X определяется как отношение максимального к минимальному потоку среди всех обзоров. На правой панели показаны источники, не детектируемые в обзорах, относительно которых получено наиболее значимое изменение потока. Для этих источников величина R_X определена как отношение максимального потока к 3σ верхнему пределу на поток. Черной линией показана кумулятивная гистограмма для всех источников, синей линией — для источников, классифицированных как Галактические источники, красной — спектроскопически подтвержденные АЯГ, зеленой линией — кандидаты в АЯГ, отобранные из оставшихся источников (подраздел 3.4). Для части источников, изображенных на правой панели $R_X < 10$, что является следствием метода вычисления нижнего предела для расчета величины R_X с использованием 3σ верхнего предела на поток в низком состоянии.

3.4. Классификация отобранных источников

Полученная выборка сильно переменных источников кросс-коррелировалась с каталогом Gaia eDR3 (Коллаборация Gaia и др., 2021) для определения источников, имеющих Галактическое происхождение. Рентгеновский источник отождествлялся нами как Галактический источник, если все источники из каталога Gaia, попадающие в область его локализации, имели значимые измерения параллакса и/или собственного движения с отношением сигнал—шум S/N ≥ 5. При определении достоверности измерения собственного движения проверялись как компоненты собственного движения по экваториальным координатам, так и суммарное собственное движение источника. В качестве области локализации рентгеновских источников использовался 98%-й круг ошибок, типичные значения радиуса локализации для отобранных нами источников еРОЗИТА в ярком состоянии составляют ≈5 угл. сек. В результате такой процедуры нами были отобраны 630 кандидатов в сильно переменные источники Галактического происхождения.

На рис. 2 показано кумулятивное распределение источников по максимальной амплитуде их переменности (величина R_X). На левой панели рис. 2 изображены источники, для которых значимость детектирования в тусклом состоянии (т.е. в обзоре, относительно которого зарегистрировано наиболее значимое изменение потока) была выше порога детектирования по правдоподобию (≥ 6). Суммарное число таких источников оказалось 118, из них 67 были отождествлены нами как Галактические источники. В оставшейся выборке из 51 источника еще 2 источника были исключены из дальнейшего рассмотрения как кандидаты в события приливного разрушения (СПР) на основе спектроскопических данных, полученных группой наземной поддержки СРГ/еРОЗИТА.

На правой панели рис. 2 изображено распределение для всех остальных источников из полученной выборки (1207 источников), из которых 563 были отождествлены как Галактические источники. В этом случае изображен нижний предел на максимальную амплитуду переменности, который рассчитывался относительно 3σ верхнего предела, найденного по картам чувствительности. Обратим внимание, что для части источников, изображенных на правой панели, амплитуда переменности $R_X < 10$. Это следствие метода вычисления нижнего предела на R_X с использованием 3σ верхнего предела на поток в низком состоянии.

Дальнейшая классификация кандидатов во внегалактические источники включала их кросскорреляцию с каталогом АЯГ Million Quasars (Milliquas, версия 7.7, Флеш, 2021, 2015). Найденные пересечения рентгеновских источников еРОЗИТА с источниками каталога Milliquas и имеющие спектроскопически подтвержденные классы объектов и красные смещения, попадали в группу АЯГ, показанную на правой и левой панелях рис. 2 красными сплошными линиями. Всего оказалось 132 таких источника (37 на левой панели и 95 на правой). Из оставшейся группы неотождествленных источников исключались подтвержденные события приливного разрушения звезд (из опубликованных выборок Сазонов и др., 2021; Хорунжев и др., а также из списков подтвержденных СПР, которые будут опубликованы в последующих

работах), а также известные классифицированные транзиентные события, связанные со вспышками сверхновых и послесвечениями гамма-всплесков по данным Zwicky Transient Facility (ZTF; Беллм и др. 2019; Грэхам и др. 2019; Маски и др. 2019) и Asteroid Terrestrial-impact Last Alert System (ATLAS; Тонри и др. 2018; Смит и др. 2020). Таким образом, было исключено еще 60 источников. Оставшиеся неклассифицированными после всех описанных процедур источники (12 и 496 на левой и правой панелях соответственно) были отнесены к группе кандидатов в АЯГ, они показаны на рис. 2 зеленой линией. Отметим, что некоторые из неотождествленных кандидатов во внегалактические источники имеют признаки, указывающие на природу АЯГ, такие как показатель цвета W_1 – $-W_2 > 0.8$ (Ассеф и др., 2013) в инфракрасном обзоре всего неба WISE (Райт и др., 2010). По такому критерию четыре источника из кандидатов в АЯГ на левой панели рис. 2 могут быть классифицированы как АЯГ, а из кандидатов в АЯГ на правой панели такой цвет имеют еще 125 источников.

В настоящей работе мы не рассматриваем вопросы полноты полученной выборки сильно переменных АЯГ и кандидатов в АЯГ, они будут более подробно изучены и описаны в следующей работе цикла. Целью работы является представление небольшой группы наиболее ярких и надежно отобранных сильно переменных АЯГ (и кандидатов в АЯГ), каждый из которых представляет отдельный научный интерес. Отметим, однако, что вышеописанный алгоритм отождествления использует 98%-й радиус локализации рентгеновских источников (ошибка локализации оптических источников пренебрежимо мала), что вносит соответствующий вклад в полноту и чистоту получаемой выборки, $\sim 2\%$. Отметим, что этот вклад не является определяющим. Помимо этого, 55 кандидатов в АЯГ, показанных зеленой линией на правой панели рис. 2, имеют смешанную композицию партнеров Gaia в кружке рентгеновской локализации, по крайней мере, часть из них может оказаться Галактическими источниками.

4. СИЛЬНО ПЕРЕМЕННЫЕ АЯГ, ДЕТЕКТИРУЕМЫЕ В НИЗКОМ СОСТОЯНИИ

Дальнейшая часть статьи посвящена исследованию подвыборки сильно переменных АЯГ и их кандидатов, для которых поток в низком состоянии измерен с правдоподобием ≥ 6 , что для гауссова распределения примерно соответствует уровню достоверности $\approx 3\sigma$. Для этих объектов можно с

СИЛЬНОПЕРЕМЕННЫЕ АКТИВНЫЕ ЯДРА ГАЛАКТИК

No.	Источник еРОЗИТА	$F_{0.3-2.3}^{\max}$, эрг с $^{-1}$ см $^{-2}$	R_X	Имя	Спек. класс	z	Ссылка
1	SRGE J143359.2+400636	1.3×10^{-11}	83.3	PGC 2160796	AGN-2	0.099	DR16
2	SRGE J010415.8+402244	2.1×10^{-12}	55.6	LAMOSTJ010415.77+402243.9	AGN-1	0.193	LAMOST
3	SRGE J061310.2+502628	3.9×10^{-12}	48.4	NPM 1G+50.0043	AGN-1	0.019	2MAGN
4	SRGE J122057.8+813600	9.1×10^{-13}	47.2				
5	SRGE J134954.6+432857	2.5×10^{-12}	46.4	LEDA 2221805		0.045	SDSS-IV
6	SRGE J164147.7+700806	6.8×10^{-13}	41.0	NPM 1G+70.0164			MQ
7	SRGE J161630.7+354230	2.2×10^{-12}	38.4	NGC 6104	AGN-1	0.028	LOZAGN
8	SRGE J025436.4+152545	1.3×10^{-12}	38.4	PGC 1484380			СМО
9	SRGE J004730.3+154149	1.9×10^{-12}	38.1	MCG+02-03-002	LINER	0.031	DR16
10	SRGE J091935.9+753945	1.6×10^{-12}	35.8	GAIA 1124646674042078464		(0.5)	GAIA3
11	SRGE J024519.6-025627	1.5×10^{-12}	35.0	SDSS J024519.63-025628.1	BLLac		DR16
12	SRGE J163323.5+471900	7.9×10^{-13}	34.8	IRAS 16319+4725	AGN-1	0.116	LOZAGN
13	SRGE J174036.5+534624	7.1×10^{-13}	31.2	87GB 173932.3+534742	BLLac		4LAC
14	SRGE J073203.1+680336	9.4×10^{-13}	31.2				Palomar
15	SRGE J130600.3+330325	1.2×10^{-12}	29.6	PGC 2022001	AGN-1	0.088	DR16Q
16	SRGEJ150311.8+111026	1.5×10^{-12}	29.3	SDSS J150311.67+111027.3	AGN-1	0.043	LOZAGN
17	SRGE J213946.2+113817	3.1×10^{-12}	29.1				
18	SRGE J160752.0+444125	1.4×10^{-12}	28.6	LAMOSTJ160751.95+444124.6	AGN-1	0.718	LAMQ5
19	SRGE J135255.7+252900	1.1×10^{-12}	27.8	KUG 1350+257	AGN-1	0.064	LOZAGN
20	SRGE J011739.4-025626	1.5×10^{-12}	27.5	GJ0117394-025627	AGN-2	0.051	6dAGN
21	SRGE J175340.2+555128	5.1×10^{-13}	27.0	LEDA 2516819			
22	SRGE J215717.0-263100	1.6×10^{-12}	26.9	2MASX J21571697-2630596	AGN-2	0.034	6dF
23	SRGE J145933.2+152742	1.4×10^{-12}	26.7	PGC 1485268	AGN-1	0.074	LOZAGN
24	SRGE J000415.2+173454	1.7×10^{-12}	26.5				Palomar
25	SRGE J155926.1+521237	9.7×10^{-13}	26.5	SDSS J155926.11+521235.2	AGN-2	0.042	LOZAGN
26	SRGE J142408.5+210520	9.4×10^{-13}	26.4	PGC 1642489	AGN-1	0.047	LOZAGN
27	SRGE J010812.6-114403	3.4×10^{-12}	24.1	IRAS 01056-12009			Palomar
28	SRGE J135321.5+373055	1.3×10^{-12}	23.8	PGC 2102603	AGN-1	0.107	LOZAGN
29	SRGE J150809.2+130031	1.1×10^{-12}	23.2	SDSS J150809.20+130032.4	AGN-1	0.086	LOZAGN
30	SRGE J155344.3+122233	1.6×10^{-12}	22.7	2MASX J15534435+1222337	LINER	0.035	DR16
31	SRGE J153552.5+143104	2.7×10^{-12}	22.7	AKN 479	AGN-2	0.020	LOZAGN
32	SRGE J124339.2+700515	1.9×10^{-12}	22.5	WISEA J124339.43+700517.0			MQ

Таблица 1. Окончание

No.	Источник еРОЗИТА	$F_{0.3-2.3}^{\max}$, эрг с $^{-1}$ см $^{-2}$	R_X	Имя	Спек. класс	z	Ссылка
33	SRGE J162012.8+400907	5.3×10^{-12}	22.4	KUG 1618+402	AGN-1	0.028	LOZAGN
34	SRGE J142607.6+340425	1.2×10^{-12}	22.3	CSO 450	BLLac	1.553	FIRST
35	SRGE J012633.6+313658	2.3×10^{-12}	22.1	MCG 5-04-059	AGN-1	0.045	Osterbrock
36	SRGEJ152410.3+485409	8.6×10^{-13}	22.0	SDSS J152410.34+485409.7	AGN-1	0.145	LOZAGN
37	SRGE J121755.1+583936	1.8×10^{-12}	21.8	CGCG 293-9	AGN-1	0.023	LOZAGN
38	SRGE J163016.2+584247	1.4×10^{-12}	21.5	NPM 1G+58.0189			
39	SRGE J035309.6+565431	2.1×10^{-12}	21.5	GB6 J0353+5654	BLLac		4LAC
40	SRGE J155829.3+271714	2.3×10^{-12}	20.9	PGC 1803429	AGN-1	0.090	LOZAGN
41	SRGE J142352.1+245417	1.5×10^{-12}	20.8	SDSS J142352.08+245417.1	AGN-2	0.074	DR16
42	SRGE J142812.0+511115	1.2×10^{-12}	20.2	SDSS J142811.88+511116.6	AGN-1	0.129	LOZAGN
43	SRGE J160855.5+155200	2.7×10^{-12}	20.0	SDSS J160855.60+155200.2	AGN-1	0.115	DR16Q
44	SRGEJ130020.0+613919	2.6×10^{-12}	19.8	MCG 10-19-011	AGN-1	0.052	LOZAGN
45	SRGE J131443.9+234826	2.5×10^{-12}	19.3	TXS 1312+240	BLLac	2.060	DR16Q
46	SRGEJ181214.1+215305	2.2×10^{-12}	18.5	CGCG 142-19	AGN-2	0.018	Veron
47	SRGE J021749.0+014449	2.6×10^{-12}	18.4	PKS 0215+015	AGN-1	1.715	Boisse
48	SRGE J181335.1+314418	8.6×10^{-12}	16.3	B2 1811+31	BLLac	0.117	EXOSAT
49	SRGE J022239.6+430208	$1.1 imes 10^{-11}$	13.1	3C 66A	BLLac	0.444	BZCAT

Примечание. Название источника еРОЗИТА соответствует наилучшим рентгеновским координатам; максимальная амплитуда переменности $R_x = F^{\max}/F^{\min}$ определена как отношение максимального к минимальному из зарегистрированных среди всех обзоров потоков от источника в диапазоне энергий 0.3–2.3 кэВ; $F_{0.3-2.2}^{\max}$ — наибольший рентгеновский поток от источника (без коррекции на поглощение); спектральные классы источников и красные смещения (z) определены в работах, указанных в колонке "Библ. ссылка", подробное описание условных обозначений см. в разделе 4 в тексте статьи.

достаточной точностью вычислить значение параметра переменности R_X и во многих случаях исследовать их спектральные характеристики в низком состоянии.

4.1. Оптическая классификация и красные смещения

Список этих объектов и их основные параметры приведены в табл. 1. Из 49 объектов 37 являются спектроскопически подтвержденными АЯГ, для 35 из которых также измерены красные смещения, а другие 12 источников классифицированы нами как кандидаты в АЯГ. Распределение этой выборки по величине R_X уже обсуждалось выше и соответствует красной сплошной и зеленой линиям на левой панели рис. 2. Информация, указанная в столбцах таблицы "имя", "спектральный класс"

и "z" (красное смещение), дана в соответствии с опубликованными ранее работами, указанными в отдельном столбце "ссылка". При этом используются следующие условные обозначения: DR16—SDSS-DR16 (Ахумада и др., 2020), DR16Q — SDSS-DR16Q (Лайк и др., 2020), LAMOST — LAMOST Pilot Surveys (Хуо и др., 2013), 2MAGN — 2MASS AGN (Зау и др., 2019), SDSS-IV — SDSS-IV MaNGA Sample (Уэйк и др., 2017), LOZAGN — Low-redshift AGN (Лиу и др., 2019), GAIA3 — Gaia DR3 QSO candidates (Коллаборация Gaia и др., 2022), 4LAC — Fermi AGN v4 DR3 (Коллаборация Fermi-LAT и др., 2022), LAMQ5-LAMOST QUASAR DR5/DR4 (Яо и др., 2019), 6dF — 6dF galaxy survey (Джонес и др., 2009), 6dAGN — 6dF AGN, MQ — Milliquas (Флеш, 2021, 2015), FIRST — FIRST Bright

Рис. 3. Долговременные рентгеновские кривые блеска полученные СРГ/еРОЗИТА в диапазоне энергий 0.3–2.3 кэВ для выборки сильно переменных АЯГ, приведенных в табл. 1. Каждая точка соответствует усредненному по обзору потоку.

Рис. 3. Окончание.

Quasar Survey (Вайт и др., 2000), Osterbrock (Остерброк, 1977), 4LAC — Fermi AGN v4 DR3 (Коллаборация Fermi и др., 2022), Veron (Верон, Гонсалвес и Верон-Сетти, 1997), Boisse (Буас и Бержерон, 1988), EXOSAT — EXOSAT High Galactic Latitude Survey (Джомми и др., 1991), BZCAT — Roma-BZCAT (Массаро и др., 2009).

Для трех источников из табл. 1 группой наземной поддержки СРГ/еРОЗИТА в коллаборации с учеными из Калифорнийского технологического института были получены оптические спектры на Паломарской обсерватории (отмечены как "Palomar" в табл. 1), еще один источник из таблицы был снят на российском телескопе Кавказкой горной обсерватории (СМО) ГАИШ МГУ. Оптические данные по этим источникам будут опубликованы в отдельной работе.

Среди представленной выборки 21 источник является спектроскопически подтвержденным АЯГ 1-го типа (43%), 7 источников — АЯГ 2-го типа (14%), еще 7 — блазарами (14%) и 2 — АЯГ типа LINER (4%). Оставшиеся 12 источников к настоящему моменту не имеют оптической классификации по опубликованным работам (24%).

4.2. Рентгеновские кривые блеска

На рис. 3 показаны рентгеновские кривые блеска в диапазоне энергий 0.3-2.3 кэВ для выборки источников из табл. 1 по данным телескопа еРОЗИТА. Каждая кривая блеска включает четыре или пять измерений потока, полученного методом принудительной PSF-фотометрии. Временной интервал между соседними измерениями составляет шесть месяцев.

Кривые блеска, изображенные на рис. 3, характеризуются большой амплитудой вариаций потока в полном соответствии с критерием отбора источников. Они демонстрируют большое разнообразие по характеру переменности, однако их классификация затруднена и, вероятно, будет не вполне надежна и однозначна в силу небольшого числа измерений — 4 или 5. В некоторых случаях астрофизически мотивированная классификация и интерпретация рентгеновских кривых блеска могут быть сделаны с использованием спектральной и (квази) одновременной многоволновой информации, чему будут посвящены последующие работы. Один из очевидных вопросов, на который поможет ответить рентгеновская спектроскопия - ассоциировано ли резкое и/или кратковременное (на масштабах ~6 мес) падение потока с возросшим поглощением. В частности, в разделе 5 мы выделим класс "потухших" источников и обсудим их спектральные свойства.

СИЛЬНОПЕРЕМЕННЫЕ АКТИВНЫЕ ЯДРА ГАЛАКТИК

Таблица 2. Параметры модели рентгеновского степенного спектра выборки сильно переменных АЯГ

No.	Источник (SRGE)	z	$N_{ m H,gal}, \ 10^{21}{ m cm}^{-2}$	$\frac{N_{\rm H},}{10^{21}{\rm cm}^{-2}}$	Г	L_X , эрг/с	c-stat/d.o.f	gof p-value
1	J143359.2+400636	0.099	0.10	$0.85\substack{+0.15 \\ -0.14}$	$3.32^{+0.14}_{-0.13}$	$8.09^{+1.01}_{-0.79} \times 10^{44}$	132.0/70	$\lesssim 10^{-5}$
2	J010415.8+402244	0.193	0.48	< 0.4	$3.11\substack{+0.42\\-0.15}$	$3.61^{+1.29}_{-0.18}\times10^{44}$	57.4/29	1.40×10^{-4}
3	J061310.2+502628	0.019	1.58	$2.31_{-0.60}^{+0.75}$	$2.33\substack{+0.35 \\ -0.29}$	$1.06^{+0.21}_{-0.10}\times10^{43}$	30.4/30	5.59×10^{-1}
4	J122057.8+813600		0.58	$0.39\substack{+0.89 \\ -0.28}$	$1.64_{-0.23}^{+0.53}$		31.6/35	8.31×10^{-1}
5	J134954.6+432857	0.045	0.14	$0.11\substack{+0.45 \\ -0.04}$	$2.15\substack{+0.36 \\ -0.11}$	$2.14^{+0.29}_{-0.18}\times10^{43}$	17.6/31	7.46×10^{-1}
6	J164147.7+700806		0.44	$2.37_{-0.55}^{+0.73}$	$4.63\substack{+0.60 \\ -0.46}$		97.4/90	1.30×10^{-4}
7	J161630.7+354230	0.028	0.11	$0.20\substack{+0.35\\-0.12}$	$1.95\substack{+0.28 \\ -0.13}$	$8.50^{+1.00}_{-0.90}\times10^{42}$	44.2/41	3.69×10^{-1}
8	J025436.4+152545		0.76	$0.53_{-0.38}^{+0.72}$	$2.27_{-0.32}^{+0.53}$		25.5/29	9.61×10^{-1}
9	J004730.3+154149	0.031	0.37	$1.36^{+1.48}_{-0.97}$	$2.40\substack{+0.76 \\ -0.52}$	$1.10^{+0.72}_{-0.18}\times10^{43}$	27.7/28	8.07×10^{-1}
10	J091935.9+753945		0.19	$0.30\substack{+0.51 \\ -0.21}$	$2.46_{-0.23}^{+0.45}$		29.0/35	5.89×10^{-1}
11	J024519.6-025627		0.31	$1.51^{+1.00}_{-0.76}$	$2.71\substack{+0.58 \\ -0.46}$		22.1/31	1.85×10^{-1}
12	J163323.5+471900	0.116	0.17	< 0.3	$1.64\substack{+0.24 \\ -0.14}$	$6.98^{+1.27}_{-1.12}\times10^{43}$	83.3/80	1.52×10^{-2}
13	J174036.5+534624		0.29	$0.67^{+0.42}_{-0.34}$	$2.88\substack{+0.37 \\ -0.32}$		96.2/104	4.54×10^{-1}
14	J073203.1+680336		0.42	< 0.6	$2.94\substack{+0.69 \\ -0.16}$		67.8/67	4.37×10^{-1}
15	J130600.3+330325	0.088	0.13	$0.56^{+1.39}_{-0.41}$	$2.37_{-0.33}^{+0.82}$	$4.48^{+3.15}_{-0.61}\times10^{43}$	23.7/27	4.25×10^{-1}
16	J150311.8+111026	0.043	0.22	$0.37^{+0.76}_{-0.25}$	$1.93\substack{+0.53 \\ -0.25}$	$1.46^{+0.32}_{-0.21}\times10^{43}$	48.5/40	5.53×10^{-1}
17	J213946.2+113817		0.68	$0.09\substack{+1.07 \\ -0.00}$	$1.04\substack{+0.41 \\ -0.09}$		34.0/30	3.54×10^{-1}
18	J160752.0+444125	0.718	0.09	$0.08\substack{+0.49 \\ -0.01}$	$2.18\substack{+0.42 \\ -0.10}$	$6.40^{+2.11}_{-0.29}\times10^{45}$	53.4/45	4.46×10^{-1}
19	J135255.7+252900	0.064	0.11	< 0.7	$1.63\substack{+0.52 \\ -0.12}$	$2.91^{+0.62}_{-0.64}\times10^{43}$	36.2/33	5.83×10^{-1}
20	J011739.4-025626	0.051	0.38	< 0.7	$1.85\substack{+0.45 \\ -0.12}$	$2.04^{+0.38}_{-0.31}\times10^{43}$	23.3/29	4.32×10^{-1}
21	J175340.2+555128		0.37	$0.47_{-0.33}^{+0.59}$	$1.89\substack{+0.40\\-0.25}$		83.3/103	8.70×10^{-1}
22	J215717.0-263100	0.034	0.21	< 0.9	$2.20\substack{+0.70 \\ -0.14}$	$7.40^{+2.37}_{-1.02}\times10^{42}$	28.6/35	9.66×10^{-1}
23	J145933.2+152742	0.074	0.19	$0.60\substack{+0.86\\-0.43}$	$2.00\substack{+0.54 \\ -0.31}$	$4.48^{+1.08}_{-0.59}\times10^{43}$	27.4/37	8.33×10^{-1}
24	J000415.2+173454		0.28	$3.90^{+2.02}_{-1.41}$	$1.58\substack{+0.54\\-0.40}$		26.5/29	1.40×10^{-1}
25	J155926.1+521237	0.042	0.11	$0.41_{-0.28}^{+0.50}$	$2.23\substack{+0.39 \\ -0.25}$	$8.01^{+1.34}_{-0.82}\times10^{42}$	68.9/62	5.90×10^{-2}
26	J142408.5+210520	0.047	0.28	$0.26^{+1.01}_{-0.16}$	$1.80\substack{+0.65 \\ -0.22}$	$1.23^{+0.31}_{-0.23}\times10^{43}$	32.9/35	9.51×10^{-1}
27	J010812.6-114403		0.24	$1.62^{+0.86}_{-0.69}$	$5.48^{+0.83}_{-0.68}$		30.8/31	2.41×10^{-2}
28	J135321.5+373055	0.107	0.14	$0.72_{-0.51}^{+0.90}$	$3.06\substack{+0.72 \\ -0.43}$	$7.81^{+6.77}_{-1.83}\times10^{43}$	35.0/29	1.79×10^{-1}
29	J150809.2+130031	0.086	0.24	$0.64\substack{+0.78 \\ -0.45}$	$2.82\substack{+0.65 \\ -0.42}$	$4.21^{+2.53}_{-0.81}\times10^{43}$	36.8/38	3.78×10^{-1}
30	J155344.3+122233	0.035	0.35	$0.74_{-0.45}^{+0.71}$	$2.08\substack{+0.45 \\ -0.32}$	$1.05^{+0.21}_{-0.12}\times10^{43}$	52.1/51	1.74×10^{-2}
31	J153552.5+143104	0.020	0.35	$0.48^{+0.51}_{-0.32}$	$2.02\substack{+0.36 \\ -0.24}$	$5.55^{+0.86}_{-0.61}\times10^{42}$	66.9/41	1.28×10^{-2}
32	J124339.2+700515		0.14	$0.40^{+0.54}_{-0.29}$	$3.37\substack{+0.53 \\ -0.32}$		26.5/30	8.34×10^{-1}

Таблица 2. Окончание

No.	Источник (SRGE)	z	$N_{\rm H,gal}, \\ 10^{21}{\rm cm}^{-2}$	$rac{N_{ m H}}{10^{21}{ m cm}^{-2}}$ Γ		L_X , эрг/с	c-stat/d.o.f	gof p-value
33	J162012.8+400907	0.028	0.07	$0.19\substack{+0.21 \\ -0.11}$	$2.46\substack{+0.19 \\ -0.12}$	$1.57^{+0.13}_{-0.08}\times10^{43}$	56.9/46	9.00×10^{-1}
34	J142607.6+340425	1.553	0.13	$1.22^{+1.01}_{-0.70}$	$3.09\substack{+0.69 \\ -0.51}$	$1.22^{+2.93}_{-0.64}\times10^{47}$	24.4/31	2.43×10^{-1}
35	J012633.6+313658	0.045	0.45	$0.43\substack{+0.52 \\ -0.29}$	$2.33\substack{+0.43 \\ -0.26}$	$2.05^{+0.40}_{-0.22}\times10^{43}$	44.9/31	1.24×10^{-1}
36	J152410.3+485409	0.145	0.16	< 0.6	$2.54_{-0.13}^{+0.50}$	$7.56^{+2.41}_{-0.42}\times10^{43}$	64.5/42	3.39×10^{-3}
37	J121755.1+583936	0.023	0.15	< 0.3	$2.53\substack{+0.34 \\ -0.16}$	$3.09^{+0.55}_{-0.29}\times10^{42}$	35.3/28	1.48×10^{-2}
38	J163016.2+584247		0.14	$0.26\substack{+0.29 \\ -0.17}$	$2.02\substack{+0.23 \\ -0.16}$		107.5/97	7.76×10^{-2}
39	J035309.6+565431		4.48	$11.13^{+2.56}_{-1.97}$	$3.10\substack{+0.60 \\ -0.46}$		32.1/28	2.24×10^{-1}
40	J155829.3+271714	0.090	0.39	$0.37\substack{+0.37 \\ -0.25}$	$1.89\substack{+0.26 \\ -0.19}$	$1.21^{+0.15}_{-0.12}\times10^{44}$	243.2/212	9.96×10^{-2}
41	J142352.1+245417	0.074	0.17	< 0.9	$1.91\substack{+0.52 \\ -0.10}$	$4.37^{+0.81}_{-0.54}\times10^{43}$	46.4/31	6.05×10^{-1}
42	J142812.0+511115	0.129	0.11	$0.21\substack{+0.58 \\ -0.13}$	$2.16\substack{+0.47 \\ -0.19}$	$1.01^{+0.22}_{-0.11}\times10^{44}$	29.2/32	3.35×10^{-1}
43	J160855.5+155200	0.115	0.30	$0.38\substack{+0.48 \\ -0.27}$	$2.87\substack{+0.41 \\ -0.27}$	$1.61^{+0.55}_{-0.22}\times10^{44}$	40.1/41	8.84×10^{-1}
44	J130020.0+613919	0.052	0.15	$0.35\substack{+0.47 \\ -0.25}$	$2.48\substack{+0.38 \\ -0.23}$	$2.96^{+0.60}_{-0.27}\times10^{43}$	22.8/30	2.87×10^{-1}
45	J131443.9+234826	2.060	0.10	$0.78\substack{+0.66 \\ -0.50}$	$2.75_{-0.37}^{+0.46}$	$3.28^{+3.92}_{-1.34} \times 10^{47}$	29.4/31	5.71×10^{-1}
46	J181214.1+215305	0.018	0.86	$2.19\substack{+1.27 \\ -0.89}$	$1.76\substack{+0.50 \\ -0.38}$	$6.51^{+1.54}_{-0.87}\times10^{42}$	20.0/27	7.31×10^{-1}
47	J021749.0+014449	1.715	0.34	$0.49\substack{+0.48 \\ -0.33}$	$2.30\substack{+0.35 \\ -0.25}$	$1.31^{+0.72}_{-0.29}\times10^{47}$	25.0/32	8.34×10^{-1}
48	J181335.1+314418	0.117	0.44	$1.04\substack{+0.38 \\ -0.34}$	$3.01\substack{+0.27 \\ -0.25}$	$7.39^{+1.87}_{-1.17}\times10^{44}$	30.6/29	8.64×10^{-3}
49	J022239.6+430208	0.444	0.82	$1.28^{+0.39}_{-0.35}$	$2.62^{+0.23}_{-0.21}$	$2.48^{+0.58}_{-0.37}\times10^{46}$	57.5/58	3.02×10^{-1}

Примечание. $N_{\rm H,gal}$ — Галактическое поглощение в направлении на источник по данным карт HI4PI (Коллаборация HI4PI, 2016); $N_{\rm H}$ и Г — параметр поглощения и фотонный индекс для наилучшей модели степенного спектра в энергетическом диапазоне 0.3—8 кэВ, L_X — рентгеновская светимость, поправленная на Галактическое поглощение, в энергетическом диапазоне 0.3—10 кэВ в собственной системе отсчета. Характеристики спектров приведены по данным обзора СРГ/еРОЗИТА, в котором был зарегистрирован максимальный поток от источника. gof (goodness-of-fit) — вероятность того, что наблюдаемое отклонение данных от модели является результатом случайных флуктуаций. Модель с p-value $< 2.7 \times 10^{-3}$ может быть отвергнута данными на уровне достоверности 3 σ . Ошибки соответствуют 90% уровню достоверности.

4.3. Рентгеновские спектры

Критерий отбора выборки источников, представленных в табл. 1, позволяет получать характеристики их спектров не только для обзоров, где регистрировался максимальный поток, но и в состоянии с минимальным потоком, хотя качество таких спектров зачастую не достаточно для надежного ограничения параметров спектральной модели. Спектры источников анализировались для каждого обзора по отдельности в диапазоне энергий 0.3— 8 кэВ.

В качестве базовой спектральной модели мы использовали степенной закон с поглощением: tbabs*cflux*pow в обозначениях ПО XSPEC. Параметр поглощения N_H определялся при под-гонке спектральной модели для спектров с ми-

нимум 50 отсчетов в рассматриваемом диапазоне энергий, в других случаях параметр фиксировался на значениях, равных поглощению в Галактике в направлении на источники по данным карт HI4PI (Коллаборация HI4PI, 2016). Обилие элементов в модели поглощения задавалось в соответствии с работой Уилмс и др. (2000). Параметры для полученных наилучших моделей для яркого состояния источников приведены в табл. 2. В ярком состоянии для всех источников N_H определялся из данных (все спектры имеют >50 отсчетов). Спектры источников в ярком и тусклом состояниях, вместе с соответствующими наилучшими степенными моделями показаны на рис. 4. Отметим, что спектры некоторых источников в ярких состояниях плохо описываются степенной моделью. В частности,

Рис. 4. Рентгеновские спектры объектов из выборки сильно переменных АЯГ, полученные телескопом еРОЗИТА в ходе обзоров неба СРГ, в которых регистрировался максимальный (черные точки с ошибками) и минимальный (красные точки) поток от источника. Сплошной линией показаны наилучшие модели степенного спектра с поглощением. Параметры моделей для высокого состояния приведены в табл. 2). Спектральные каналы сгруппированы со значимостью не менее 1 σ (только для иллюстрации).

Рис. 4. Окончание.

как следует из полученных значений goodnessof-fit, степенная модель с поглощением может быть отвергнута на уровне достоверности >3σ для источников SRGE J1433+4006 (источник № 1 в табл. 2), SRGE J0104+4022 (№ 2) и SRGE J1641+7008 (№ 6). Целью использования степенной модели в работе является однородная характеризация жесткости спектров объектов представленной выборки. Заметим также, что в рамках степенной модели параметр поглощения во многих случаях заметно превышает ожидаемое поглощение в Галактике, на уровне достоверности $\geq 90\%$ для 15 источников.

Используя результаты подгонки для компонента модели cflux, мы вычисляли поправленную на поглощение межзвездной среды Галактики рентгеновскую светимость источников в диапазоне энергий 0.3–10 кэВ в собственной системе отсчета. Для

Рис. 5. Слева: гистограмма распределения источников из табл. 1 по красным смещениям. Черным цветом показано суммарное распределение; синим, оранжевым, зеленым и красным цветами показаны распределения АЯГ 1-го и 2-го типов, лацертид (объекты типа BL Lac) и галактик типа LINER соответственно. Справа: распределение по рентгеновской светимости в собственной системе отсчета в диапазоне энергий 0.3–10 кэВ по данным обзоров еРОЗИТА, в течение которых регистрировался максимальный рентгеновский поток от источников (см. табл. 2).

Рис. 6. Распределение источников по фотонным индексам для модели степенного спектра с поглощением в состояниях с максимальным потоком (см. табл. 2). Черным цветом показано суммарное распределение; синим, оранжевым, зеленым и красным цветами — распределение АЯГ 1-го и 2-го типов, лацертид и галактик типа LINER соответственно (см. табл. 1).

расчета светимостей использовались следующие космологические параметры: $H_0 = 70 \text{ км/с и } \Omega_M = 0.3$. В табл. 2 приведены светимости только для источников со спектроскопически измеренными красными смещениями. На рис. 5 показано распределение выборки источников из табл. 1 по красным смещениям (левая панель) и полученным рентгеновским светимостям (правая панель) для ярких состояний. Красные смещения представленной выборки источников лежат в диапазоне z = 0.018 - 2.06, рентгеновские светимости — в диапазоне $L_X = 3 \times 10^{42} - 3 \times 10^{47}$ эрг/с.

На рис. 6 изображено распределение источников по фотонным индексам для спектров в ярких состояниях. Медиана распределения соответствует фотонному индексу 2.3, а 68% выборки имеют фотонные индексы в диапазоне от 2 до 3. Можно отметить три источника заметно выбивающихся из этого распределения — SRGE J1641+7008 ($N_{\rm 2}$ 6) и SRGE J0108-1144 ($N_{\rm 2}$ 27) с фотонными индексами 4.63^{+0.60}_{-0.46} и 5.48^{+0.83}_{-0.68} соответственно, а также SRGE J2139+1138 ($N_{\rm 2}$ 17) с фотонным индексом 1.2 ± 0.1. Ниже мы более подробно рассмотрим их спектры.

На рис. 7 показано сравнение полученных фотонных индексов источников во время ярких и тусклых состояний. Хорошо заметна асимметрия в распределении точек: спектры в высоком состоя-

Рис. 7. Сравнение фотонных индексов степенной модели для объектов из табл. 1 в состоянии с минимальным (ось ординат) и максимальным (ось абсцисс) потоком. Ошибки 1*σ*. Показаны только объекты, у которых сумма верхней и нижней ошибкок измерения фотонного индекса в низком состоянии не превышает 4.

нии в среднем мягче, чем в низком состоянии. Действительно, сравнивая полученное апостериорное распределение вероятностей для параметра Г по спектру во время обзора с максимальным поток от источника с распределением по данным обзора с минимальным потоком, мы обнаружили девять источников, для которых на уровне достоверности >90% наблюдается увеличение фотонного индекса в ярком состоянии, а именно, источники № 3, 6, 20, 22, 27, 36, 39, 44, 47. Наиболее значимое (> 3σ) изменение фотонного индекса обнаружено для источников SRGE J1524+4854 (№ 36) и SRGE J1300+6139 (№ 44). Для них получены следующие параметры модели в низком состоянии: $\Gamma = -0.05^{+1.11}_{-0.91}$ и $\Gamma = 0.87^{+0.84}_{-0.67}$. Для такого же уровня достоверности (90 %) мы не обнаружили ни одного источника из нашей выборки, для которого наблюдалось бы статистически значимое уменьшение фотонного индекса в ярком состоянии (но два таких случая обнаружены среди "потухших" АЯГ при суммировании данных нескольких обзоров в низком состоянии, см. следующий раздел).

5. ОБСУЖДЕНИЕ ИНДИВИДУАЛЬНЫХ ИСТОЧНИКОВ

В этом разделе обсуждаются наиболее интересные источники из каталога табл. 1.

5.1. "Потухшие" АЯГ

Исходя из характера кривых блеска, изображенных на рис. 3, среди них можно выделить группу "потухших" источников, для которых зарегистрировано значительное падение рентгеновского потока между двумя обзорами, после чего в последующих обзорах поток не восстановился до значений, сравнимых с максимальным. Подобная переменность может быть результатом вспышки источника, либо же более долговременного перехода из "высокого" в "низкое" состояние. Как уже отмечалось выше, такое разделение условно, так как, интерпретируя 4 или 5 измерений потока, мы не можем исключить более сложной картины переменности на больших временных масштабах. Тем не менее представляет интерес сравнение рентгеновских спектров таких источников в высоком и низком состояниях. Для этого, не претендуя на полноту, мы выделили 10 источников, используя следующие критерии отбора: (i) поток источника уменьшился во втором обзоре относительно первого более чем в 8 раз и (ii) во всех последующих наблюдениях оставался на уровне не более 20% от потока в первом обзоре. Для повышения статистического качества спектров в низком состоянии мы объединили данные всех обзоров, в которых источник находился в низком состоянии. Полученные таком образом спектры высокого и низкого состояний приведены на рис. 8, а наилучшие значения фотонного индекса в высоком и низком состояниях — на рис. 9.

Как следует из рис. 8, сильные падения светимости источников, как правило, не сопровождаются значительными спектральными изменениями, таким образом, мы сразу исключаем сильные вариации поглощения как причины изменений потока (в рассматриваемых источниках). Два источника продемонстрировали изменение

Рис. 8. Рентгеновские спектры "потухших" во втором обзоре АЯГ. Черным цветом показаны спектры в высоком состоянии (первый обзор), красным цветом показаны суммарные спектры в низком состоянии (обзоры 2–5). Спектральные каналы сгруппированы со значимостью не менее 2*σ* (только для иллюстрации).

Рис. 9. Сравнение фотонных индексов степенной модели для выборки "потухших" АЯГ. По оси абсцисс показан фотонный индекс для спектров источников в первом обзоре (яркое состояние), по оси ординат — для спектров по сумме 2–5 обзоров (тусклое состояние). Ошибки приведены на 68% уровне значимости.

спектральной формы умеренной статистической достоверности — SRGE J1220+8136 (№ 4) и SRGE J2139+1138 (№ 17) (рис. 9). Интересно отметить, что эти два источника характеризуются наиболее жесткими спектрами в высоком состоянии (см. табл. 2). В этом смысле они демонстрируют тренд, противоположный большинству рассматриваемых источников (рис. 7). Для этих двух источников в модели степенного закона с поглощением в низком состоянии обнаружено увеличение фотонного индекса, а для источника SRGE J122057.8+813600 - также и увеличение столбца поглощения N_H на уровне достоверности >90% (согласно распределениям вероятностей параметров, найденных из цепочек МСМС). Параметры степенных моделей в низком состоянии для них — $\Gamma = 3.4^{+4.0}_{-0.6}$, $N_{\rm H} = 4.4^{+8.8}_{-0.9} \times 10^{21}$ см⁻² для SRGE J122057.8+813600 и $\Gamma = 2.4^{+2.1}_{-0.2}$, $N_{\rm H} = 1.0^{+3.7}_{-0.2} \times 10^{21}$ см⁻² для SRGE J213946.2+113817 (ошибки соответствуют 90% уровню значимости). Для других "потухших" источников статистически значимых изменений спектральных параметров обнаружить не удалось (см. рис. 9).

5.2. Источники с аномально мягкими спектрами

Другими интересными объектами в табл. 1 являются источники SRGE J1641+7008 (№ 6) и SRGE J0108-1144 (№ 27), имеющие наиболее мягкие спектры в высоком состоянии, с фотонными индексами Г ≈ 4.6 ± 0.3 и Г ≈ 5.7 ± 0.5 соответственно (см. табл. 2). Мы аппроксимировали спектры этих источников в высоком состоянии простейшей моделью аккреционного диска (DISKBB в XSPEC, применение более сложных моделей затруднено из-за неизвестного красного смещения этих источников) и получили следующие параметры: $T_{\rm in} = 0.21^{+0.02}_{-0.03}, n_{\rm H} = 0.68^{+0.53}_{-0.28} \times 10^{21}$ см⁻² для SRGE J164147.7+700806 и $T_{\rm in} = 0.15^{+0.01}_{-0.02}, n_{\rm H} < 0.68 \times 10^{21}$ см⁻² для SRGE J010812.6-114403. Отметим, что для первого источника тепловая модель значимо лучше описывает наблюдаемые спектры: δ c-stat = -7.0. Для второго источника улучшения качества аппроксимации не обнаружено: δ c-stat = -0.1.

Оба источника не имеют опубликованных спектральных классификаций и красных смещений. Рентгеновская локализация источника SRGE J1641+7008 совместима с галактикой LEDA 2734260, которая также является известным радиоисточником VLAJ164147.34+700806.1.

Мягкость спектров высокого состояния могла бы свидетельствовать о том, что они ассоциированы с событиями приливного разрушения звезд (Сазонов и др., 2021). Однако наблюдаемые кривые блеска этих источников не характерны для СПР. Отметим также, что мы не обнаружили для этих источников оптических транзиентов по открытым данным ZTF. Эти источники требуют дальнейшего исследования, в частности, в оптическом диапазоне.

5.3. SRGE J035309.6+565431

Источник SRGE J0353+5654 (№ 39) обладает самым высоким поглощением среди объектов нашей выборки по результатам аппроксимации степенной модели (см. табл. 2). Рентгеновская локализация совместима с известным блазаром GB6 J0353+5654, относящимся к классу блазаров с высокочастотным синхротронным максимумом излучения (HSP). Его оптический спектр без особенностей, красное смещение неизвестно (Креспо и др., 2016). В области локализации также не обнаружено оптических транзиентов.

Рентгеновская блеска кривая SRGE J0353+5654 (см. рис. 3) демонстрирует резкие изменения потока во всех четырех обзорах. Простые тепловые модели с поглощением описывают спектр несколько хуже поглощенного степенного спектра, δ с-stat = +11.6 (BBODYRAD) и δc -stat = +5.6 (DISKBB), при этом получаемый параметр поглощения для таких моделей согласуется с Галактическим значением в направлении на источник. Получены следующие параметры для модели DISKBB: $T_{\rm in}=0.67^{+0.11}_{-0.13}$ кэВ и $N_{\rm H}=$ $= 6.5^{+1.7}_{-1.0} \times 10^{21}$ см $^{-2}$. Однако физическая мотивация применения тепловых спектральных моделей к описанию спектров блазаров не очевидна.

6. ЗАКЛЮЧЕНИЕ

Хотя переменность рентгеновского потока является неотъемлемым свойством аккреции и, в частности, аккреции на сверхмассивные черные дыры в АЯГ, сильные, более чем на порядок, изменения светимости АЯГ на масштабе ~1 года крайне редки. Более того, в стандартной картине аккреции на сверхмассивную черную дыру (Шакура и Сюняев, 1973) их существование непросто объяснить. В силу своей редкости, такие явления мало изучены, в частности, нет оценки их частоты, отсутствует ясная картина их распространенности среди АЯГ различных типов. Обзор всего неба телескопом еРОЗИТА рентгеновской обсерватории СРГ впервые предоставил возможность систематически исследовать такие события, оценить частоту их встречаемости и ассоциацию с определенными классами АЯГ.

Настоящая статья является первой из цикла работ по поиску и исследованию сильно переменных АЯГ и квазаров по данным обзора всего неба телескопом еРОЗИТА обсерватории СРГ. Приведено описание метода поиска таких объектов в каталоге рентгеновских источников еРОЗИТА, методы отбора АЯГ и их кандидатов, и исследованы первичные статистические свойства полученного предварительного каталога из 1365 сильно переменных объектов.

Из 1365 сильно переменных объектов для 630 с достаточной степенью надежности подтверждено их галактическое происхождение, еще для 60 подтверждена ассоциация с событиями приливного разрушения звезд, а 675 являются АЯГ или их кандидатами. Таким образом, принимая во внимание, что более миллиона источников в каталоге еРОЗИТА являются АЯГ и квазарами, доля таких сильно переменных объектов среди АЯГ составляет менее $\lesssim 7 \times 10^{-4}$, что подтверждает сделанное выше утверждение о крайней редкости таких явлений.

В данной работе приведен каталог и подробно исследованы 49 сильно переменных АЯГ и их кандидатов, для которых в низком состоянии детектируется статистически значимый поток. Многие из этих объектов хорошо исследованы в оптическом диапазоне. Анализ их рентгеновских спектров, полученных телескопом еРОЗИТА, и оптической классификации на данном этапе не выявил очевидных закономерностей и преимущественных ассоциаций с определенными типами АЯГ. Однако уже сейчас можно сделать вывод, что они не ассоциированы преимущественно с блазарами. Также интересно отметить, что высокие состояния АЯГ в среднем характеризуюстя более мягкими рентгеновскими спектрами.

Исследование этих уникальных объектов будет продолжено в последующих работах этого цикла.

Настояшее исследование основано на наблюдениях телескопа еРОЗИТА на борту обсерватории СРГ. Обсерватория СРГ изготовлена Роскосмосом в интересах Российской академии наук в лице Института космических исследований (ИКИ) в рамках Российской федеральной научной программы с участием Германского центра авиации и космонавтики (DLR). Рентгеновский телескоп СРГ/еРОЗИТА изготовлен консорциумом германских институтов во главе с Институтом внеземной физики Общества им. Макса Планка (MPE) при поддержке DLR. Космический аппарат СРГ спроектирован, изготовлен, запущен и управляется НПО им. Лавочкина и его субподрядчиками. Прием научных данных осуществляется комплексом антенн дальней космической связи в Медвежьих озерах, Уссурийске и Байконуре и финансируется Роскосмосом. Использованные в настоящей работе данные телескопа еРОЗИТА обработаны с помощью программного обеспечения eSASS, разработанного германским консорциумом еРОЗИТА и программного обеспечения, разработанного российским консорциумом телескопа СРГ/еРОЗИТА. Работа выполнена при поддержке гранта РНФ 21-12-00343.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андерсон (T.W. Anderson), Ann. Math. Statist. **33**, 1148 (1962).
- 2. Антонуччи (R. Antonucci), Ann. Rev. Astron. Astrophys. **31**, 473 (1993).

- 3. Арнауд и др. (К.А. Arnaud), in G.H. Jacoby and J. Barnes (eds.), Astronomical Data Analysis Software and Systems V, Vol. 101 of Astron. Soc. Pacific Conf. Ser., p. 17 (1996).
- 4. Ассеф и др. (R.J. Assef, D. Stern, C.S. Kochanek, A.W. Blain, M. Brodwin, M.J.I. Brown, et al.), Astrophys. J. **772**, 26 (2013).
- 5. Аттли и др. (P. Uttley, I.M. McHardy, and I.E. Papadakis), MNRAS **332**, 231 (2002).
- 6. Ахумада и др. (R. Ahumada, C.A. Prieto, A. Almeida, F. Anders, S.F. Anderson, B.H. Andrews, et al.), Astrophys. J. Suppl. Ser. **249**, 3 (2020).
- 7. Беллм и др. (E.C. Bellm, S.R. Kulkarni, M.J. Graham, R. Dekany, R.M. Smith, R. Riddle, et al.), PASP **131**, 018002 (2019).
- 8. Бруннер и др. (H. Brunner, T. Liu, G. Lamer, A. Georgakakis, A. Merloni, M. Brusa, et al.), Astron. Astrophys. **661**, A1 (2022).
- 9. Буас и Бержерон (P. Boisse and J. Bergeron), Astron. Astrophys. **192**, 1 (1988).
- 10. Вагнетти и др. (F. Vagnetti, S. Turriziani, and D. Trevese), Astron. Astrophys. **536**, A84 (2011).
- 11. Вагнетти и др. (F. Vagnetti, R. Middei, M. Antonucci, M. Paolillo, and R. Serafinelli), Astron. Astrophys. **593**, A55 (2016).
- Вайт и др. (R.L. White, R.H. Becker, M.D. Gregg, S.A. Laurent-Muehleisen, M.S. Brotherton, C.D. Impey, et al.), Astrophys. J. Suppl. Ser. 126, 133 (2000).
- 13. Верон, Гонсалвес и Верон-Сетти (P. Veron, A.C. Goncalves, and M.P. Veron-Cetty), Astron. Astrophys. **319**, 52 (1997).
- 14. Гибсон, Брант (R.R. Gibson and W. Brandt), Astrophys. J. **746**, 54 (2012).
- 15. Грэхам и др. (M.J. Graham, S.R. Kulkarni, E.C. Bellm, S.M. Adams, C. Barbarino, N. Blagorodnova, et al.), PASP **131**, 078001 (2019).
- 16. Гудман, Вир (J. Goodman and J. Weare), Comm. Appl. Math. Comput. Sci. **5**, 65 (2010).
- 17. 17. Гьюке (J. Geweke), Bayesian Statistic. 4, 641 (1992).
- Джомми и др. (P. Giommi, G. Tagliaferri, K. Beuermann, G. Branduardi-Raymont, R. Brissenden, U. Graser, et al.), Astrophys. J. 378, 77 (1991).
- 19. Джонес и др. (D.H. Jones, M.A. Read, W. Saunders, M. Colless, T. Jarrett, Q.A. Parker, et al.), MNRAS **399**, 683 (2009).
- 20. Зау и др. (I. Zaw, Y.-P. Chen, and G.R. Farrar), Astrophys. J. 872, 134 (2019).
- Коллаборация Fermi-LAT и др. (The Fermi-LAT collaboration: M. Ajello, L. Baldini, J. Ballet, D. Bastieri, et al.), arXiv e-prints, p. arXiv:2209.12070 (2022).
- Коллаборация Fermi и др. (The Fermi-LAT collaboration: M. Ajello, L. Baldini, J. Ballet, D. Bastieri, et al.), arXiv e-prints, p. arXiv:2209.12070 (2022).

- 23. Коллаборация Gaia и др. (Gaia Collaboration, A.G.A. Brown, A. Vallenari, T. Prusti, J.H.J. de Bruijne, C. Babusiaux, et al.), Astron. Astrophys. **649**, A1 (2021).
- 24. Коллаборация Gaia и др. (Gaia Collaboration, C.A.L. Bailer-Jones, D. Teyssier, L. Delchambre, C. Ducourant, D. Garabato, et al.), arXiv e-prints, p. arXiv:2206.05681 (2022).
- 25. Коллаборация HI4PI (HI4PI Collaboration, N. Ben Bekhti, L. Flöer, R. Keller, J. Kerp, D. Lenz, et al.), Astron. Astrophys. **594**, A116 (2016).
- 26. Крамер (H. Cramér), Scandinav. Actuar. J. **1928**, 13 (1928).
- 27. Креспо и др. (N. Álvarez Crespo, F. Massaro, D. Milisavljevic, M. Landoni, V. Chavushyan, V. Patiño-Álvarez, et al.), Astron. J. **151**, 95 (2016).
- 28. Кэш (W. Cash), Astrophys. J. 228, 939 (1979).
- 29. Лайк и др. (B.W. Lyke, A.N. Higley, J.N. McLane, D.P. Schurhammer, A.D. Myers, A.J. Ross, et al.), Astrophys. J. Suppl. Ser. **250**, 8 (2020).
- 30. Ланцуизи и др. (G. Lanzuisi, G. Ponti, M. Salvato, G. Hasinger, N. Cappelluti, A. Bongiorno, et al.), Astrophys. J. **781**, 105 (2014).
- 31. Лиуидр. (H.-Y. Liu, W.-J. Liu, X.-B. Dong, H. Zhou, T. Wang, H. Lu, et al.), Astrophys. J. Suppl. Ser. **243**, 21 (2019).
- 32. Лоуренс и др (A. Lawrence, M.G. Watson, K.A. Pounds, and M. Elvis), Nature **325**, 694 (1987).
- 33. Макхарди, Черни (I. McHardy and B. Czerny), Nature **325**, 696 (1987).
- 34. Марковиц, Эдельсон (A. Markowitz and R. Edelson), Astrophys. J. **617**, 939 (2004).
- 35. Маски и др. (F.J. Masci, R.R. Laher, B. Rusholme, D.L. Shupe, S. Groom, J. Surace, et al.), PASP 131, 018003 (2019).
- 36. Массаро и др. (Е. Massaro, P. Giommi, C. Leto, P. Marchegiani, A. Maselli, M. Perri, et al.), Astron. Astrophys. **495**, 691 (2009).
- 37. Миддей и др. (R. Middei, F. Vagnetti, S. Bianchi, F. La Franca, M. Paolillo, and F. Ursini), Astron. Astrophys. **599**, A82 (2017).
- 38. Мэтт и др. (G. Matt, M. Guainazzi, and R. Maiolino), MNRAS **342**, 422 (2003).
- 39. Остерброк (D.E. Osterbrock), Astrophys. J. **215**, 733 (1977).
- 40. Павлинский и др. (M. Pavlinsky, A. Tkachenko, V. Levin, N. Alexandrovich, V. Arefiev, V. Babyshkin, et al.), Astron. Astrophys. **650**, A42 (2021).
- 41. Петерсон (B.M. Peterson), in I. Aretxaga, D. Kunth, and R. Mújica (eds.), Adv. Lect. Starburst-AGN, p. 3 (2001).
- 42. Предель и др. (P. Predehl, R. Andritschke, V. Arefiev, V. Babyshkin, O. Batanov, W. Becker, et al.), Astron. Astrophys. **647**, A1 (2021).
- 43. Пучетти и др. (S. Puccetti, A. Comastri, F. Fiore, P. Arévalo, G. Risaliti, F.E. Bauer, et al.), Astrophys. J. **793**, 26 (2014).

- 44. Райт и др. (E.L. Wright, P.R.M. Eisenhardt, A.K. Mainzer, M.E. Ressler, R.M. Cutri, T. Jarrett, et al.), Astron. J. **140**, 1868 (2010).
- 45. Ричи и др. (C. Ricci, F.E. Bauer, P. Arevalo, S. Boggs, W.N. Brandt, F.E. Christensen, et al.), Astrophys. J. **820**, 5 (2016).
- 46. Ричи и др. (С. Ricci, E. Kara, M. Loewenstein, B. Trakhtenbrot, I. Arcavi, R. Remillard, et al.), Astrophys. J. Lett. **898**, L1 (2020).
- 47. Смит и др. (K.W. Smith, S.J. Smartt, D.R. Young, J.L. Tonry, L. Denneau, H. Flewelling, et al.), PASP **132**, 085002 (2020).
- 48. Сюняев и др. (R. Sunyaev, V. Arefiev, V. Babyshkin, A. Bogomolov, K. Borisov, M. Buntov, et al.), Astron. Astrophys. **656**, A132 (2021).
- 49. Тимлин и др. (J.D. Timlin III, W.N. Brandt, S. Zhu, H. Liu, B. Luo, and Q. Ni), MNRAS **498**, 4033 (2020).
- 50. Тонри и др. (J.L. Tonry, L. Denneau, A.N. Heinze, B. Stalder, K.W. Smith, S.J. Smartt, et al.), PASP 130, 064505 (2018).
- 51. Уилмс и др. (J. Wilms, A. Allen, and R. McCray), Astrophys. J. 542, 914 (2000).
- 52. Уэйк и др. (D.A. Wake, K. Bundy, A.M. Diamond-Stanic, R. Yan, M.R. Blanton, M.A. Bershady, et al.), Astron. J. **154**, 86 (2017).

- 53. Флеш (E.W. Flesch), Publications of the Astron. Soc. of Australia **32**, e010 (2015).
- 54. Флеш (E.W. Flesch), arXiv e-prints, p. arXiv:2105.12985 (2021).
- 55. Хинкли (D. V. Hinkley), Biometrika 56, 635 (1969).
- 56. Хуо и др. (Z.-Y. Huo, X.-W. Liu, M.-S. Xiang, H.-B. Yuan, Y. Huang, H.-H. Zhang, et al.), Astron. J. 145, 159 (2013).
- 57. Шакура, Сюняев (N.I. Shakura and R.A. Sunyaev), Astron. Astrophys. **24**, 337 (1973).
- 58. Шеммер и др. (О. Shemmer, W.N. Brandt, M. Paolillo, S. Kaspi, C. Vignali, M.S. Stein, et al.), Astrophys. J. **783**, 116 (2014).
- 59. Шеммер и др. (O. Shemmer, W.N. Brandt, M. Paolillo, S. Kaspi, C. Vignali, P. Lira, et al.), Astrophys. J., **848**, 46 (2017).
- 60. Штерн и др. (D. Stern, B. McKernan, M.J. Graham, K.E.S. Ford, N.P. Ross, A.M. Meisner, et al.), Astrophys. J. **864**, 27 (2018).
- 61. Яоидр. (S. Yao, X.-B. Wu, Y.L. Ai, J. Yang, Q. Yang, X. Dong, et al.), Astrophys. J. Suppl. Ser. **240**, 6 (2019).