ТЕОРЕТИЧЕСКИЕ ОЦЕНКИ МАССЫ МИРИДЫ R HYDRAE

© 2023 г. Ю. А. Фадеев^{1*}

¹Институт астрономии РАН, Москва, Россия Поступила в редакцию 20.04.2023 г. После доработки 27.04.2023 г.; принята к публикации 27.04.2023 г.

Проведены расчеты эволюции звезд с массой на главной последовательности $1.7M_{\odot} \leq M_{\rm ZAMS} \leq \leq 5.2M_{\odot}$ при начальных содержаниях гелия Y = 0.28 и более тяжелых элементов Z = 0.014. Эволюционные последовательности, соответствующие стадии AGB, были использованы для построения модели мириды R Hya, описывающей уменьшение периода пульсаций, которое наблюдалось на протяжении почти двух столетий. Показано, что наблюдаемое сокращение периода пульсаций R Hya, начавшееся во второй половине XVIII в. при значении П ≈ 495 сут и закончившееся около 1950 г. при значении П ≈ 380 сут, произошло на стадии сжатия звезды после выхода во внешние слои звезды диффузионной волны лучистой энергии, связанной со вспышкой гелиевого слоевого источника. На протяжении всей истории наблюдений R Hya пульсировала в фундаментальной моде. Лучшее согласие с наблюдениями получено для восьми моделей с начальной массой $M = 4.8M_{\odot}$ при значениях параметра скорости потери массы формулы Блокера 0.03 $\leq \eta_{\rm B} \leq 0.07$. Теоретические оценки массы мириды R Hya находятся в пределах $4.44M_{\odot} \leq M \leq 4.63M_{\odot}$, тогда как полученные из расчетов значения радиуса звезды ($421R_{\odot} \leq R \leq 445R_{\odot}$) при периоде пульсаций П ≈ 380 сут находятся в хорошем согласии с результатами измерений углового диаметра методами оптической интерферометрии.

Ключевые слова: звездная эволюция, пульсации звезд, звезды — переменные и пекулярные.

DOI: 10.31857/S0320010823040022, EDN: CUFEWQ

ВВЕДЕНИЕ

Первые наблюдения переменной R Нуа, которая относится к долгопериодическим пульсирующим переменным типа Миры Кита (Самусь и др., 2017). были выполнены Яном Гевелием в 1662 г. и Джеминиано Монтанари в 1670 г. (Хоффлейт, 1997; Зийстра и др., 2002). Однако регулярные фотометрические наблюдения R Нуа стали проводиться лишь со второй половины XIX в., причем особое внимание эта звезда привлекла к себе после обнаружения быстрого сокращения периода изменения своего блеска (Шмидт, 1865; Гульд, 1882; Чандлер, 1882; Каннон, Пикеринг, 1909; Лудендорф, 1916; Нилсен, 1926; Мюллер, 1929). Наиболее полные сведения об изменении периода R Нуа приводятся в работе Зийстры и др. (2002). Согласно этим данным, уменьшение периода R Нуа началось предположительно во второй половине XVIII в., когда изменения блеска происходили с периодом $\Pi \approx 495$ сут. С конца XVIII в. период уменьшался приблизительно по линейному закону со скоростью

 $\dot{\Pi} \approx -0.58$ сут/год, а прекращение уменьшения периода произошло около 1950 г. при значении $\Pi \approx 380$ сут.

Обнаружение в спектре R Нуа линий поглощения изотопа технеция с периодом полураспада $\tau \lesssim 2 \times 10^5$ лет (Орлов, Шаврина, 1984; Литтл и др., 1987; Лебцельтер, Хрон, 2003) свидетельствует о том, что мирида R Нуа является звездой асимптотической ветви гигантов (AGB), и в недавнем прошлом в ней произошла тепловая вспышка гелиевого слоевого источника, которая сопровождалась конвективным вычерпыванием продуктов нуклеосинтеза во внешние слои звезды. Следует заметить, что R Нуа находится на ранней стадии обогащения ее внешних слоев изотопами, которые образуются в слое термоядерного горения гелия, и пока остается кислородной миридой (Меррилл, 1946: 1957: Мехара. 1971). Свидетельством избытка кислорода во внешних слоях звезды является также мазерное излучение молекул ОН (Льюис и др., 1995), H₂O (Такаба и др., 2001) и SiO (Хамфрис и др., 1997).

^{*}Электронный адрес: fadeyev@inasan.ru

Из приближенных оценок, полученных на основе расчетов звездной эволюции (Вуд, Зарро, 1981), следует, что наблюдаемое сокращение периода пульсаций R Нуа обусловлено уменьшением радиуса и светимости звезды после максимума энерговыделения тепловой вспышки в гелиевом слоевом источнике. К сожалению, сведения о массе мириды R Нуа остаются все еще неопределенными, поскольку более детальные теоретические исследования, опирающиеся на результаты расчетов нелинейных звездных пульсаций, до сих пор никем не проводились.

В настоящее время R Нуа является единственной миридой, для которой известны как продолжительность сокращения периода (170 лет $\lesssim \Delta t \lesssim$ $\lesssim 200$ лет), так и значения периода в начале (Π_a^\starpprox pprox 495 сут) и в конце ($\Pi_b^\star pprox 380$ сут) этого интервала времени (Зийстра и др., 2002). В предшествующей статье автора (Фадеев, 2022) на примере мириды T UMi показано, что анализ векового изменения периода на стадии тепловой вспышки гелиевого слоевого источника, базирующийся на согласованных расчетах звездной эволюции и нелинейных звездных пульсаций, позволяет получить достаточно надежную оценку массы звезды. Ниже приводятся результаты таких расчетов, цель которых заключается в определении массы M и радиуса Rкислородной мириды R Нуа. Критерий правильности построенной модели следует из сравнения полученных теоретических оценок среднего радиуса звезды R с результатами интерферометрических наблюдений R Нуа в оптическом диапазоне спектра (Ханифф и др., 1995; Айреланд и др., 2004; Вудруф и др., 2008).

ЭВОЛЮЦИОННЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ ЗВЕЗД AGB

Представленные ниже результаты базируются на результатах расчетов эволюции звезд от главной последовательности до завершения эволюционной стадии AGB. Рассматривались модели звезд с начальной массой $1.7M_{\odot} \leq M_{ZAMS} \leq 5.2M_{\odot}$ и начальным относительным массовым содержанием гелия Y = 0.28. Предполагалось, что начальное содержание элементов тяжелее гелия (металлов) составляет Z = 0.014, которое по современным представлениям соответствует металличности солнечного вещества (Асплунд и др., 2009).

Эволюционные последовательности рассчитывались с помощью программы MESA версии r15140 (Пакстон и др., 2019). Конвективное перемешивание рассматривалось в рамках теории конвекции Бём-Витензе (1958) при отношении длины пути перемешивания к шкале высот по давлению $\alpha_{MLT} = 1.8$. Дополнительное перемешивание на границах конвективных зон рассчитывалось по модели Хервига (2000) при значениях параметра эффективности овершутинга $f_{
m ov}$, предложенных Пиньятари и др. (2016). В частности, на эволюционных стадиях предшествующих AGB вычисления проводились при $f_{\rm ov} = 0.014$, тогда как на стадии тепловой неустойчивости гелиевого слоевого источника полагалось, что на внутренней границе внешней конвективной зоны $f_{ov} = 0.126$. Предположение о более протяженной области дополнительного перемешивания на дне внешней конвективной зоны позволяет получить лучшее согласие результатов расчетов конвективного вычерпываения с наблюдаемыми содержаниями углерода и кислорода в звездах AGB (Хервиг и др., 2003; Пиньятари и др., 2016). Вычисление скоростей энерговыделения в термоядерных реакциях и расчеты нуклеосинтеза проводились с использованием базы данных JINA Reaclib (Сайбурт и др., 2010).

На эволюционных стадиях, которые предшествуют стадии AGB (т.е. при центральном содержании гелия $Y_{\rm c} > 10^{-4}$), скорость потери массы \dot{M} вычислялась по формуле Раймерса (1975) при значении параметра $\eta_{\rm R} = 0.5$, тогда как на стадии AGB вычисление *M* проводилось по формуле Блокера (1995) при $\eta_{\rm B}=0.05.~{\rm B}$ окрестности эволюционных последовательностей, которые показали хорошее согласие с наблюдениями R Нуа, были проведены дополнительные эволюционные расчеты при значениях параметра $\eta_{\rm B} = 0.03$ и $\eta_{\rm B} = 0.07$. В общей сложности было вычислено несколько десятков эволюционных последовательностей, отдельные модели которых были использованы как начальные условия в гидродинамических расчетах и определении периода пульсаций.

Период радиальных пульсаций и радиус звезды связаны между собой как $\Pi \propto R^{3/2}$, поэтому первое представление об изменении периода после максимума энерговыделения в гелиевом слоевом источнике L_{3lpha} может быть получено из рассмотрения изменений радиуса звезды без проведения трудоемких гидродинамических расчетов. На рис. 1 показан график изменения радиуса мириды с массой $M = 1.96 M_{\odot}$ (эволюционная последовательность $M_{\rm ZAMS} = 2 M_{\odot}, \ \eta_{\rm B} = 0.05)$ после девятой тепловой вспышки ($i_{\rm TP} = 9$), а график на рис. 2 описывает изменение радиуса модели с массой $M=4.21 M_{\odot}$ (эволюционная последовательность $M_{\sf ZAMS} = 4.5 M_{\odot}, \eta_{\sf B} = 0.05)$ после седьмой тепловой вспышки. На обоих рисунках время эволюции tотсчитывается от максимума $L_{3\alpha}$, который на графиках отмечен заполненным кружком с меткой 0.

Рис. 1. Изменение радиуса звезды с массой $M = 1.96 M_{\odot}$ (эволюционная последовательность $M_{\text{ZAMS}} = 2.01 M_{\odot}$, $\eta_{\text{B}} = 0.05$) на стадии тепловой вспышки $i_{\text{TP}} = 9$. Время эволюции t отсчитывается от максимума $L_{3\alpha}$.

Рис. 2. То же, что на рис. 1, но для мириды с массой $M = 4.21 M_{\odot}$ (эволюционная последовательность $M_{\text{ZAMS}} = 4.5 M_{\odot}$, $\eta_{\text{B}} = 0.05$) на стадии тепловой вспышки $i_{\text{TP}} = 7$.

ПИСЬМА В АСТРОНОМИЧЕСКИЙ ЖУРНАЛ том 49 № 4 2023

Рис. 3. Продолжительность первой (а) и второй (б) стадий уменьшения радиуса звезды как функция порядкового номера тепловой вспышки *i*_{TP} для эволюционных последовательностей, рассчитанных при *η*_B = 0.05. Около кривых даны значения начальной массы *M*_{ZAMS}. Пунктирными линиями показаны интервалы времени 170 и 200 лет.

Уменьшение радиуса звезды непосредственно после максимума $L_{3\alpha}$ происходит вследствие адиабатического расширения слоев термоядерного горения водорода и резкого падения энерговыделения в реакциях CNO-цикла, которые являются главным источником светимости красного гиганта. Уменьшение светимости и радиуса звезды прекращается в точке t_1 из-за появления в оболочке красного гиганта диффузионной волны лучистой энергии, связанной с тепловой вспышкой в гелиевом слоевом источнике. Таким образом, интервал времени $\Delta t_{01} = t_1 - t_0$ приблизительно равен времени диффузии лучистой энергии из слоя термоядерного горения гелия до внешних слоев звезды. Как следует из сопоставления графиков на рис. 1 и рис. 2, величина этого интервала уменьшается с увеличением массы звезды. Продолжительность второй стадии уменьшения радиуса звезды ($\Delta t_{23}=$ $t=t_3-t_2)$ более чем на порядок превосходит Δt_{01} и также уменьшается с увеличением массы звезды.

Как следует из графиков на рис. 1 и рис. 2, продолжительность первой стадии уменьшения

радиуса мириды с массой $M = 1.96 M_{\odot}$ ($\Delta t_{01} = 206$ лет) сравнима с продолжительностью второй стадии уменьшения радиуса мириды с массой $M = 4.21 M_{\odot}$ ($\Delta t_{23} = 226$ лет). Величины этих интервалов близки к продолжительности наблюдаемого сокращение периода R Нуа (170 лет $\lesssim \Delta t \approx 200$ лет), поэтому при построении модели мириды R Нуа должны быть рассмотрены обе стадии уменьшения радиуса.

Отрезок времени, в течение которого происходит уменьшение радиуса, зависит не только от массы звезды, но и от времени эволюции на стадии AGB. Эта зависимость иллюстрируется на рис. 3, где величина интервалов времени Δt_{01} и Δt_{23} показана как функция порядкового номера тепловой вспышки $i_{\rm TP}$ для нескольких эволюционных последовательностей с начальной массой $2M_{\odot} \leq M_{\rm ZAMS} \leq 5M_{\odot}$. Как видно из приведенных графиков, величина интервала времени Δt_{01} близка к наблюдаемому значению для эволюционных последовательностей с начальной массой $M_{\rm ZAMS} < 3M_{\odot}$ при $i_{\rm TP} < 10$. Продолжитель-

Рис. 4. Диаграмма период П — продолжительность первой стадии уменьшения радиуса Δt_{01} для эволюционных последовательностей $M_{ZAMS} = 1.8 M_{\odot}$ (сплошная линия) и $M_{ZAMS} = 2 M_{\odot}$ (штриховые линии). Кружками и треугольниками показаны модели с возрастом $t = t_0$, пульсирующие в фундаментальной моде и в первом обертоне. Числа около зависимостей показывают порядковый номер тепловой вспышки i_{TP} .

Рис. 5. Диаграмма период П — продолжительность второй стадии уменьшения радиуса Δt_{23} для эволюционных последовательностей $M_{\text{ZAMS}} = 4.5 M_{\odot}$, $4.7 M_{\odot}$, $4.8 M_{\odot}$ и $5 M_{\odot}$, рассчитанных при $\eta_{\text{B}} = 0.05$. Пунктирными горизонтальными линиями отмечен интервал значений 170 лет $\leq \Delta t \leq 200$ лет.

ность второй стадии уменьшения радиуса звезды Δt_{23} оказывается близкой к набюдаемому значению в более широком диапазоне значений порядкового номера тепловой вспышки ($i_{\rm TP} > 5$), но для эволюционных последовательностей с начальной массой $4M_{\odot} < M_{\rm ZAMS} \lesssim 5M_{\odot}$. Однозначный вывод о применимости той или иной группы моделей (т.е. первой или второй стадии уменьшения радиуса) может быть сделан лишь после определения значений периода пульсаций в начале уменьшения радиуса звезды, т.е. в моменты времени t_0 и t_2 соответственно.

ГИДРОДИНАМИЧЕСКИЕ МОДЕЛИ ПУЛЬСАЦИЙ КРАСНЫХ ГИГАНТОВ

Определение периода пульсаций моделей мирид проводилось с помощью дискретного преобразования Фурье кинетической энергии звездных пульсаций на стадии колебаний предельного цикла. Вычисление самовозбуждающихся нелинейных звездных пульсаций с последующим переходом к автоколебаниям (т.е. предельному циклу) заключается в решении задачи Коши для уравнений радиационной гидродинамики с начальными условиями в виде отдельных моделей эволюционной последовательности, которые находятся в состоянии гидростатического равновесия. Для учета эффектов нестационарной конвекции, уравнения гидродинамики были дополнены транспортными уравнениями, описывающими диффузионный перенос удельной энтальпии и средней кинетической энергии турбулентных движений (Куфюс, 1986). Основные уравнения гидродинамики и параметры теории нестационарной конвекции описаны в работе (Фадеев, 2013).

Существенное препятствие, возникающее при вычислении пульсаций мирид, связано с тем, что гидростатически равновесная оболочка звезды не всегда находится в состоянии теплового равновесия, которое является необходимым условием при определении периода колебаний методами теории звездных пульсаций (Яари, Тухман, 1996). Чтобы преодолеть это затруднение, в данной работе был использован подход, предложенный в предшествующей статье автора (Фадеев, 2022) и который основывается на оценке степени отклонения физических условий в звездной оболочке от теплового равновесия. Для этого используется величина

$$\delta_{\mathrm{L}} = \max_{1 \le j \le N} \left| 1 - L_j / L_1 \right|$$

Здесь L_j — полная (т.е. лучистая и конвективная) светимость в *j*-й лагранжевой зоне гидродинамической модели, *j* = 1 на внутренней границе, которая рассматривается как жесткая постоянно излучающая сфера, *j* = *N* на внешней границе модели. Все гидродинамические вычисления в данной работе проводились при числе лагранжевых массовых зон N = 600. Условие $\delta_L = 0$ очевидно соответствует состоянию теплового равновесия. Критерием малости отклонений от теплового равновесия, допускающим применимость теории звездных пульсаций, является выполнение условия $\delta_L \lesssim 10^{-2}$ (Фадеев, 2022). Из результатов расчетов, проведенных в данной работе, следует, что это условие выполняется во всех экстремумах значений радиуса, которые на рис. 1 и рис. 2 показаны заполненными кружками.

Соотношение между продолжительностью первой стадии уменьшения радиуса Δt_{01} и периодом пульсаций Π в момент максимума L_{3lpha} иллюстрируется на рис. 4 для эволюционных последовательностей $M_{\text{ZAMS}} = 1.8 M_{\odot}$ и $M_{\text{ZAMS}} = 2 M_{\odot}$, которые были рассчитаны при $\eta_{\rm B} = 0.05$. Возрастание периода пульсаций П с увеличением порядкового номера тепловой вспышки отражает тот факт, что светимость и радиус мириды в момент максимума L_{3α} увеличиваются с течением времени эволюции. Величина интервала времени Δt_{01} монотонно сокращается с увеличением номера тепловой вспышки и, соответственно, периода пульсаций П. Как следует из приведенных графиков, периоды пульсаций мирид с массой $M \lesssim 2 M_{\odot}$ при максимуме тепловой вспышки преимущественно не превосходят 400 сут, и радиальные пульсации с периодом $\Pi \approx 500$ сут возникают лишь на заключительной стадии AGB, когда продолжительность уменьшения радиуса не превосходит 100 лет. Таким образом, модель мириды R Hya, предполагающая, что наблюдаемое сокращение периода происходит на первой стадии уменьшения радиуса, без сомнения, дожна быть исключена.

Диаграмма период—продолжительность второй стадии уменьшения радиуса, приведенная на рис. 5, позволяет заключить, что удовлетворительное согласие с наблюдениями может быть получено для моделей эволюционной последовательности $M_{\rm ZAMS} = 4.8 M_{\odot}$. Следует заметить, что немонотонное изменение Δt_{23} с увеличением $i_{\rm TP}$ связано с заметными колебаниями значений максимального радиуса R_2 , которые происходят при переходе от одной вспышки к следующей.

МОДЕЛИ МИРИДЫ R НҮА

Наблюдательные оценки периода пульсаций мириды R Нуа $\Pi_a \approx 495$ сут, сделанные на рубеже XVII—XVIII вв., крайне немногочисленны и не вполне надежны (Зийстра и др., 2002), так что полноценная модель мириды R Нуа может быть построена только с учетом более надежного

ТЕОРЕТИЧЕСКИЕ ОЦЕНКИ

$\eta_{ m B}$	i_{TP}	M/M_{\odot}	$X_{\rm C}/X_{\rm O}$	Δt_{23} , лет	R_2/R_{\odot}	R_3/R_{\odot}	П ₂ , сут	П ₃ , сут
0.03	6	4.63	0.305	177	495	429	451	383
	7	4.60	0.331	164	512	437	469	387
	8	4.58	0.355	154	532	445	473	393
0.05	5	4.58	0.279	197	498	421	470	377
	6	4.54	0.302	173	502	429	473	389
	7	4.50	0.328	189	515	435	471	394
0.07	5	4.50	0.282	200	499	424	472	386
	6	4.44	0.306	177	506	433	463	398

Таблица 1. Модели мириды R Нуа с начальной массой $M_{\rm ZAMS} = 4.8 M_{\odot}$

значения $\Pi_b \approx 380$ сут, соответствующего приблизительно 1950 г., когда сокращение периода колебаний прекратилось. Для этого в данной работе были проведены дополнительные расчеты эволюционных последовательностей AGB-звезд с начальной массой $M_{\rm ZAMS} = 4.8 M_{\odot}$ при значениях параметра скорости массы $\eta_{\rm B} = 0.03$ и $\eta_{\rm B} = 0.07$. Отдельные модели этих последовательностей, соответствующие второму максимуму R_2 и второму минимуму R_3 радиуса звезды, были использованы в качестве начальных условий при решении уравнений гидродинамики и в конечном счете при определении значений периода пульсаций Π_2 и Π_3 .

Результаты этих расчетов суммированы в табл. 1 для моделей эволюционных последовательностей с начальной массой $M_{\rm ZAMS} = 4.8 M_{\odot}$, где в первых четырех колонках даны значения параметра скорости потери массы $\eta_{
m B}$ формулы Блокера (1995), порядкового номера тепловой вспышки i_{TP} , массы мириды M при $t = t_0$ и отношения массовых содержаний изотопов углерода ¹²С и кислорода ¹⁶О на внешней границе эволюционной модели. Необходимо заметить, что на ранней стадии AGB перед первой тепловой вспышкой это отношение для всех рассмотренных эволюционных последовательностей составляет $X_{\rm C}/X_{\rm O} = 0.248$, следовательно, химический состав всех моделей, перечисленных в табл. 1, характеризуется повышенным содержанием углерода, свидетельствующем о начале процесса конвективного вычерпывания продуктов нуклеосинтеза. Вместе с тем все модели относятся к кислородным миридам, поскольку отношение концентраций этих изотопов в конвективной оболочке звезды $N_{\rm C}/N_{\rm O} < 1$.

При отборе моделей, представленных в табл. 1, мы руковствовались условием, что период пульсаций Π_3 может отличаться от наблюдательной оценки $\Pi_b^{\star} = 380$ сут не более чем на 5%.

ЗАКЛЮЧЕНИЕ

Результаты обширных расчетов звездной эволюции и нелинейных звездных пульсаций позволили однозначно установить, что наблюдаемое в мириде R Нуа уменьшение периода колебаний произошло после появления в конвективной оболочке звезды диффузионной волны лучистой энергии, связанной с тепловой вспышкой в гелиевом слоевом источнике. Ранее к такому же выводу пришли Вуд и Зарро (1981) на основе проведенных ими расчетов звездной эволюции. Вместе с тем следует отметить существование заметного расхождения между теоретическими оценками основных характеристик R Нуа, полученными в данной работе, и значениями, упомянутыми в статье Вуда и Зарро (1981). В частности, из результатов данной работы следует, что масса вырожденного углероднокислородного ядра мириды R Нуа и светимость в начале уменьшения периода составляют $M_{\rm CO} = 0.856 M_{\odot}$ и $L \approx 2.5 \times 10^4$, тогда как из статьи Вуда и Зарро (1981) следуют другие значения этих величин: $M_{\rm CO} = 0.653 M_{\odot}$, $L \approx 1.3 \times 10^4 L_{\odot}$. Причина такого расхождения заключается прежде всего в том, что рассмотренная Вудом и Зарро (1981) модель предполагает более продолжительную стадию уменьшения светимости и радиуса звезды и не учитывает тот факт, что в 1950 г. сокращение периода пульсаций мириды R Нуа прекратилось.

R Нуа является одной из ближайших мирид, и к настоящему времени для нее были проведены измерения углового диаметра методом оптической интерферометрии. Согласно Ханифф и др. (1995), угловой диаметр R Нуа составляет d = 0.033 угловых секунды, что при расстоянии 125 пк соответствует радиусу звезды $R = 442 R_{\odot}$. Следует заметить, что использованная в работе Ханифф и др. (1995) оценка расстояния R Нуа была получена с помощью приближенной зависимости периодсветимость-цвет (Фист и др., 1989). Тем не менее современная оценка расстояния R Нуа, основанная на обработке данных астрометрического каталога Gaia DR3, составляет 126 пк (Андриантсаралаза и др., 2022), что оставляет значение радиуса из работы Ханифф и др. (1995) практически неизменным. Таким образом, согласие средних значений радиуса моделей мириды R Нуа, приведенных в табл. 1, с наблюдениями подтверждает справедливость полученных в данной работе теоретических оценок массы звезды: $4.44 M_{\odot} \le M \le 4.63 M_{\odot}$. Разброс значений массы звезды M не превосходит пяти процентов и обусловлен не только вариациями параметра скорости потери массы $\eta_{\rm B}$, но также ограниченной точностью вычислений, которая не всегда позволяет уверенно определить максимальное значение радиуса R_2 .

СПИСОК ЛИТЕРАТУРЫ

- 1. Айреланд и др. (M.J. Ireland, P.G. Tuthill, T.R. Bedding, J.G. Robertson, and A.P. Jacob), MNRAS **350**, 365 (2004).
- 2. Андриантсаралаза и др. (M. Andriantsaralaza, S. Ramstedt, W.H.T. Vlemmings, and E. De Beck), Astron. Astrophys. **667**, A74 (2022).
- 3. Асплунд и др. (M. Asplund, N. Grevesse, A.J. Sauval, and P. Scott), Ann. Rev. Astron. Astrophys. 47, 481 (2009).
- 4. Бём-Витензе (Е. Böhm-Vitense), Zeitschrift für Astrophys. 46, 108 (1958).
- 5. Блокер (Т. Blöcker), Astron. Astrophys. **297**, 727 (1995).

- 6. Вуд, Зарро (P.R. Wood and D.M. Zarro), Astrophys. J. **247**, 247 (1981).
- 7. Вудруф и др. (H.C. Woodruff, P.G. Tuthill, J.D. Monnier, M.J. Ireland, T.R. Bedding, S. Lacour, W.C. Danchi, and M. Scholz), Astrophys. J. **673**, 418 (2008).
- 8. Гульд (B.A. Gould), Astron. Nachr. 102, 341 (1882).
- 9. Зийстра и др. (А.А. Zijlstra, T.R Bedding, and J.A. Mattei), MNRAS **334**, 498 (2002).
- Каннон, Пикеринг (A.J. Cannon and E.C. Pickering), Annals of Harvard College Observatory 55, 95 (1909).
- Куфюс (R. Kuhfuß), Astron. Astrophys. 160, 116 (1986).
- 12. Лебцельтер, Хрон (T.Lebzelter and J. Hron), Astron. Astrophys. **411**, 533 (2003).
- 13. Литтл и др. (S.J. Little, I.R. Little-Marenin, and W.H. Bauer), Astron. J. **94**, 981 (1987).
- 14. Лудендорф (H. Ludendorff), Astron. Nachr. **203**, 117 (1916).
- 15. Льюис и др. (В.М. Lewis, P. David P, and A.M. Le Squeren), Astron. Astrophys. Suppl. Ser. **111**, 237 (1995).
- 16. Меррилл (P.W. Merrill), Astrophys. J. 103, 6 (1946).
- 17. Меррилл (P.W. Merrill), Publ. Astron. Soc. Pacific 69, 77 (1957).
- Mexapa (H. Maehara), Publ. Astron. Soc. Japan 23, 313 (1971).
- 19. Мюллер (R. Müller), Astron. Nachr. 237, 81 (1929).
- 20. Нилсен (A.V. Nielsen), Astron. Nachr. 227, 141 (1926).
- 21. Орлов М.Я., Шаврина А.В., Науч. информ. Астрон. совета АН СССР **56**, 97 (1984).
- 22. Пакстон и др. (B. Paxton, R. Smolec, J. Schwab, A. Gautschy, L. Bildsten, M. Cantiello, A. Dotter, R. Farmer, J.A. Goldberg, A.S. Jermyn, S.M. Kanbur, P. Marchant, A. Thoul, R.H.D. Townsend, W.M. Wolf, M. Zhang, and F.X. Timmes), Astrophys. J. Suppl. Ser. **243**, 10 (2019).
- 23. Пиньятари и др. (M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F.X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, and P. Young), Astrophys. J. Suppl. Ser. **225**, 24 (2016).
- 24. Раймерс (D. Reimers), *Problems in stellar atmospheres and envelopes* (Ed. B. Baschek, W.H. Kegel, G. Traving, New York: Springer-Verlag, 1975), p. 229.
- 25. Сайбурт и др. (R.H. Cyburt, A.M. Amthor, R. Ferguson, Z. Meisel, K. Smith, S. Warren, A. Heger, R.D. Hoffman, T. Rauscher, A. Sakharuk, H. Schatz, F.K. Thielemann, and M. Wiescher), Astrophys. J. Suppl. Ser. **189**, 240 (2010).

- 26. Самусь Н.Н., Казаровец Е.В., Дурлевич О.В., Киреева Н.Н., Пастухова Е.Н., Астрон. журн. 94, 87 (2017) [N.N. Samus', Е.V. Kazarovets, O.V. Durlevich, N.N. Kireeva, and E.N. Pastukhova, Astron. Rep. 61, 80 (2017)].
- 27. Такаба и др. (H. Takaba, I. Takahiro, M. Takeshi, and S. Deguchi), Publ. Astron. Soc. Japan 53, 517 (2001).
- Фадеев Ю.А., Письма в Астрон. журн. 39, 342 (2013) [Yu.A. Fadeyev, Astron. Lett. 39, 306 (2013)].
- 29. Фадеев (Yu.A. Fadeyev), MNRAS **514**, 5996 (2022).
- 30. Фист и др. (M.W. Feast, I.S. Glass, P.A. Whitelock, and R.M. Catchpole), MNRAS **241**, 375 (1989).
- 31. Хамфрис и др. (E.M.L. Humphreys, M.D. Gray, J.A. Yates, and D. Field), MNRAS **287**, 663 (1997).

- 32. Ханифф и др. (С.А. Haniff, M. Scholz, and P.G. Tuthill), MNRAS **276**, 640 (1995).
- 33. Хервиг (F. Herwig), Astron. Astrophys. **360**, 952 (2000).
- 34. Хервиг и др. (F. Herwig, N. Langer, and M. Lugaro), Astrophys. J. 593, 1056 (2003).
- 35. Хоффлейт (D. Hoffleit), J. Am. Associat. Var. Star Observ. **25**, 115 (1997).
- 36. Шмидт (J.F.J. Schmidt), Astron. Nachr. **65**, 173 (1865).
- 37. Чандлер (S.C. Chandler), Astron. Nachr. **103**, 225 (1882)
- 38. Яари, Тухман (A. Ya'Ari and Y. Tuchman), Astrophys. J. **456** 350 (1996).