ЦЕФЕИДЫ V371 PER И OGLE-LMC-CEP-2132: ПЕРВОЕ ПЕРЕСЕЧЕНИЕ ПОЛОСЫ НЕСТАБИЛЬНОСТИ

© 2023 г. – Л. Н. Бердников^{1*}, Е. Н. Пастухова²

¹Государственный астрономический институт им. П.К. Штернберга Московского государственного университета им. М.В. Ломоносова, Москва, Россия

> ²Институт астрономии РАН, Москва, Россия Поступила в редакцию 12.04.2023 г. После доработки 24.04.2023 г.; принята к публикации 27.04.2023 г.

Для обоих периодов бимодальной цефеиды V371 Рег и для цефеиды OGLE-LMC-CEP-2132 построены O-C диаграммы, охватывающие временной интервал 126 и 119 лет соответственно. Диаграммы O-C имеют вид парабол, что позволило впервые определить квадратичные элементы изменения блеска и вычислить скорости эволюционных изменений периодов: $dP_{Fu}/dt = 1.085 ~(\pm 0.007) ~c/$ год и $dP_{1O}/dt = 0.923 ~(\pm 0.003) ~c/$ год для фундаментальной моды и первого обертона V371 Рег, соответственно, а также $dP/dt = 15.304 ~(\pm 0.048)$ для OGLE-LMC-CEP-2132, что согласуется с результатами теоретических расчетов для первого пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном, подтвердил реальность увеличения периодов.

Ключевые слова: цефеиды, бимодальные цефеиды, изменяемость периодов цефеид, эволюция звезд.

DOI: 10.31857/S0320010823040010, EDN: CUEGMC

ВВЕДЕНИЕ

К настоящему времени сильная линия лития 6707.766 Å обнаружена в спектрах всего шести классических цефид. Это: две цефеиды, пульсирующие в фундаментальной моде, OGLE-LMC-CEP-4628 = HV 5497 с периодом $P = 98^{d}9$ (Лак, Ламберт, 1992) и V1033 Суд с периодом $P = 4^{d}_{\cdot}946$ (Лак, Ламберт, 2011), бимодальная цефеида V371 Per, пульсирующая в фундаментальной моде, P = $= 1^{d}.738$, и первом обертоне, $P_{1O} = 1^{d}.270$ (Ковтюх и др., 2016), и три бимодальные цефеиды, пульсирующие в первом и втором обертонах, ASAS 075842-2536.1 = V743 Pup ($P_{1O} = 0.410$, $P_{2O} =$ = 0^d328) и ASAS 131714-6605.0 = V356 Mus $(P_{1O} = 0.913, P_{2O} = 0.734)$ (Ковтюх и др., 2019) и V363 Cas ($P_{1O} = 0.4547, P_{2O} = 0.4438$) (Катанзаро и др., 2020). Содержание лития в этих звездах A(Li) > 3.0 dex, в то время как у остальных цефеид A(Li) < 1.2 dex.

Анализ всей имеющейся информации (Ковтюх и др., 2019; Катанзаро и др., 2020) позволил предположить, что богатые литием цефеиды находятся Из модельных расчетов (Эггенбергер, 2021; Нгуен и др., 2022; Юсоф и др., 2022) следует, что на эволюционных треках цефеид малых масс (а значит, и малых периодов) голубая петля после первого пересечения очень короткая и не заходит в полосу нестабильности, т.е. второго и третьего пересечений не случается. Поэтому цефеиды с периодами менее 4–5 дней (в зависимости от металличности) должны быть на первом пересечении, и периоды увеличивается настолько быстро, что диаграммы O - C должны быть параболами с крутыми ветвями, направленными вверх.

Однако парабола, соответствующая первому пересечению полосы нестабильности, обнаружена только у одной нормальной (не бимодальной) цефеиды — V1033 Cyg с периодом P = 4.946: $dP/dt = +18.19 ~(\pm 0.08) c/год$ (Бердников и др., 2019). Диаграммы O - C всех исследованных цефеид с меньшими периодами выглядят как квазипериодические волны, которые, как правило,

на первом пересечении полосы нестабильности, так как после первого пересечения содержание лития уменьшается за счет захвата нейтронов после первой "выемки" продуктов горения из ядра (dredgeup) на фазе ветви красных гигантов. Кроме того, 4 из 6 этих цефеид являются бимодальными.

^{*}Электронный адрес: lberdnikov@yandex.ru

Рис. 1. Кривые изменения блеска для обоих колебаний V371 Рег в фильтре g' (ASAS-SN) и для OGLE-LMC-CEP-2132 в фильтре V (OGLE).

накладываются на слабые тренды, которые иногда можно интерпретировать как вековые увеличения или уменьшения периодов (Черный и др., 2022).

Диаграммы O - C для обоих периодов бимодальных цефеид впервые были построены для AS Cas и TU Cas (Бердников и др., 2021; Бердников, Пастухова, 2021). При этом периоды AS Cas для фундаментальной моды $P_{Fu} = 3^{d}025$ и первого обертона $dP_{1O} = 2^{d}155$ слегка увеличиваются: $dP_{Fu}/dt = +0.065 \ (\pm 0.010) \ c/год$ и $dP_{1O}/dt =$ $= +0.163 \ (\pm 0.006) \ c/год$, а периоды TU Cas $P_{Fu} = 2^{d}139$ и $dP_{1O} = 1^{d}518$ слегка уменьшаются: $dP_{Fu}/dt = -0.039 \ (\pm 0.004) \ c/год$ и $dP_{1O}/dt =$ $= -0.036 \ (\pm 0.007) \ c/год — в полном соответствии$ с поведением нормальных короткопериодическихцефеид.

Таким образом, быстрое увеличение периодов у короткопериодических цефеид, которые в теории должны быть на первом пересечении полосы нестабильности, не обнаружено. Может быть, причиной этого является малый угол на диаграмме Герцшпрунга—Рассела между эволюционным треком данной цефеиды и линией одинакового периода.

Единственная известная цефеида на первом пересечении с соответствующей скоростью изменения периода — V1033 Cyg, и она оказалась богата литием. Было бы интересно установить связь между скоростью изменения периода и обилием лития. Для этого надо исследовать O - C диаграммы известных богатых литием цефеид, а также провести поиски быстрых изменений периодов других цефеид с последующем получением их спектров на предмет обнаружения линии лития.

Из различных соображений предполагалось, что богатая литием бимодальная цефеида V371 Рег тоже находится на первом пересечении полосы нестабильности (Вилс и др., 2010; Ишида, 2017) с высокой скоростью изменения периода, но соответствующую параболу на ее O - C диаграммах из-за плохого качества используемого наблюдательного материала построить не удавалось. К настоящему времени были получены новые фотометрические данные, и появилась реальная возможность поиска быстрых изменений периодов фундаментальной моды и первого обертона V371 Per.

Рис. 2. Диаграмма *О* – *С* для V371 Рег относительно линейных (вверху) и квадратичных (внизу) элементов фундаментальной моды (табл. 6). Линия — парабола, соответствующая квадратичным элементам.

Кроме того, исследуя цефеиды БМО, мы обнаружили, что в работе Родригес-Сеговиа и др. (2022) имеются указания на то, что цефеида OGLE-LMC-CEP-2132 ($P = 4^{d}.685$), у которой неизвестно содержание лития, может находиться на первом пересечении полосы нестабильности.

Таким образом, задача данной работы — поиск быстрых эволюционных изменений периодов двух цефеид: V371 Per и OGLE-LMC-CEP-2132.

КРИВЫЕ ИЗМЕНЕНИЯ БЛЕСКА V371 Per И OGLE-LMC-CEP-2132

В работе Бердникова и др. (2021) описана методика выделения кривых блеска для фундаментальной моды и первого обертона бимодальной цефеиды из наблюденной кривой блеска. Эту методику мы используем и в данной работе. В качестве примера на рис. 1 показаны кривые изменения блеска V371 Per в фильтре g', построенные по данным каталога ASAS-SN (Яясингхе и др., 2019), а также кривая блеска классической цефеиды OGLE-LMC-CEP-2132 в фильтре V, построенная по данным каталога OGLE (Удальски и др., 2018). В табл. 1 приведены параметры кривых блеска обоих колебаний для V371 Рег и для OGLE-LMC-CEP-2132 в фильтрах g' и V: блеск в максимуме, амплитуда и средний блеск по интенсивности, а коэффициенты Фурье (разложение по косинусам) приведены в табл. 2. Эти коэффициенты согласу-

Таблица 1. Параметры кривых блеска V371 Per и OGLE-LMC-CEP-2132 в фильтрах *V* и *g*'

Мода коле- баний	Фильтр	Блеск в макси- муме	Амплитуда	Средний блеск по ин- тенсивности
		V37	1 Per	
Fu	V	10 ^m 785	$0^{m}_{\cdot}246$	$10^{m}_{\cdot}911$
Fu	g'	10 ^m 944	$0^{m}_{}334$	$11^{m}_{}121$
1O	V	10 ^m 722	$0^{m}_{}346$	$10^{m}_{\cdot}911$
1O	g'	10 ^m 871	$0^{m}_{\cdot}457$	$11^{m}_{}121$
	00	GLE-LMO	C-CEP-2132	
Fu	V	14.995	0 ^m 706	$15^{m}393$

Мода ко- лебаний	R ₂₁ Error	R_{31} Error	R ₄₁ Error	ϕ_{21} Error	ϕ_{31} Error	ϕ_{41} Error
			V371 Per			
Fu	0.17529	0.03150	0.00246	4.21903	2.60136	4.64957
	± 0.00077	± 0.00077	± 0.00077	± 0.00468	± 0.02470	± 0.31500
10	0.18843	0.05605	0.00595	4.00005	2.07139	1.89541
	± 0.00005	± 0.00005	± 0.00005	± 0.00031	± 0.00098	± 0.00910
		OGI	LE-LMC-CEP-2	2132		
Fu	0.40689	0.19913	0.09685	4.24077	2.32812	0.27772
	± 0.00415	± 0.00415	± 0.00415	± 0.01313	± 0.02425	± 0.04590

Таблица 2. Коэффициенты Фурье (разложение по косинусам) кривых блеска фундаментальной моды ($P_{Fu} = 1^{d}$ 737) и первого обертона ($P_{1} = 1^{d}$ 270) V371 Рег и OGLE-LMC-CEP-2132 ($P = 4^{d}$ 685) в фильтре V

Таблица 3. Наблюдательный материал V371 Per и OGLE-LMC-CEP-2132

Источник данных	Число наблюдений	Тип наблюдений	Интервал JD
ГАИШ (Данная работа)	159	Фотографические, pg	2413594 - 2447442
Сатывалдиев (1966)	173	Фотографические, pg	2430253 - 2438385
Шмидт (1995)	59	CCD, VR	2447872 - 2448503
Шмидт (2013)	21	CCD, VR	2454768 - 2455883
KWS	2097	CCD, VI	2455819 - 2459599
ASAS-SN	8641	CCD, Vg'	2456870 - 2459843
DASCH	1534	Фотографические, pg	2413877-2433347
МАСНО	3172	CCD, BR	2448825 - 2451544
OGLE	2510	CCD, VI	2450455 - 2457507

ются с данными OGLE для цефеид Галактики и БМО (Удальски и др., 2018).

МЕТОДИКА ИЗУЧЕНИЯ ИЗМЕНЯЕМОСТИ ПЕРИОДОВ ЦЕФЕИД

Для изучения изменяемости периодов пульсаций цефеид мы применяем общепринятую методику анализа *О* – *С* диаграмм, а самым точным методом определения остатков *О* – *С* является метод Герцшпрунга (1919), машинная реализация которого описана в работе Бердникова (1992). Для подтверждения реальности обнаруженных изменений периода мы используем метод, описанный Ломбардом и Коэном (1993).

Для изучения периодов V371 Per и OGLE-LMC-CEP-2132 мы собрали опубликованные фотографические, фотоэлектрические и ПЗС наблюдения. Кроме того, мы сделали глазомерные оценки блеска на фотографических пластинках ГАИШ (Москва), а также использовали фотометрию из каталогов DASCH (Гриндлей и др., 2009), OGLE (Удальски и др., 2018), MACHO (Оллсман, Аксельрод, 2001), KWS (http://kws.cetusnet.org/ maehara/VSdata.py) и ASAS-SN (Яясингхе и др., 2019).

Сведения о количестве использованных наблюдений приведены в табл. 3. Эти наблюдения охватывают временной интервал 126 и 119 лет для V371 Per и OGLE-LMC-CEP-2132 соответственно.

ПОЛУЧЕННЫЕ РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Результаты обработки сезонных кривых V371 Рег приведены в табл. 4 (для фундаментальной моды и первого обертона), а результаты для OGLE-LMC-CEP-2132 приведены в табл. 5. В первом и втором столбцах этих таблиц даны моменты максимального блеска и ошибки их определения, в третьем — тип используемых наблюдений, в четвертом и пятом — номер эпохи E и значение остатка O - C, а в шестом и седьмом — число наблюдений N и источник данных. Данные табл. 4—5 изображены на O - C диаграммах (рис. 2–4) квадратиками

БЕРДНИКОВ, ПАСТУХОВА

Таблица 4. Моменты максимума блеска V371 Рег

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
		1	V371 Per-F	u		
2417507.4650	0.0725	pg	-12182	+4.4229	18	ГАИШ (данная работа)
2429114.2827	0.0587	pg	-5496	+0.9943	28	ГАИШ (данная работа)
2430864.2779	0.0206	pg	-4488	+0.5964	41	Сатывалдиев (1966)
2433465.2414	0.0229	pg	-2990	+0.2812	51	Сатывалдиев (1966)
2434447.8063	0.0561	pg	-2424	-0.0134	23	ГАИШ (данная работа)
2436234.7064	0.0368	pg	-1395	+0.0271	51	ГАИШ (данная работа)
2437887.8188	0.0304	pg	-443	-0.0096	41	Сатывалдиев (1966)
2439549.7283	0.0275	pg	514	+0.0684	24	ГАИШ (данная работа)
2441249.8441	0.0481	pg	1493	+0.1496	15	ГАИШ (данная работа)
2448153.1820	0.0137	V	5468	+0.9195	59	Шмидт (1995)
2448153.1870	0.0187	R	5468	+0.9195	59	Шмидт (1995)
2455210.3881	0.0079	V	9531	+2.7217	21	Шмидт (2013)
2455210.4085	0.0030	R	9531	+2.7370	21	Шмидт (2013)
2455865.1338	0.0173	V	9908	+2.8065	23	KWS
2456243.9353	0.0100	V	10126	+3.0507	91	KWS
2456617.3983	0.0073	V	10341	+3.1660	122	KWS
2456619.2271	0.0121	I_c	10342	+3.1939	115	KWS
2456959.6253	0.0018	V	10538	+3.3022	393	ASAS-SN
2456996.1954	0.0137	I_c	10559	+3.3415	102	KWS
2456999.6001	0.0055	V	10561	+3.3376	127	KWS
2457329.6443	0.0025	V	10751	+3.4466	234	ASAS-SN
2457343.5384	0.0104	V	10759	+3.4487	114	KWS
2457348.8162	0.0158	I_c	10762	+3.4525	128	KWS
2457694.4543	0.0012	V	10961	+3.5913	949	ASAS-SN
2457727.4793	0.0098	V	10980	+3.6228	104	KWS
2457769.2055	0.0295	I_c	11004	+3.6085	33	KWS
2458041.8708	0.0026	V	11161	+3.7076	143	ASAS-SN
2458047.0911	0.0015	V	11164	+3.7183	747	ASAS-SN
2458076.6104	0.0104	V	11181	+3.7172	97	KWS
2458095.8148	0.0136	I_c	11192	+3.7557	64	KWS
2458389.3026	0.0036	V	11361	+3.8391	77	ASAS-SN
2458425.7949	0.0015	V	11382	+3.8650	769	ASAS-SN

Таблица 4. Продолжение

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2458443.1958	0.0164	I_c	11392	+3.8364	84	KWS
2458444.9644	0.0211	I_c	11393	+3.8686	96	KWS
2458455.3406	0.0093	V	11399	+3.8901	80	KWS
2458460.5617	0.0012	g'	11402	+3.8779	152	ASAS-SN
2458795.8446	0.0010	g'	11595	+4.0161	241	ASAS-SN
2458801.0359	0.0089	V	11598	+4.0218	121	KWS
2458801.0938	0.0179	I_c	11598	+4.0152	141	KWS
2458804.5088	0.0012	V	11600	+4.0217	1080	ASAS-SN
2459155.4199	0.0011	V	11802	+4.1594	1884	ASAS-SN
2459160.6176	0.0082	V	11805	+4.1477	127	KWS
2459164.1336	0.0008	g'	11807	+4.1668	316	ASAS-SN
2459169.4131	0.0162	I_c	11810	+4.1963	148	KWS
2459511.5555	0.0014	V	12007	+4.3123	946	ASAS-SN
2459534.1625	0.0009	g'	12020	+4.3211	344	ASAS-SN
2459534.2223	0.0306	I_c	12020	+4.3402	68	KWS
2459535.8977	0.0094	V	12021	+4.3436	112	KWS
2459808.6469	0.0030	g'	12178	+4.4382	48	ASAS-SN
			V371 Per-1	0		
2417491.1493	0.0771	pg	-16668	+5.1795	20	ГАИШ (данная работа)
2429142.8384	0.0294	pg	-7488	+1.0579	27	ГАИШ (данная работа)
2430864.0598	0.0153	pg	-6132	+0.5714	41	Сатывалдиев (1966)
2433465.4347	0.0130	pg	-4083	+0.3388	51	Сатывалдиев (1966)
2434448.0137	0.1041	pg	-3309	+0.1730	23	ГАИШ (данная работа)
2436350.0031	0.0157	pg	-1811	+0.1576	41	Сатывалдиев (1966)
2437911.5952	0.0150	pg	-581	+0.0234	40	Сатывалдиев (1966)
2439082.1963	0.0325	pg	341	-0.0353	21	ГАИШ (данная работа)
2439597.7261	0.0427	pg	747	-0.0022	24	ГАИШ (данная работа)
2439836.4520	0.0460	pg	935	+0.0209	25	ГАИШ (данная работа)
2448152.7414	0.0077	V	7484	+1.0650	59	Шмидт (1995)
2448152.7664	0.0115	R	7484	+1.0572	59	Шмидт (1995)
2455210.5521	0.0056	V	13041	+3.1742	21	Шмидт (2013)
2455210.5927	0.0035	R	13041	+3.1819	21	Шмидт (2013)
2455863.3573	0.0123	V	13555	+3.3556	26	KWS
2456243.1870	0.0053	V	13854	+3.5461	91	KWS

Таблица 4. Окончание

Максимум, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2456617.9093	0.0033	V	14149	+3.7081	121	KWS
2456617.9328	0.0057	I_c	14149	+3.7165	119	KWS
2456959.6013	0.0010	V	14418	+3.8518	398	ASAS-SN
2456993.9198	0.0080	I_c	14445	+3.8735	106	KWS
2457000.2509	0.0034	V	14450	+3.8711	132	KWS
2457327.9807	0.0013	V	14708	+4.0192	241	ASAS-SN
2457344.4990	0.0051	V	14721	+4.0315	116	KWS
2457348.3193	0.0090	I_c	14724	+4.0277	134	KWS
2457693.8156	0.0008	V	14996	+4.1817	994	ASAS-SN
2457725.5912	0.0047	V	15021	+4.2149	108	KWS
2457768.7984	0.0193	I_c	15055	+4.2374	35	KWS
2458041.8586	0.0011	V	15270	+4.3280	143	ASAS-SN
2458046.9460	0.0009	V	15274	+4.3366	777	ASAS-SN
2458076.1637	0.0045	V	15297	+4.3512	99	KWS
2458095.2637	0.0106	I_c	15312	+4.3908	70	KWS
2458388.6440	0.0015	V	15543	+4.4863	77	ASAS-SN
2458424.2126	0.0009	V	15571	+4.5034	834	ASAS-SN
2458445.8224	0.0120	I_c	15588	+4.5133	99	KWS
2458455.9725	0.0053	V	15596	+4.5209	80	KWS
2458461.0420	0.0005	g'	15600	+4.5169	152	ASAS-SN
2458795.1300	0.0004	g'	15863	+4.6747	241	ASAS-SN
2458800.2204	0.0059	V	15867	+4.6811	122	KWS
2458801.4988	0.0110	I_c	15868	+4.6749	144	KWS
2458805.2971	0.0007	V	15871	+4.6790	1178	ASAS-SN
2459155.8962	0.0005	V	16147	+4.8420	1932	ASAS-SN
2459159.7151	0.0043	V	16150	+4.8518	134	KWS
2459164.7854	0.0004	g'	16154	+4.8485	316	ASAS-SN
2459169.8723	0.0102	I_c	16158	+4.8364	144	KWS
2459510.3041	0.0009	V	16426	+5.0047	966	ASAS-SN
2459533.1690	0.0004	g'	16444	+5.0202	344	ASAS-SN
2459534.4387	0.0187	I_c	16445	+5.0001	67	KWS
2459536.9855	0.0051	V	16447	+5.0225	115	KWS
2459808.8245	0.0017	g'	16661	+5.1517	48	ASAS-SN

Таблица 5. Моменты	максимума	блеска	OGLE	-LMC-	CEP-2132

Max. HJD	Ошибка, сут	Фильтр	E	Q - C, cyt	N	Источник данных
2413928.9056	0.5003	pa	-4655	+24.9807	7	DASCH
2415927.9667	0.0826	r s pa	-4226	+18.7658	12	DASCH
2417142.4340	0.3021	Р9 ра	-3966	+17.9144	17	DASCH
2423769.3421	0.1023	pa	-2546	+7.3123	22	DASCH
2423769.3510	0.1102	Р9 ра	-2546	+7.3212	41	DASCH
2423937.4736	0.0811	Р9 ра	-2510	+7.1688	28	DASCH
2425664.9319	0.1058	r s pa	-2140	+5.1350	24	DASCH
2425851.6690	0.0899	Р9 ра	-2100	+4.9000	56	DASCH
2426412.1924	0.1518	г <i>э</i> ра	-1980	+4.5070	26	DASCH
2426454.0186	0.2169	Р9 ра	-1971	+4.2646	-° 22	DASCH
2426575.6353	0.0633	r s pa	-1945	+4.3494		DASCH
2426687.7582	0.0944	Р9 ра	-1921	+4.2889	65	DASCH
2427500.2928	0.0690	г <i>э</i> ра	-1747	+3.4948	49	DASCH
2427504.8927	0.0733	Р3 ра	-1746	+3.4204	71	DASCH
2427799.2655	0.1118		-1683	+3.3122	65	DASCH
2428070.1231	0.0855	pq	-1625	+3.0602	48	DASCH
2428439.1019	0.0897	pq	-1546	+2.7691	40	DASCH
2428836.1698	0.0960	pq	-1461	+2.5212	79	DASCH
2429051.0586	0.0971	pq	-1415	+2.3921	31	DASCH
2429345.2644	0.0869	pg	-1352	+2.1168	45	DASCH
2429770.5067	0.0928	pg	-1261	+1.9975	100	DASCH
2429934.2298	0.0847	pg	-1226	+2.1200	80	DASCH
2430088.1408	0.0586	pg	-1193	+1.7791	48	DASCH
2430597.2947	0.0891	pg	-1084	+1.4339	100	DASCH
2430858.8350	0.0676	pg	-1028	+1.2133	49	DASCH
2431470.9408	0.0670	pg	-897	+0.9854	99	DASCH
2431615.8370	0.0867	pg	-866	+0.9781	47	DASCH
2432120.2605	0.0570	pg	-758	+0.5769	43	DASCH
2432134.5624	0.1552	pg	-755	+0.8559	29	DASCH
2432489.7840	0.2188	pg	-679	+0.8304	105	DASCH
2432648.5130	0.2054	pg	-645	+0.6332	48	DASCH
2448923.4643	0.0035	В	2835	+9.0101	94	МАСНО

Таблица 5. Продолжение

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2448923.4941	0.0045	R	2835	+9.0106	97	МАСНО
2449035.8404	0.0043	R	2859	+9.1736	94	МАСНО
2449040.4874	0.0033	В	2860	+9.1756	97	МАСНО
2449138.8254	0.0042	R	2881	+9.3239	92	МАСНО
2449143.4751	0.0040	В	2882	+9.3286	94	МАСНО
2449241.8112	0.0050	R	2903	+9.4751	95	МАСНО
2449246.4523	0.0034	В	2904	+9.4712	98	МАСНО
2449400.9251	0.0043	В	2937	+9.6920	92	МАСНО
2449405.6417	0.0045	R	2938	+9.7050	93	МАСНО
2449499.2301	0.0038	В	2958	+9.8367	97	МАСНО
2449503.9382	0.0042	R	2959	+9.8411	100	МАСНО
2449578.8080	0.0030	В	2975	+9.9514	99	МАСНО
2449578.8365	0.0040	R	2975	+9.9506	96	МАСНО
2449653.7056	0.0032	В	2991	+10.0601	98	МАСНО
2449658.4267	0.0041	R	2992	+10.0776	98	МАСНО
2449840.9605	0.0040	В	3031	+10.3429	97	МАСНО
2449840.9946	0.0036	R	3031	+10.3477	98	МАСНО
2450009.4893	0.0029	В	3067	+10.5968	99	МАСНО
2450009.5257	0.0029	R	3067	+10.6039	99	МАСНО
2450112.4787	0.0029	В	3089	+10.7515	96	МАСНО
2450112.5121	0.0036	R	3089	+10.7557	96	МАСНО
2450243.5549	0.0035	В	3117	+10.9473	97	МАСНО
2450243.5967	0.0052	R	3117	+10.9598	96	МАСНО
2450388.6863	0.0029	В	3148	+11.1753	98	МАСНО
2450388.7212	0.0040	R	3148	+11.1808	99	МАСНО
2450464.1306	0.0100	I_c	3164	+11.2939	45	OGLE
2450464.1364	0.0025	I_c	3164	+11.2998	63	OGLE
2450482.8621	0.0021	I_c	3168	+11.3282	53	OGLE
2450482.8694	0.0048	I_c	3168	+11.3355	45	OGLE
2450492.2289	0.0041	I_c	3170	+11.3464	50	OGLE
2450496.9084	0.0023	I_c	3171	+11.3516	54	OGLE
2450515.6520	0.0075	I_c	3175	+11.3981	50	OGLE

Таблица 5. Продолжение

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2450520.3176	0.0030	I_c	3176	+11.3894	51	OGLE
2450547.8586	0.0043	В	3182	+11.4213	88	МАСНО
2450553.0918	0.0032	I_c	3183	+11.4435	55	OGLE
2450561.9370	0.0050	R	3185	+11.4475	96	МАСНО
2450590.5448	0.0058	I_c	3191	+11.5020	50	OGLE
2450604.5396	0.0047	V	3194	+11.5238	31	OGLE
2450609.2202	0.0046	V	3195	+11.5301	30	OGLE
2450726.3127	0.0030	I_c	3220	+11.7152	34	OGLE
2450777.2663	0.0032	В	3231	+11.7881	89	МАСНО
2450824.1118	0.0050	R	3241	+11.8613	99	МАСНО
2450838.6804	0.0053	I_c	3244	+11.8996	44	OGLE
2450866.7754	0.0054	I_c	3250	+11.9487	32	OGLE
2451086.2728	0.0037	В	3297	+12.2906	88	МАСНО
2451114.9013	0.0025	I_c	3303	+12.3366	38	OGLE
2451142.9897	0.0057	I_c	3309	+12.3791	36	OGLE
2451264.7373	0.0025	I_c	3335	+12.5949	36	OGLE
2451363.0566	0.0041	I_c	3356	+12.7538	40	OGLE
2451376.5776	0.0049	R	3359	+12.7594	107	МАСНО
2451390.5973	0.0036	В	3362	+12.7855	96	МАСНО
2451395.7783	0.0106	V	3363	+12.8053	25	OGLE
2451419.1829	0.0065	V	3368	+12.8384	22	OGLE
2451470.7368	0.0038	I_c	3379	+12.9250	31	OGLE
2451555.0164	0.0036	I_c	3397	+13.0672	31	OGLE
2451564.3773	0.0065	I_c	3399	+13.0795	37	OGLE
2451634.6184	0.0032	I_c	3414	+13.2061	30	OGLE
2451746.9937	0.0046	I_c	3438	+13.3981	37	OGLE
2451826.5852	0.0032	I_c	3455	+13.5264	23	OGLE
2452271.4170	0.0036	I_c	3550	+14.2994	44	OGLE
2452603.8850	0.0038	I_c	3621	+14.8919	50	OGLE
2452631.9866	0.0034	I_c	3627	+14.9477	41	OGLE
2452650.7088	0.0025	I_c	3631	+14.9727	60	OGLE

274

Таблица 5. Окончание

Max, HJD	Ошибка, сут	Фильтр	E	O-C, сут	N	Источник данных
2452674.1208	0.0053	I_c	3636	+15.0132	50	OGLE
2452955.0979	0.0058	I_c	3696	+15.5321	39	OGLE
2453062.7984	0.0042	I_c	3719	+15.7236	42	OGLE
2453348.4485	0.0042	I_c	3780	+16.2412	43	OGLE
2453502.9536	0.0054	V	3813	+16.5442	23	OGLE
2453723.1053	0.0034	I_c	3860	+16.9538	53	OGLE
2454064.9949	0.0040	I_c	3933	+17.6193	41	OGLE
2454322.5309	0.0046	V	3988	+18.1184	17	OGLE
2454449.0298	0.0031	I_c	4015	+18.3613	53	OGLE
2455292.1130	0.0034	I_c	4195	+20.0701	40	OGLE
2455493.4787	0.0024	V	4238	+20.4906	35	OGLE
2455493.5255	0.0022	I_c	4238	+20.4875	56	OGLE
2455554.4154	0.0023	I_c	4251	+20.6115	44	OGLE
2455563.7399	0.0023	V	4253	+20.6372	35	OGLE
2455596.5699	0.0030	I_c	4260	+20.6972	38	OGLE
2455610.5817	0.0020	V	4263	+20.7360	35	OGLE
2455629.3639	0.0025	I_c	4267	+20.7711	42	OGLE
2455676.2056	0.0032	I_c	4277	+20.8697	42	OGLE
2455788.5847	0.0019	V	4301	+21.1155	35	OGLE
2455830.7876	0.0025	I_c	4310	+21.1997	46	OGLE
2455886.9953	0.0024	I_c	4322	+21.3158	46	OGLE
2455933.8338	0.0029	I_c	4332	+21.4113	46	OGLE
2455980.6819	0.0039	I_c	4342	+21.5164	39	OGLE
2456022.8456	0.0033	I_c	4351	+21.6113	38	OGLE
2456139.9509	0.0031	I_c	4376	+21.8591	38	OGLE
2456243.0077	0.0026	I_c	4398	+22.0813	31	OGLE
2456327.2899	0.0041	V	4416	+22.2759	26	OGLE
2456364.8047	0.0033	I_c	4424	+22.3463	40	OGLE
2456772.3691	0.0030	I_c	4511	+23.2464	50	OGLE
2457067.5046	0.0052	I_c	4574	+23.9008	39	OGLE
2457390.7766	0.0026	I_c	4643	+24.6458	40	OGLE

для фотографических наблюдений, и маленькими заполненными кружками для остальных наблюдений с вертикальными черточками, указывающими пределы ошибок определения остатков O - C.

ментам максимального блеска из табл. 4–5 получены квадратичные элементы изменения блеска, которые приведены в табл. 6 и которые использовались для проведения парабол на верхней части рис. 2–4, на нижних частях показаны отклонения

Диаграммы О - С имеют вид парабол. По мо-

Рис. 3. Диаграмма *О* – *С* для V371 Рег относительно линейных (вверху) и квадратичных (внизу) элементов первого обертона (табл. 6). Линия — парабола, соответствующая квадратичным элементам.

от этих парабол. Линейная часть этих элементов использована для вычислений остатков O-C в пятом столбце табл. 4-5.

По данным табл. 4—5 вычислены разности моментов максимумов блеска в фильтрах B (а также pg, фотометрическая система которого близка к B), g', R и I_c относительно фильтра V; соответствующие поправки приведены в табл. 7. Эти поправки учитывались при построении рис. 2—4 и определении элементов (табл. 6), которые относятся к системе V.

Для подтверждения реальности изменений периода пульсаций мы используем метод, опубликованный Ломбардом и Коэном (1993). Для этого мы вычислили разности $\Delta(O-C)_i$ последовательных остатков O-C из табл. 4-5, $\Delta(O-C)_i = (O-C)_{i+1} - (O-C)_i$, и построили графики зависимости $P'_i = \Delta(O-C)_i/(E_{i+1}-E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для обоих колебаний V371 Рег и OGLE-LMC-CEP-2132 (рис. 5–7). Величины P'_i , которые имеют смысл периода в интервале эпох $E_i \div E_{i+1}$, соответствуют поведению остатков O-C на рис. 2–4, т.е. обнаруженные увеличения периодов являются реальными.

Квадратичные члены элементов (табл. 6) позволяют вычислить скорости эволюционного увеличения периода для фундаментальной моды и первого обертона V371 Рег и для OGLE-LMC-CEP-2132, которые приведены в пятом столбце табл. 6. Эти скорости соответствуют теоретическим расчетам для первого пересечения полосы нестабильности (Тэрнер и др., 2006; Фадеев, 2014).

Таким образом, теперь известны три короткопериодические цефеиды на первом пересечении полосы нестабильности с большой скоростью возрастания периода пульсаций: V1033 Cyg и V371 Per — с большим содержанием лития, и OGLE-LMC-CEP-2132, обилие лития для которой пока неизвестно.

Что касается цефеиды HV5497 с периодом 98^d9, то ее O - C диаграмма (Ковтюх и др., 2019) дает $\log(dP/dt) = 2.75 ~(\pm 1.56) ~c/$ год, что соответствует третьему пересечению полосы нестабильности (Тэрнер и др., 2006). Однако на плоскости $\log(P) - \log(dP/dt)$ области, занимаемые первым и третьим пересечениями, вблизи периода 98^d9 перекрываются, и, с учетом ошибки, $\log(dP/dt) = 2.75 + 1.56$

БЕРДНИКОВ, ПАСТУХОВА

Таблица 6. Квадратичные элементы изменения блеска в форме Max $HJD = HJD_0 + P \times E + q \times E^2$ для фундаментальной моды и первого обертона V371 Рег и для OGLE-LMC-CEP-2132, а также скорости изменения их периодов dp/dt

Звезда	HJD ₀ Error	P, сут Error	<i>q</i> , сут Error	dp/dt, с/год Error
V371 Per-Fu	38657.0746	1.736501087	$0.29843840 \times 10^{-07}$	1.08469
	± 0.0143	± 0.000001508	$\pm 0.18300212 \times 10^{-09}$	± 0.00665
V371 Per-10	38649.2704	1.269696150	$0.18567942 \times 10^{-07}$	0.92297
	± 0.0094	± 0.00000766	$\pm 0.66302681 \times 10^{-10}$	± 0.00330
OGLE-LMC-CEP-2132	35663.2921	4.674302980	$0.11333991 \times 10^{-05}$	15.30351
	± 0.0324	± 0.000008276	$\pm 0.35431322 \times 10^{-08}$	± 0.04784

Таблица 7. Разности моментов максимумов блеска ΔT в фильтрах *B*, *g*', *R* и *I*_c относительно фильтра *V* для фундаментальной моды и первого обертона V371 Рег и для OGLE-LMC-CEP-2132

Звезда	ΔT_B , сут Error	$\Delta T_{g'},$ сут Error	ΔT_R , сут Error	ΔT_{I_c} , сут Error
V371 Per-Fu	-0.0240	-0.0238	-0.0050	-0.0644
	± 0.0130	± 0.0130	± 0.0020	± 0.0248
V371 Per-10	+0.0053	+0.0052	-0.0328	-0.0150
	± 0.0060	± 0.0067	± 0.0003	± 0.0155
OGLE-LMC-CEP-2132	+0.4869	_	+0.4576	+0.0499
	± 0.0065	_	± 0.0067	± 0.0069

попадает уже в область первого пересечения. Кроме того, масса цефеиды с периодом ≥ 100 сут больше 11 M_{\odot} , а на эволюционных треках таких цефеид голубая петля отсутствует (Еггенбергер, 2021). Таким образом, HV5497 должна впервые пересекать полосу нестабильности.

ЗАКЛЮЧЕНИЕ

Для изучения изменяемости периодов бимодальной цефеиды V371 Per и нормальной цефеиды OGLE-LMC-CEP-2132 нами было сделано 159 глазомерных оценок блеска на фотопластинках ГАИШ; кроме того, было собрано из различных источников 18 366 фотографических, фотоэлектрических и ПЗС-наблюдений. В результате обработки всех имеющихся данных были определены 224 момента максимума блеска: 98 для V371 Per и 126 для OGLE-LMC-CEP-2132, охватывающих временной интервал 126 и 119 лет соответственно. Построенные O - C диаграммы позволили определить квадратичные элементы изменения блеска и вычислить скорости эволюционных изменений их периодов: $dP_{Fu}/dt = 1.085 \ (\pm 0.007) \ c/$ год и $dP_{1O}/dt = 0.923 \ (\pm 0.003) \ c/$ год для фундаментальной моды и первого обертона V371 Per, соответственно, а также $dP/dt = 15.304 \ (\pm 0.048)$ для OGLE-LMC-CEP-2132; эти значения скоростей согласуются с результатами теоретических расчетов для первого пересечения полосы нестабильности. Тест на стабильность пульсаций, предложенный Ломбардом и Коэном (1993), подтвердил реальность увеличения периодов.

Теперь число известных цефеид на первом пересечении полосы нестабильности с большой скоростью увеличения периода пульсаций возросло до трех, и две из них — V1033 Cyg и V371 Per — с

Рис. 4. Диаграмма *О* – *С* для OGLE-LMC-CEP-2132 относительно линейных элементов из табл. 6. Линия — парабола, соответствующая квадратичным элементам.

Рис. 5. Зависимость $P_{Fu_i} = ((O - C)_{i+1} - (O - C)_i)/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для фундаментальной моды V371 Per. Линия соответствует поведению остатков O - C на рис. 2.

Рис. 6. Зависимость $P_{1O_i} = ((O - C)_{i+1} - (O - C)_i)/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для первого обертона V371 Рег. Линия соответствует поведению остатков O - C на рис. 3.

Рис. 7. Зависимость $P_i = ((O - C)_{i+1} - (O - C)_i)/(E_{i+1} - E_i)$ от $E'_i = (E_i + E_{i+1})/2$ для OGLE-LMC-CEP-2132. Линия соответствует поведению остатков O - C на рис. 4.

большим содержанием лития. Для третьей цефеиды, OGLE-LMC-CEP-2132, обилие лития пока неизвестно. Богатая литием долгопериодическая цефеида HV5497 тоже находится на первом пересечении полосы нестабильности.

Следует отметить, что полученные здесь результаты основаны на конкретных стандартных кривых, которые могут быть высланы по запросу.

СПИСОК ЛИТЕРАТУРЫ

- Бердников Л.Н., Письма в Астрон. журн. 18, 519 (1992) [L.N. Berdnikov, Sov. Astron. Lett. 18, 207 (1992)].
- Бердников Л.Н., Белинский А.А., Пастухова Е.Н., Бурлак М.А., Иконникова Н.П., Мишин Е.О., Шатский Н.И., Письма в Астрон. журн. 47, 448

[L.N Berdnikov, A.A. Belinskij, E.N. Pastukhova, M.A. Burlak, N.P. Ikonnikova, E.O. Mishin, and N.I. Shatskii, Astron. Lett. **47**, 430 (2021)].

- Бердников Л.Н., Пастухова Е.Н., Письма в Астрон. журн. 47, 568 (2021) [L.N. Berdnikov and E.N. Pastukhova, Astron. Lett. 47, 544 (2021)].
- Бердников Л.Н., Пастухова Е.Н., Ковтюх В.В., Лемаль Б., Князев А.Ю., Усенко И.А., Боно Д., Гребель Е. и др., Письма в Астрон. журн. 45, 269 [L.N. Berdnikov, E.N. Pastukhova, V.V. Kovtyukh, B. Lemasle, A.Yu. Kniazev, I.A. Usenko, G. Bono, E. Grebel, et al., Astron. Lett. 45, 227 (2019)].
- 5. Вилс и др. (Wils P., Henden A.A., Kleidis S., Schmidt E.G., and Welch D.L.), MNRAS **402**, 1156 (2010).
- 6. Герцшпрунг (E. Hertzsprung), Astron. Nachr. 210, 17 (1919).

- Гриндлей и др. (J. Grindlay, S. Tang, R. Simcoe, S. Laycock, E. Los, D. Mink, A. Doane, and G. Champine), ASP Conf. Ser. 410, 101 (2009).
- 8. Ишида (T. Ishida), Res. Astron. Astrophys. 17, 51 (2017).
- 9. Катанзаро и др. (G. Catanzaro, V. Ripepi, G. Clementini, F. Cusano, G. De Somma, S. Leccia, M. Marconi, R. Molinaro, et al.), Astron. Astrophys. **639**, L4 (2020).
- 10. Ковтюх и др. (V. Kovtyukh, B. Lemasle, F. Chekhonadskikh, G. Bono, N. Matsunaga, A. Yushchenko, R.I. Anderson, S. Belik, et al.), MNRAS **460**, 2077 (2016).
- Ковтюх и др. (V. Kovtyukh, B. Lemasle, A. Kniazev, I. Usenko, L. Berdnikov, G. Bono, E. Grebel, G. Hajdu, and E. Pastukhova), MNRAS 488, 3211 (2019).
- 12. KWS, http://kws.cetus-net.org/maehara/VSdata.py
- 13. Лак, Ламберт (R.E. Luck and D.L. Lambert), Astrophys. J. Suppl. Ser. **79**, 303 (1992).
- 14. Лак, Ламберт (R.E. Luck and D.L. Lambert), Astron. J. **142**, 136 (2011).
- 15. Ломбард, Коен (F. Lombard and C. Koen), MNRAS **263**, 309 (1993).
- 16. Нгуен и др. (С.Т. Nguyen, G. Costa, L. Girardi, et al.), arXiv:astro-ph/2207.08642v1 (2022).
- 17. Оллсман, Аксельрод (R.A. Allsman and T.S. Axelrod), arXiv:astro-ph/0108444v1 (2001).
- 18. Родригес-Сеговиа и др. (N. Rodriguez-Segovia, G. Hajdu, M. Catelan, F. Espinoza-Arancibia,

G. Boggiano, C. Cenzano, E. Garces, K. Joachimi, et al.), MNRAS 509, 2885 (2022).

- Сатывалдиев В., Бюлл. Инст. Астрофиз. АН Тадж. ССР № 47, 17 (1966).
- 20. Тэрнер и др. (D.G. Turner, M. Abdel-Sabour Abdel-Latif, and L.N. Berdnikov), Publ. Astron. Soc. Pacific 118, 410 (2006).
- Удальски и др. (A. Udalski, I. Soszynski, P. Pietrukowicz, M.K. Szymanski, D.M. Skowron, J. Skowron, P. Mroz, R. Poleski, et al.), Acta Astron. 68, 315 (2018).
- 22. Фадеев Ю.А., Письма в Астрон. журн. **40**, 341 (2014) [Yu.A. Fadeyev, Astron. Lett. **40**, 301 (2014)].
- 23. Черный и др. (G. Csoernyei, L. Szabados, L. Molnar, B. Cseh, N. Egei, Cs. Kalup, V. Kecskemethy, R. Koenyves-Toth, et al.), MNRAS **511**, 2125 (2022).
- 24. Шмидт (E.G. Schmidt), IAU commission 27. Unpublished data file 292E (1995).
- 25. Шмидт (E.G. Schmidt), Astron. J. 146, 61 (2013).
- 26. Эггенбергер и др. (Р. Eggenberger, S. Ekstrom, C. Georgy, S. Martinet, C. Pezzotti, D. Nandal, G. Meynet, G. Buldgen, et al.), Astron. Astrophys. 652, A137 (1921).
- 27. Юсоф и др. (N. Yusof, R. Hirschi, P. Eggenberger, et al.), MNRAS **511**, 2814 2022.
- 28. Яясингхе и др. (Т. Jayasinghe, K.Z. Stanek, C.S. Kochanek, B.J. Shappee, T.W.-S. Holoien, T.A. Thompson, J.L. Prieto, D. Subo, et al.), MNRAS **485**, 961 (2019).