## НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 539.374 + 621.735

## ДВУХМЕРНОЕ ПЛАСТИЧЕСКОЕ ТЕЧЕНИЕ ФЛАНЦА ПРИ ВЫТЯЖКЕ ТОНКОСТЕННОЙ МНОГОГРАННОЙ ПРИЗМЫ

## © 2019 г. Р. И. Непершин

Московский государственный технологический университет "СТАНКИН", Москва, Россия e-mail: nepershin\_ri@rambler.ru

> Поступила в редакцию 05.10.2017 г. Принята к публикации 18.02.2019 г.

Моделируется двухмерное пластическое течение фланца при вытяжке многогранной тонкостенной призмы с плоским дном из круглой заготовки при условии пластичности Мизеса на основе теории плоского напряженного состояния по Соколовскому. Рассчитываются линии скольжения, напряженное состояние, годограф скоростей перемещений и диссипативная функция пластического течения. Определяются предельные параметры вытяжки по максимальному растягивающему напряжению на контуре матрицы и зонам с отрицательной диссипативной функцией, которые зависят от радиуса закругления углов матрицы и высоты призмы.

*Ключевые слова:* тонкостенная многогранная призма, вытяжка, фланец, плоское напряженное состояние, идеальная пластичность, линии скольжения, годограф скоростей, диссипативная функция

DOI: 10.1134/S0235711919030118

В машиностроении широко применяются высоко производительные процессы вытяжки оболочек различной формы из тонкого листа [1–3], обеспечивающие снижение массы машин при заданной жесткости и прочности. Однако теоретический анализ вытяжки на основе математической теории пластичности ограничен, главным образом, решением дифференциальных уравнений первого порядка с различными приближениями применительно к вытяжке осесимметричных цилиндрических, конических, сферических оболочек, фланцев с криволинейной образующей, обжиму и раздаче тонкостенных труб инструментом с криволинейным профилем [3–12].

При несимметричной вытяжке тонкостенных оболочек, в частности, деталей коробчатой формы, выбор формы и размеров плоской заготовки и радиуса закругления углов матрицы для исключения локального разрушения решается на практике опытным путем [1–3]. Применение коммерческих программ метода конечных элементов при формоизменении тонкостенных оболочек сложной формы на основе математической теории пластического течения ограничено трудностями решения больших систем нелинейных уравнений.

При вытяжке многогранной тонкостенной призмы с плоским дном из плоской заготовки возникает двухмерное пластическое течение во фланце при плоском напряженном состоянии. Наибольшие напряжения возникают на начальной стадии процесса при широком фланце, которые передаются на стенки призмы и определяют предельные технологические параметры вытяжки вследствие локализации деформации по толщине при высоких растягивающих напряжениях. В настоящей статье двухмерное пластическое течение во фланце на начальной стадии вытяжки многогранной призмы с закругленными углами и плоским дном из круглой заготовки моделируется численным анализом на ЭВМ. Используется теория плоского напряженного состояния в области гиперболических дифференциальных уравнений по Соколовскому [13, 14] при условии пластичности Мизеса для идеально пластического материала. Аналитические и численные решения этих уравнений для растяжения тонкой пластины с отверстием и с симметричными боковыми вырезами различной формы приведены в [4, 14–17].

Постановка задачи и основные уравнения. Моделируется двухмерное пластическое течение фланца постоянной толщины на начальной стадии вытяжки многогранной тонкостенной призмы с плоским дном из круглой плоской заготовки с радиусом R. Контур матрицы принимается в виде правильного многоугольника с числом граней и углов  $N \ge 3$ , длиной граней L, центральным углом  $2\alpha = 2\pi/N$  и радиусом закругления углов r. Радиус вписанной окружности многоугольника принимается за единицу длины. Безразмерная длина грани L связана с единичным радиусом вписанной окружности и половиной центрального угла  $\alpha$  соотношениями

$$L = 2 \operatorname{tg} \alpha, \quad \alpha = \pi/N.$$

При r = 1 получаем круговой контур матрицы и процесс осесимметричной вытяжки цилиндрической оболочки. При r < 1 получаем контур матрицы с прямолинейными участками и радиусами закругления r. Для правильного многоугольника контура матрицы и кругового контура фланца с радиусом R область пластического течения, ограниченная контуром матрицы, имеет 2N линий симметрии, проходящих через биссектрисы углов и середины сторон многоугольника. На рис. 1 показана расчетная область фланца на плоскости x, y для квадратной матрицы при N = 4, ограниченная линиями симметрии y = 0 и  $\alpha = \pi/4$  с центром O, совпадающим с центром квадрата, и осью x, направленной по биссектрисе угла квадрата. Координаты x, y контуров фланца и матрицы определяются формулами

$$x = R\cos\varphi, \quad y = R\sin\varphi, \quad 0 \le \varphi \le \alpha, \quad \text{контур } AB$$
 (1)

$$x = (1 - r)/\cos\alpha + r\cos\varphi, \quad y = r\sin\varphi, \quad 0 \le \varphi \le \alpha, \quad \text{контур } ED$$
 (2)

$$x = (1 - r)/\cos\alpha + r\cos\alpha - l\sin\alpha, \quad y = r\sin\alpha + l\cos\alpha \quad \text{контур } CD$$
  
$$0 < r < 1, \quad 0 \le l \le (1 - r) \operatorname{tg} \alpha.$$
(3)

Радиус заготовки R вычисляется из условия равенства площадей поверхности плоской заготовки и призмы с плоским дном и конечной высотой H с учетом радиуса закругления ребер пуансона и матрицы  $r_0 \ll r$ , конечной ширины фланца  $b_0$  по контуру матрицы и зазора  $\Delta$  между пуансоном и матрицей. Толщина стенки детали принимается постоянной без учета малого изменения относительно начальной толщины заготовки. Площадь поверхности сегмента, ограниченного углом  $\alpha$  на рис. 1 состоит из пяти элементов:

$$\begin{split} S_1 &= 1/2[(1-r_0)^2 \operatorname{tg} \alpha + \alpha r^2 - (r-r_0)^2] - \text{плоское дно без закругленных ребер;} \\ S_2 &= \pi r_0(1-r) \operatorname{tg} \alpha - \text{закругления ребер инструмента на линейных участках;} \\ S_3 &= 1/2\pi\alpha r_0(2r+\Delta) - \text{закругления ребер инструмента в угловых зонах;} \\ S_4 &= (H-2r_0)[\alpha r+(1-r) \operatorname{tg} \alpha] - \text{грань призмы с закругленным углом;} \\ S_5 &= b_0(1-r) \operatorname{tg} \alpha + \alpha[(r+r_0)b_0 + 1/2b_0^2] - \phi$$
ланец  $b_0$  по контуру матрицы.



Рис. 1. Расчетная область фланца для квадратной призмы.

Радиус заготовки *R* для призмы с числом граней *N* определяется формулой

$$R = \sqrt{\frac{2N}{\pi} \sum_{i=1}^{5} S_i},\tag{4}$$

где *i* – номер элемента площади сегмента призмы с углом α.

Материал заготовки принимается идеально пластическим при условии пластичности Мизеса, которое при плоском напряженном состоянии для главных напряжений, отнесенных к напряжению текучести  $\sigma_s$ , имеет вид

$$\sigma_1^2 - \sigma_1 \sigma_2 + \sigma_2^2 = 1. \tag{5}$$

Напряжения  $\sigma_1$ ,  $\sigma_2$  определяются тригонометрическими функциями в зависимости от параметра  $\omega$  [14]

$$\sigma_1 = (2/\sqrt{3})\cos(\omega - \pi/6), \quad \sigma_2 = (2/\sqrt{3})\cos(\omega + \pi/6),$$
 (6)

которые тождественно удовлетворяют условию пластичности (5). В интервале  $\pi/6 \le \omega \le 5\pi/6$  уравнения равновесия плоского напряженного состояния относятся к гиперболическому типу с характеристиками, совпадающими с линиями скольжения  $\xi$ ,  $\eta$  [14]

$$\frac{dy}{dx} = tg(\varphi - \psi)$$
 для  $\xi$ ,  $\frac{dy}{dx} = tg(\varphi + \psi)$  для  $\eta$ , (7)

где  $\phi$  – угол наклона направления  $\sigma_1$  к оси *x*,  $\psi$  – угол между касательной к линиям скольжения и направлением  $\sigma_1$ , связанный с  $\omega$  соотношением

$$\operatorname{ctg}\omega = -\sqrt{3}\cos 2\psi. \tag{8}$$

Вдоль линий скольжения выполняются соотношения для переменных  $\phi$  и  $\lambda(\psi)$ 

$$\varphi - \lambda = \text{const}$$
 вдоль  $\xi$ ,  $\varphi + \lambda = \text{const}$  вдоль  $\eta$ ,  $\text{tg } \lambda = \text{tg}^3 \psi$ . (9)

Скорости перемещений  $V_x$ ,  $V_y$  на плоскости годографа скоростей, ортогональные к линиям скольжения на плоскости x, y, определяются дифференциальными уравнениями

$$\frac{dV_x}{dV_y} = -\operatorname{tg}(\varphi - \psi) \operatorname{вдоль} \xi, \quad \frac{dV_x}{dV_y} = -\operatorname{tg}(\varphi + \psi) \operatorname{вдоль} \eta.$$
(10)

**Граничные условия и численное решение**. Линии скольжения находятся численным решением задачи Коши для уравнений (7)–(9) с граничными условиями на контуре

фланца *AB* и постоянными значениями переменных  $\omega$ ,  $\psi$  и  $\lambda$ , определяемыми подстановкой главных напряжений в (6) и (8)

$$\sigma_1 = 0, \quad \sigma_2 = -1; \quad \omega = 2\pi/3, \quad \psi = \arccos(1/3), \quad \lambda = \arctan(tg^3\psi)$$
(11)

Координаты *х*, *у* контура *AB* с углом  $\phi$ , совпадающим с направлением главного напряжения  $\sigma_1$ , определяются формулами (1).

Конечно-разностные соотношениями для дифференциальных уравнений (7) и соотношения (9) для решения элементарной задачи Коши [6] записываем в виде

$$y - y_1 = (x - x_1) \operatorname{tg} \gamma_1, \quad \gamma_1 = 1/2(\varphi + \varphi_1 - \psi - \psi_1)$$
 вдоль  $\xi$ , (12)

$$y - y_2 = (x - x_2) \operatorname{tg} \gamma_2, \quad \gamma_2 = 1/2(\varphi + \varphi_2 + \psi + \psi_2)$$
 вдоль  $\eta,$  (13)

$$\varphi - \lambda = \varphi_1 - \lambda_1$$
 вдоль  $\xi$ ,  $\varphi + \lambda = \varphi_2 + \lambda_2$  вдоль  $\eta$ , (14)

где нижними индексами 1 и 2 обозначены известные координаты x, y и углы  $\phi$ ,  $\psi$  на пересекающихся линиях скольжения  $\xi$  и  $\eta$ . Углы  $\phi$ ,  $\psi$  и  $\lambda$  в точке пересечения линий скольжения находим из соотношений (14)

$$\varphi = 1/2(\varphi_1 - \lambda_1 + \varphi_2 + \lambda_2), \quad \lambda = 1/2(\varphi_2 + \lambda_2 - \varphi_1 + \lambda_1), \quad \Psi = \operatorname{arctg}[(\operatorname{tg} \lambda)^{1/3}].$$
(15)

Подстановкой  $\phi$  и  $\psi$  из (15) в (13) и (14) находим углы  $\gamma_1$ ,  $\gamma_2$  и координаты точки пересечения линий скольжения

$$x = (y_2 - y_1 + x_1 \operatorname{tg} \gamma_1 - x_2 \operatorname{tg} \gamma_2)/(\operatorname{tg} \gamma_1 - \operatorname{tg} \gamma_2), \quad y = y_1 + (x - x_1) \operatorname{tg} \gamma_1.$$

Сетка линий скольжения и напряжения, определяемая граничными условиями (11), вычисляется с использованием циклического алгоритма численного решения задачи Коши [6].

В области, ограниченной линией симметрии *AE* и  $\xi$ -линией скольжения, проходящей через точку *A*, которая известна после решения задачи Коши от контура *AB*, линии скольжения вычисляются решением задачи смешанного типа с граничным условием  $\varphi = 0$ , y = 0. Значения  $\lambda$ ,  $\psi$  и координаты *x* на границе *AE* находим из уравнений (13) и (14) для  $\eta$ -линий скольжения

$$\lambda = \varphi_2 + \lambda_2, \quad \gamma_2 = 1/2(\varphi_2 + \psi + \psi_2), \quad x = x_2 - y_2 \operatorname{ctg} \gamma_2,$$

где  $\psi$  определяется третьей формулой (15) и переменные *x*, *y*,  $\phi$ ,  $\lambda$ ,  $\psi$  с нижним индексом 2 известны на  $\xi$ -линии скольжения.

В области, ограниченной линией симметрии *BC* и  $\eta$ -линией скольжения, проходящей через точку *B*, которая известна после решения задачи Коши от контура *AB*, линии скольжения вычисляются решением задачи смешанного типа с граничным условием  $\varphi = \alpha$ ,  $y = xtg\alpha$  на *BC*. Значения переменных  $\lambda$ ,  $\psi$  и координаты *x* находим из уравнений (12) и (14) для  $\xi$ -линии скольжения

$$\lambda = \alpha + \lambda_1 - \varphi_1, \quad \gamma_1 = 1/2(\alpha - \varphi_1 + \psi - \psi_1), \quad x = (y_1 - x_1 \operatorname{tg} \gamma_1)/(\operatorname{tg} \alpha - \operatorname{tg} \gamma_1),$$

где переменные *x*, *y*,  $\phi$ ,  $\lambda$ ,  $\psi$  с нижним индексом 1 известны на  $\eta$ -линии скольжения.

Точки пластической области, ограниченной круговой границей *ED* (2) и прямой *CD* (3) контура матрицы, удовлетворяют неравенствам

$$g_1 = (x - x_0)^2 + y^2 - r^2 \ge 0 \quad \text{при} \quad y < r \sin \alpha, \quad x_0 = (1 - r) / \cos \alpha, \tag{16}$$

$$g_2 = x - (x_0 + r\cos\alpha) + (y - r\sin\alpha) \operatorname{tg} \alpha \ge 0 \quad \text{при} \quad y > r\sin\alpha.$$
(17)

Нарушение неравенств (16), (17) используется для идентификации пересечения границы *EDC* при изменении знака функций  $g_1$  и  $g_2$  между узлами *i* и *i* + 1 линии скольжения. Координаты *x*, *y* точки пересечения линии скольжения с контуром матрицы *EDC* и значения переменных  $\varphi$ ,  $\lambda$ ,  $\psi$ ,  $V_x$ ,  $V_y$ , представляемые массивом  $f_i$ , j = 1,

2, ..., 7, вычисляются линейной интерполяцией между точками i и i + 1, где известны значения  $f_i^i$  и  $f_i^{i+1}$ 

$$f_j = f_j^i + k[f_j^{i+1} - f_j^i], \quad k = g_i / (g_i - g_{i+1}), \quad j = 1, 2, \dots, 7.$$
(18)

Углы  $\phi$  и главные напряжения на границе *EDC* определяются граничными условиями на контуре *AB*. Угол наклона нормали к границе *EDC* не совпадает с направлением главного напряжения  $\sigma_1$ . Нормальные и касательные напряжения на границе *EDC* определяются формулами

$$\sigma_n = \sigma_1 \cos^2 \delta + \sigma_2 \sin^2 \delta, \quad \tau = 1/2(\sigma_2 - \sigma_1) \sin 2\delta, \quad \delta = \varphi - \varphi_0,$$

где  $\phi_0$  — угол наклона нормали к границе *EDC* в точке пересечения с линиями скольжения.

Граничные условия для расчета скоростей в пластической области задаем вектором скорости по направлению нормали к границе *EDC*, равным скорости пуансона  $V_0$  без учета малых деформаций на закруглении ребер при нормальных напряжениях, передающихся на вертикальные стенки призмы, не превышающих напряжения текучести материала заготовки  $\sigma_n < 1$ .

$$V_x = -V_0 \cos \varphi_0, \quad V_y = -V_0 \sin \varphi_0, \quad 0 \le \varphi_0 \le \alpha.$$
 (19)

Граничные условия на контуре матрицы (19) изображаются на плоскости годографа дугой окружности с радиусом  $V_0 = 1$ , принятым за единицу скорости при расчетах скоростей пластического течения. На линиях симметрии пластической области граничные условия для скоростей имеют вид

$$V_v = 0$$
,  $\varphi = 0$  Ha  $AE$ ;  $V_x \sin \alpha - V_v \cos \alpha = 0$ ,  $\varphi = \alpha$  Ha  $BC$  (20)

Расчеты скоростей выполняются численным решением уравнений (10) с граничными условиями (19), (20) после определения напряжений и функций  $\varphi$ ,  $\lambda$ ,  $\psi$  на контуре матрицы *EDC*. Затем выполняется расчет сетки линий скольжения с вычислениями скоростей в обратном направлении от контура *EDC* к контуру *AB* численным решением системы уравнений (7)–(10).

Известные значения  $\varphi$ ,  $\lambda$ ,  $\psi$  и скорости (19) на контуре *EDC* определяют сетку линий скольжения решением задачи Коши по конечноразностным уравнениям (12)– (14) и скорости  $V_x$ ,  $V_y$  в узловых точках сетки линий скольжения при конечноразностной аппроксимации уравнений (10)

$$V_x - V_{x1} = (V_{y1} - V_y) \operatorname{tg} \gamma_1$$
 вдоль  $\xi, \quad V_x - V_{x2} = (V_{y2} - V_y) \operatorname{tg} \gamma_2$  вдоль  $\eta,$  (21)

где нижними индексами 1 и 2 обозначены известные скорости в точках 1 и 2 на  $\xi$ - и  $\eta$ линиях скольжения, и средние углы наклона  $\gamma_1$  и  $\gamma_2$  к линиям скольжения определяются формулами (12), (13). Решение системы уравнений (21) имеет вид

$$V_x = (a_1 \operatorname{tg} \gamma_2 - a_2 \operatorname{tg} \gamma_1) / (\operatorname{tg} \gamma_2 - \operatorname{tg} \gamma_1), \quad V_y = (a_1 - V_x) / \operatorname{tg} \gamma_1,$$
$$a_1 = V_{x1} + V_{y1} \operatorname{tg} \gamma_1, \quad a_2 = V_{x2} + V_{y2} \operatorname{tg} \gamma_2.$$

Известные после решения задачи Коши значения функций на  $\eta$ -линии скольжения, проходящей через точку *E*, и граничные условия (20) на линии симметрии *AE* определяют скорости с использованием соотношений (14) вдоль  $\xi$ -линии скольжения

$$V_x = V_{x1} + V_{y1} \operatorname{tg} \gamma_1, \quad V_y = 0, \quad \gamma_1 = 1/2(\varphi_1 - \psi_1 - \psi), \quad \lambda = \lambda_1 - \varphi_1, \quad \psi = \operatorname{arctg}[(\operatorname{tg} \lambda)^{1/3}]$$

на *AE*. Известные значения функций на  $\xi$ -линии скольжения, проходящей через точку *C*, и граничные условия (20) на линии симметрии *BC* определяют скорости с использованием соотношений (14) вдоль  $\eta$ -линии скольжения

$$V_x = (V_{x2} + V_{y2} \operatorname{tg} \gamma_2)/(1 + \operatorname{tg} \alpha \operatorname{tg} \gamma_2), \quad V_y = V_x \operatorname{tg} \alpha, \quad \gamma_2 = 1/2(\alpha + \varphi_2 + \psi_2 + \psi)$$
$$\lambda = \lambda_2 + \varphi_2 - \alpha, \quad \psi = \operatorname{arctg}[(\operatorname{tg} \lambda)^{1/3}]$$

на *BC*.

Значения функций  $\varphi$ ,  $\lambda$ ,  $\psi$  и скоростей  $V_x$ ,  $V_y$  на контуре фланца *AB* вычисляются в точках пересечения с линиями скольжения, которые находятся при изменении знака функции *g*, определяющей границу *AB* 

$$g = R^2 - (x^2 + y^2) \ge 0.$$

Точки *i* и *i* + 1 линии скольжения, пересекающей границу *AB*, находятся по условиям  $g_i > 0$ ,  $g_{i+1} < 0$  с последующим вычислением переменных в точке пересечения линейной интерполяцией (18).

Расчет пластического течения фланца включает вычисление диссипативной функции для направлений главных напряжений и главных скоростей деформаций  $\varepsilon_1$ ,  $\varepsilon_2$ 

$$D = \sigma_1 \varepsilon_1 + \sigma_2 \varepsilon_2. \tag{22}$$

Отрицательное значение диссипативной функции (22) идентифицирует зоны расчетной области, в которых пластическое течение идеально пластического тела [14, 18] при заданных граничных условиях для напряжений и скоростей невозможно. Изменение граничных условий, при которых диссипативная функция неотрицательна, означает изменение технологических параметров вытяжки для исключения возможных дефектов пластического формоизменения призмы.

В пластической области за исключением границ диссипативная функция вычисляется для малого элемента, ограниченного двумя парами соседних линий скольжения по средним значениям напряжений  $\sigma_1$ ,  $\sigma_2$  для четырех узлов линий скольжения и скоростям деформаций  $\varepsilon_1$ ,  $\varepsilon_2$  вычисляемым с учетом кривизны траекторий главных направлений 1 и 2

$$\varepsilon_1 = (dV_1 - V_2 d\phi)/ds_1, \quad \varepsilon_2 = (dV_2 + V_1 d\phi)/ds_2,$$
(23)

$$V_1 = V_x \cos \varphi + V_y \sin \varphi, \quad V_2 = V_y \cos \varphi - V_x \sin \varphi, \tag{24}$$

где  $V_1$ ,  $V_2$  – проекции вектора скорости на главные направления;  $ds_1$ ,  $ds_2$  – элементы длины дуги,  $dV_1$ ,  $dV_2$  – приращения скоростей и  $V_1$ ,  $V_2$  – средние значения скоростей по главным направлениям.

На линиях симметрии с граничными условиями (20) уравнения (23) и (24) используются для треугольных элементов сетки линий скольжения при  $\varphi = 0$  на *AE* и  $\varphi = \alpha$  на *BC*. На контуре *AB* диссипативная функция вычисляется для линейного элемента между соседними узловыми точками линий скольжения, совпадающего со вторым главным направлением

$$D = -\varepsilon_2 = -(dV_2 + V_1 d\varphi)/ds_2,$$

где скорости  $V_1$ ,  $V_2$  вычисляются по формулам (24) в узловых точках линейного элемента в направлении от  $A \ltimes B$ .

**Численные примеры**. Расчеты линий скольжения, напряжений и скоростей пластического течения автоматизированы на ФОРТРАНЕ с применением графических процедур и выводом результатов в табличной и графической формах. На рис. 2а показана сетка линий скольжения с узловыми точками в виде пикселей, отображаемых на экран монитора. Расчеты выполнены для вытяжки призмы с параметрами N = 4, L = 2,  $\alpha = \pi/4$ ,



**Рис. 2.** Линии скольжения (а), годограф скоростей пластического течения (б) в области фланца для квадратной призмы.



**Рис. 3.** Нормальные и касательные напряжения (а) на контуре *ECD*, годограф скоростей пластического течения (б) для квадратной призмы.

 $r = 0.75, b_0 = 0.1, r_0 = 0.05, \Delta = 0.01$ . Контуры матрицы и заготовки, использованные для вычисления сетки линий скольжения и годографа скоростей, показаны на рис. 1.

Высота призмы H = 0.98 и радиус заготовки R = 1.881, вычисленный по формуле (4), соответствуют предельным значениям, при которых диссипативная функция положительна во всей пластической области. При увеличении H, R и уменьшении радиуса закругления r углов призмы в окрестности точки A появляется расширяющаяся область с отрицательными значениями диссипативной функции, где пластическое течение невозможно.

На рис. За показано распределение нормальных и касательных напряжений, на контуре матрицы *EDC* в зависимости от полярного угла  $0 \le \theta \le \pi/4$  с центром в точке *O* (рис. 1). На закругленном участке *ED* напряжения  $\sigma_n$  незначительно возрастают от 0.587 до 0.596 в точке *C*, где касательное напряжение максимально,  $\tau = 0.269$ . На линейном участке *CD* нормальное напряжение  $\sigma_n$  возрастает до максимального значения 0.7, а касательное напряжение  $\sigma_n$  возрастает до максимального значения 0.7, а касательное напряжение снижается до нуля на линии симметрии *BC*. Распределения главных напряжений  $\sigma_1$  и  $\sigma_2$  на линиях симметрии *AE* и *BC* приведены в табл. 1 и 2. Более высокие растягивающие напряжения возникают на линии симметрии *BC*, где ширина фланца максимальна.

| x     | $\sigma_1$ | $-\sigma_2$ | x     | $\sigma_1$ | $-\sigma_2$ |
|-------|------------|-------------|-------|------------|-------------|
| 1.881 | 0.000      | 1.000       | 1.363 | 0.345      | 0.782       |
| 1.830 | 0.028      | 0.986       | 1.333 | 0.370      | 0.762       |
| 1.782 | 0.055      | 0.971       | 1.304 | 0.395      | 0.742       |
| 1.735 | 0.082      | 0.956       | 1.276 | 0.419      | 0.722       |
| 1.691 | 0.110      | 0.941       | 1.249 | 0.444      | 0.701       |
| 1.648 | 0.136      | 0.925       | 1.223 | 0.468      | 0.680       |
| 1.607 | 0.163      | 0.908       | 1.198 | 0.492      | 0.659       |
| 1.568 | 0.190      | 0.891       | 1.174 | 0.515      | 0.637       |
| 1.530 | 0.216      | 0.874       | 1.150 | 0.539      | 0.615       |
| 1.494 | 0.242      | 0.857       | 1.128 | 0.562      | 0.593       |
| 1.460 | 0.268      | 0.838       | 1.106 | 0.584      | 0.570       |
| 1.426 | 0.294      | 0.820       | 1.104 | 0.587      | 0.568       |
| 1.394 | 0.319      | 0.801       |       |            |             |

**Таблица 1.** Напряжения на границе *AE* 

**Таблица 2.** Напряжения на границе *BC* 

| <i>x</i> * | $\sigma_1$ | $-\sigma_2$ | <i>x</i> * | $\sigma_1$ | $-\sigma_2$ |
|------------|------------|-------------|------------|------------|-------------|
| 1.330      | 0.000      | 1.000       | 0.922      | 0.395      | 0.742       |
| 1.294      | 0.028      | 0.986       | 0.902      | 0.419      | 0.722       |
| 1.260      | 0.055      | 0.971       | 0.883      | 0.444      | 0.701       |
| 1.227      | 0.082      | 0.956       | 0.865      | 0.468      | 0.680       |
| 1.195      | 0.110      | 0.941       | 0.847      | 0.492      | 0.659       |
| 1.165      | 0.136      | 0.925       | 0.830      | 0.515      | 0.637       |
| 1.136      | 0.163      | 0.908       | 0.813      | 0.539      | 0.615       |
| 1.109      | 0.190      | 0.891       | 0.797      | 0.561      | 0.593       |
| 1.082      | 0.216      | 0.874       | 0.782      | 0.584      | 0.570       |
| 1.057      | 0.242      | 0.857       | 0.767      | 0.607      | 0.547       |
| 1.032      | 0.268      | 0.838       | 0.752      | 0.629      | 0.524       |
| 1.008      | 0.294      | 0.820       | 0.738      | 0.651      | 0.501       |
| 0.986      | 0.319      | 0.801       | 0.724      | 0.672      | 0.477       |
| 0.964      | 0.345      | 0.782       | 0.707      | 0.700      | 0.445       |
| 0.942      | 0.370      | 0.762       |            |            |             |

\*y = x при  $\alpha = \pi/4$ 

На рис. 2б показан годограф скоростей для сетки линий скольжения. Круговой участок контура матрицы *EC* отображается на плоскости годографа дугой окружности с радиусом  $V_0 = 1$ , а линейный участок *CD* вырождается в точку с постоянной скоростью  $V_0 = 1$ . Линии скольжения  $\eta$  и  $\xi$ , проходящие через точки *E*, *C* и *D* на рис. 2а, на плоскости годографа (рис. 2б) ограничивают области поля скоростей, определяемые решением задачи Коши от контура *EDC*, задачи смешанного типа с линией симметрии *AE* и задачи смешанного типа с линией симметрии *BC*. Вырождение в точку линейного участка контура матрицы на плоскости годографа скоростей порождает центрирован-

|       | <u> </u> |       |        |       |        |
|-------|----------|-------|--------|-------|--------|
| x     | $-V_x$   | x     | $-V_x$ | x     | $-V_x$ |
| 1.104 | 1.000    | 1.357 | 0.728  | 1.622 | 0.527  |
| 1.145 | 0.947    | 1.382 | 0.706  | 1.650 | 0.509  |
| 1.167 | 0.920    | 1.407 | 0.685  | 1.679 | 0.491  |
| 1.190 | 0.893    | 1.433 | 0.664  | 1.707 | 0.473  |
| 1.213 | 0.868    | 1.459 | 0.644  | 1.737 | 0.455  |
| 1.236 | 0.843    | 1.485 | 0.623  | 1.766 | 0.438  |
| 1.260 | 0.819    | 1.512 | 0.604  | 1.797 | 0.421  |
| 1.283 | 0.795    | 1.539 | 0.584  | 1.827 | 0.404  |
| 1.308 | 0.772    | 1.566 | 0.565  | 1.858 | 0.387  |
| 1.332 | 0.750    | 1.594 | 0.546  | 1.881 | 0.374  |

Таблица 3. Скорости на границе АЕ

Таблица 4. Скорости на границе ВС

| <i>x</i> * | $-V_x^*$ | <i>x</i> * | $-V_x^*$ | <i>x</i> * | $-V_x^*$ |
|------------|----------|------------|----------|------------|----------|
| 0.707      | 0.707    | 0.865      | 0.707    | 1.082      | 0.641    |
| 0.724      | 0.707    | 0.883      | 0.707    | 1.109      | 0.631    |
| 0.738      | 0.707    | 0.902      | 0.707    | 1.136      | 0.621    |
| 0.752      | 0.707    | 0.922      | 0.707    | 1.165      | 0.611    |
| 0.767      | 0.707    | 0.942      | 0.705    | 1.195      | 0.601    |
| 0.782      | 0.707    | 0.964      | 0.694    | 1.227      | 0.592    |
| 0.797      | 0.707    | 0.986      | 0.683    | 1.260      | 0.582    |
| 0.813      | 0.707    | 1.008      | 0.672    | 1.294      | 0.573    |
| 0.830      | 0.707    | 1.032      | 0.662    | 1.330      | 0.563    |
| 0.847      | 0.707    | 1.057      | 0.651    |            |          |

\* y = x,  $V_y = V_x$  при  $\alpha = \pi/4$ 

ные области годографа при вычислениях скоростей на границе фланца AB и на линии симметрии BC. Границы пластической области на годографе скоростей показаны на рис. 36. Численные значения скоростей на линиях симметрии AE и BC приведены в табл. 3 и 4. Линейный участок контура матрицы порождает область поступательного движения со скоростью  $V_0 = 1$  на значительной части границы BC, показанной в табл. 4. Смещение контура заготовки, вычисленное по скорости точек границы AB при малом перемещении  $ds = V_0 dt = 0.1$ ;  $x = x_0 V_x ds$ ,  $y = y_0 V_y ds$ , где  $x_0$ ,  $y_0$  – координаты границы AB при ds = 0, показаны на рис. 4.

В табл. 5 приведены предельные значения H и R по критерию положительности диссипативной функции и напряжения на контуре матрицы для трехгранной, четырехгранной и шестигранной призмы с различными радиусами закругления углов r. Увеличение числа граней и уменьшение радиуса r приводит к снижению предельных значений H, R и напряжений по критерию положительности диссипативной функции пластического течения. Малое отрицательное значение напряжения  $\sigma_n$  на контуре матрицы для треугольной призмы при r = 0.5 показывает возможность отрыва заготовки от контакта с матрицей при малых радиусах закругления r.



**Рис. 4.** Начальное смещение контура заготовки при малом перемещении пуансона при вытяжке квадратной призмы.

Приближение радиуса закругления к предельному значению r = 1 приводит к снижению касательного напряжения на контуре матрицы до нуля и радиальному пластическому течению с предельными значениями H = 2.38 и R = 2.469 по критерию максимального растягивающего напряжения  $\sigma_1 = 1$ . Линии скольжения и годограф скоростей в секторе фланца  $\alpha = \pi/4$  при r = 1 показаны на рис. 5. В случае радиального пластического течения диссипативная функция положительна во всей пластической области фланца.

**Обсуждение результатов**. Разработан алгоритм расчета двухмерного плоского напряженного состояния и поля скоростей пластического течения широкого фланца на начальной стадии вытяжки тонкостенной призмы из круглой заготовки. Получены распределения нормальных и касательных напряжений по контуру матрицы и годограф скоростей пластического течения фланца с контролем знака диссипативной функции.

Технологические параметры несимметричной вытяжки тонкостенных оболочек при заданной форме контуров проема матрицы и заготовки ограничены нормальными растягивающими напряжениями на контуре матрицы, близкими к напряжению

| Ν | Параметры |       |       | Граница        | EC           | т. Е       | т. С       |
|---|-----------|-------|-------|----------------|--------------|------------|------------|
|   | r         | Н     | R     | σ <sub>n</sub> | $\tau_{max}$ | $\sigma_1$ | $\sigma_1$ |
| 3 | 0.75      | 1.230 | 2.199 | 0.602          | 0.407        | 0.623      | 0.875      |
|   | 0.70      | 1.108 | 2.151 | 0.478          | 0.466        | 0.552      | 0.851      |
|   | 0.60      | 0.870 | 2.044 | 0.199          | 0.538        | 0.408      | 0.794      |
|   | 0.50      | 0.730 | 1.981 | -0.053         | 0.538        | 0.408      | 0.794      |
| 4 | 0.75      | 0.980 | 1.881 | 0.598          | 0.269        | 0.587      | 0.699      |
|   | 0.70      | 0.928 | 1.863 | 0.548          | 0.314        | 0.554      | 0.689      |
|   | 0.60      | 0.722 | 1.759 | 0.383          | 0.395        | 0.446      | 0.623      |
|   | 0.50      | 0.563 | 1.673 | 0.219          | 0.453        | 0.350      | 0.565      |
| 6 | 0.75      | 0.780 | 1.602 | 0.479          | 0.162        | 0.471      | 0.515      |
|   | 0.70      | 0.705 | 1.574 | 0.444          | 0.193        | 0.442      | 0.494      |
|   | 0.60      | 0.551 | 1.508 | 0.359          | 0.242        | 0.377      | 0.445      |
|   | 0.50      | 0.405 | 1.436 | 0.260          | 0.299        | 0.306      | 0.389      |

Таблица 5. Предельные параметры вытяжки призмы и напряжения на контуре матрицы



**Рис. 5.** Линии скольжения (а), годограф скоростей (б) в секторе фланца  $\alpha = \pi/4$  при осесимметричной вытяжке *r* = 1 и предельном напряжении  $\sigma_1 = 1$  на контуре матрицы.

текучести по критерию локального разрушения заготовки. Форма и размеры заготовки ограничены также условием положительности диссипативной функции, при нарушении которого возможно образование складок потери устойчивости пластического течения.

Алгоритм расчета двухмерного плоского напряженного состояния и скоростей пластического течения может быть использован для исследования процессов сложной вытяжки с модификацией процедур вычисления криволинейных контуров матрицы и фланца с определением предельных технологических параметров по критериям максимального растягивающего напряжения и положительности диссипативной функции пластического течения.

Приведенные результаты относятся к начальной стадии пластического течения фланца по теории Мизеса при постоянной толщине начальной заготовки. Моделирование нестационарных процессов сложной вытяжки тонкостенных несимметричных оболочек с изменением толщины стенки и упрочнения материала по теории пластического течения Мизеса, по аналогии с осесимметричными процессами [6–12], требует дальнейших исследований.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Романовский В.П. Справочник по холодной штамповке. Л.: Машиностроение, 1979. 520 с.
- 2. Аверкиев Ю.А., Аверкиев А.Ю. Технология холодной штамповки. М.: Машиностроение, 1989. 304 с.
- Попов Е.А., Ковалев В.Г., Шубин И.Н. Технология и автоматизация листовой штамповки. М.: МГТУ им. Н.Э. Баумана, 2003. 480 с.
- 4. Хилл Р. Математическая теория пластичности. М.: ГИТТЛ, 1956. 407 с.
- 5. Джонсон У., Меллор П. Теория пластичности для инженеров. М.: Машиностроение, 1979. 567 с.
- 6. Nepershin R.I. Applied Problems of Plasticity. Moscow: MSTU "STANKIN", 2016. 310 p.
- 7. *Непершин Р.И.* Вытяжка тонкостенной конической оболочки из плоской заготовки // Известия РАН. МТТ. 2010. № 1. С. 139–153.
- Непершин Р.И. Формообразование фланца из плоской заготовки с отверстием // Проблемы машиностроения и надежности машин. 2011. № 2. С. 55–65.
- 9. *Непершин Р.И*. Глубокая вытяжка тонкостенной полусферы // Проблемы машиностроения и надежности машин. 2014. № 1. С. 74–84.
- Nepershin R.I., Prusakov M.A. Half-spherical shell deep drawing // AIP Conference Proceedings. 2017. V. 1863, 210002; DOI:10.1063/1.4992380

- 11. *Непершин Р.И*. Раздача тонкостенной трубы пуансоном с криволинейным профилем // Проблемы машиностроения и надежности машин. 2010. № 1. С. 80–88.
- 12. *Nepershin R.I.* Thin-walled tube extension by rigid curved punch // Engineering. 2011.V. 3. № 5. P. 452–460.
- 13. Соколовский В.В. Уравнения пластического равновесия при плоском напряженном состоянии // Прикладная математика и механика. 1945. Т. 9. Вып. 1.
- 14. Соколовский В.В. Теория пластичности. М.: Высшая школа, 1969. 608 с.
- 15. Соколовский В.В. Плоская задача теории пластичности о распределении напряжений вокруг отверстий // Прикладная математика и механика. 1949. Т. 13. Вып. 2.
- 16. Соколовский В.В. Расширение кругового отверстия в жесткопластической пластинке // Прикладная математика и механика. 1961. Т. 25. Вып. 3.
- Nepershin R.I. Plastic tension of thin strip with symmetrical cut-outs // AIP Conference Proceedings. 2016. V. 1738, 170003; DOI: 10.1063/1.4951947
- 18. Ишлинский А.Ю., Ивлев Д.Д. Математическая теория пластичности. М.: Физматлит, 2001. 704 с.