НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 62-754; 534.01

НЕЛИНЕЙНЫЙ АНАЛИЗ ВИБРОИЗОЛЯЦИИ ГРУЗА, УСТАНОВЛЕННОГО В КОНТЕЙНЕРЕ НА ПОЛИУРЕТАНОВЫХ АМОРТИЗАТОРАХ ТОННЕЛЬНОГО ТИПА

© 2019 г. А. Е. Белкин^{1,*}, И. З. Даштиев^{2,**}, Е. А. Никитин^{1,***}

¹ Московский государственный технический университет им. Н.Э. Баумана, г. Москва, Россия ² Центральный научно-исследовательский институт специального машиностроения, Московская область, г. Хотьково, Россия *e-mail: aefbelkin@gmail.com **e-mail: koleso49@mail.ru

***e-mail: devoitene@gmail.com

Поступила в редакцию 10.07.2019 г. Принята к публикации 26.08.2019 г.

Исследуется виброизоляция груза в контейнере с применением полиуретановых амортизаторов тоннельного типа, допускающих работу при больших деформациях и обладающих высокими коэффициентами поглощения энергии. Для выполнения расчетов проведена аппроксимация упругой и диссипативной характеристик амортизаторов по результатам их статических и динамических испытаний. Приближенными методами нелинейной теории колебаний рассчитаны модели систем поперечной и продольной амортизации груза с симметричной и несимметричной характеристиками. Для гармонического возбуждения определены коэффициенты виброизоляции груза, соответствующие различным амплитудам ускорения контейнера. Результаты расчетов сопоставлены с данными испытаний физической модели системы виброизоляции, полученными на вибростенде Data Physics Signal Force V400.

Ключевые слова: виброизоляция, полиуретановые амортизаторы, математическая модель, нелинейная теория колебаний, динамические испытания

DOI: 10.1134/S0235711919070034

Введение. В современном машиностроении широко применяются детали из полиуретана, в частности амортизаторы, которые обладают высокой удельной энергоемкостью, весьма большими коэффициентами поглощения энергии и превосходят резиновые аналоги по долговечности [1, 2]. Благодаря технологичности изготовления амортизаторы могут иметь разнообразную геометрию, выбор которой влияет на их нагрузочные характеристики.

Для обеспечения вибро-удароизоляции грузов весьма перспективно применение амортизаторов тоннельного типа (рис. 1), которые могут работать при больших осадках, сопоставимых с высотами. Нагрузочные характеристики этих амортизаторов в диапазоне рабочих осадок нелинейны, причем в области малых деформаций характеристики являются мягкими с переходом к протяженному почти линейному участку малой жесткости, а после достижения некоторой осадки становятся жесткими из-за самоконтакта стенок. Амортизаторы с характеристиками такого вида обеспечивают высокую энергоемкость виброзащитной системы при ограниченных силах, передаваемых на защищаемый объект.

Рис. 1. Полиуретановый амортизатор тоннельного типа.

Для обоснования работоспособности полиуретановых амортизаторов в системах защиты объектов необходимы тщательные теоретические и экспериментальные исследования. Одно из первых экспериментальных исследований статических и динамических характеристик тоннельных амортизаторов проведено в работе [3]. Приближенный расчет близкого по характеристикам разрезного амортизатора с упорами на основе структурной вязкоупругой модели предложен в [4]. В работе [5] представлены результаты стендовых ударных испытаний тоннельного амортизатора и выполнено их математическое моделирование методом конечных элементов. В [6] экспериментально исследована простейшая физическая модель одноосной виброизоляции груза в контейнере с помощью двух полиуретановых амортизаторов тоннельного типа, являющихся малоразмерными копиями натурных амортизаторов. Испытания модели проводились на вибростенде Data Physics Signal Force V400.

На рис. 2 показана общая схема экспериментальной установки. Были получены амплитудно-частотные характеристики системы "контейнер—амортизаторы—груз" в виде зависимости коэффициента динамичности от частоты возбуждения с заданной амплитудой ускорения контейнера (стола вибростенда). По результатам испытаний проведена настройка математической модели как одностепенной системы с кинематическим возбуждением, в которой реакции амортизаторов определялись соотношениями линейной теории вязкоупругости. Анализ этой модели позволил получить приближенную оценку уровня виброизоляции груза. Более точный анализ возможен с применением нелинейной теории.

Цель настоящей статьи — разработка математической модели нелинейной системы виброизоляции груза на полиуретановых амортизаторах при колебаниях с большими амплитудами и настройка этой модели по результатам экспериментов.

Аппроксимация силовой характеристики системы виброизоляции. Выберем аналитическое представление восстанавливающей силы f от осадки амортизатора δ . Приближенно f можно представить в виде суммы упругой $f_e(\delta)$ и неупругой $f_i(\delta, \delta)$ составляющих [7]

$$f(\delta, \dot{\delta}) = f_e(\delta) + f_i(\delta, \dot{\delta}).$$

В соответствии с видом нагрузочной характеристики амортизатора (рис. 3), а также условиями установки амортизаторов в контейнере примем

$$f_e(\delta) = c_1 \delta - c_2 \delta^2 \operatorname{sign} \delta + c_3 \delta^3, \tag{1}$$

Рис. 2. Схема экспериментальной установки физического моделирования амортизации груза в контейнере: *I* – монитор; *2* – система управления вибростендом; *3* – усилитель управляющего сигнала; *4*, *5* – акселерометры стола и груза; *6* – верхний стол; *7* – крепление амортизатора; *8* – система стабилизации; *9* – груз; *10* – амортизаторы; *11* – вибростенд.

Рис. 3. Сравнение экспериментальных (штриховые кривые) и аналитических (сплошные кривые) упругих характеристик "жесткого" (*1*) и "мягкого" (*2*) амортизаторов.

где c_1 , c_2 , c_3 — коэффициенты жесткости, подлежащие определению по результатам испытаний на сжатие одиночного амортизатора; функция sign позволяет единообразно записать реакцию двух амортизаторов, установленных навстречу друг другу, при положительных и отрицательных δ .

Неупругая часть восстанавливающей силы отражает способность амортизаторов рассеивать механическую энергию благодаря значительному внутреннему трению в материале. Известно [8], что площадь гистерезисной петли у эластомеров в меньшей мере зависит от частоты циклов деформирования (в диапазоне низких частот) и в большей – от амплитуды деформации. Следуя предложению Я.Г. Пановко [9], при-

Таолица 1.						
Марка материала амортизатора	<i>с</i> ₁ , Н/мм	c_2 , Н/мм ²	<i>c</i> ₃ , Н/мм ³			
СУРЭЛ ТФ-228	215	34.7	2.16			
СКУ-ПФЛ-100	1140	195	11.6			

Таблица 2.

Марка материала амортизатора	Резонансная частота v ₀ , Гц	Эффективная жесткость $c_{\rm eff} = m(2\pi v_0)^2$, H/MM	Наибольшее значение коэф- фициента динамичности $\beta_{max} = max(a_{out}/a_{in})$	Коэффициент поглощения ¥
СУРЭЛ ТФ-228	11.1	195	6.2	0.63
СКУ-ПФЛ-100	32.2	1637	7.1	0.64

мем, что при гармоническом цикле деформирования форма гистерезисной петли является эллиптической, т.е.

$$f_i(\delta, \dot{\delta}) = B \delta_0^{\mu} \sqrt{1 - \frac{\delta^2}{\delta_0^2}} \operatorname{sign} \dot{\delta},$$
(2)

где δ_0 – амплитуда осадки амортизатора; *B*, μ – параметры, подбираемые на основе данных о коэффициентах поглощения энергии.

Испытания проводились с малоразмерными моделями, геометрически подобными реальным амортизаторам. Модели имели габаритные размеры: высоту – 30 мм, ширину по подошве – 70 мм, глубину – 42 мм, высоту тоннелей – 18 мм, толщину стоек – 5 мм. Они были изготовлены из полиуретана двух марок: СУРЭЛ ТФ-228 твердостью 80 ед. по Шору по шкале А и СКУ-ПФЛ-100 твердостью 92...95 ед. по той же шкале. Для краткости первые амортизаторы назовем "мягкими", вторые – "жесткими".

На рис. 3 приведены статические силовые характеристики "мягкого" и "жесткого" амортизаторов, полученные на испытательной машине Galdabini Quasar 50 после нескольких тренировочных циклов медленного нагружения и разгрузки. Поиск коэффициентов жесткости для упругой характеристики (1) осуществлялся методом наименьших квадратов при помощи алгоритма метода доверительной области [10], реализованном в пакете MATLAB. Полученные коэффициенты представлены в табл. 1. При подборе коэффициентов c_1 , c_2 , c_3 область резкого ужесточения экспериментальной нагрузочной характеристики исключалась из рассмотрения, поскольку в проведенных динамических испытаниях [6] с невысокими перегрузками не наблюдался сколь-нибудь значительный самоконтакт стоек амортизаторов.

На рис. 3 представлено сравнение экспериментальных кривых и их аппроксимаций.

Подбор коэффициентов силы неупругого сопротивления (2) выполнен, опираясь на результаты экспериментов по виброизоляции груза [6]. Эксперименты проводились с грузом массой m = 40 кг, установленным поочередно на "мягких" и "жестких" амортизаторах. Краткая сводка данных, полученных при резонансной частоте и амплитуде ускорений стола $a_{in} = 0.5g$, приведена в табл. 2.

Для модели внутреннего трения (2) энергия, рассеиваемая за период гармонических колебаний, составляет

$$W = \int_{0}^{2\pi/\omega} f_i(\delta, \dot{\delta}) \dot{\delta} dt = \pi B \delta_0^{\mu+1}.$$

Коэффициент поглощения при колебаниях на резонансной частоте v_0 с амплитудой δ_{max} может быть оценен как

$$\Psi = \frac{2W}{c_{\rm eff}\delta_{\rm max}^2} = 2\pi \frac{B\delta_{\rm max}^{\mu-1}}{c_{\rm eff}}.$$
(3)

В экспериментах с помощью акселерометров измерялись ускорения стола вибростенда (a_{in}) и груза (a_{out}). Приведенное в табл. 2 значение коэффициента динамичности β_{max} является отношением амплитуд ускорений груза и стола в резонансном режиме. Таким же будет отношение амплитуд перемещений. Амплитуда осадки амортизатора в резонансном режиме почти не отличается от амплитуды колебаний груза, поэтому ее можно определить приближенно $\delta_{max} = \beta_{max} a_{in} / (2\pi v_0)^2$.

При установленных осадках амортизаторов можно выполнить настройку параметров неупругого сопротивления, сохраняя эквивалентность физической и математической моделей в отношении поглощающих свойств. Поскольку характеристики физической модели [6] были определены только при одном (резонансном) режиме, то в условиях ограниченности экспериментальных данных подбор параметров *B*, μ приходится осуществлять, делая некоторые допущения. Примем $\mu = 3$ и по известному коэффициенту поглощения (3) получим для "жесткого" амортизатора $B = 230 H/\text{мm}^3$, для "мягкого" $B = 0.5 H/\text{мm}^3$. Дальнейшие расчеты выполнены при этих значениях параметров *B* и μ .

Динамика груза при поперечной (горизонтальной) амортизации. Силовая характеристика поперечной системы амортизации симметрична. Уравнение движения груза можно записать в виде

$$m\ddot{\delta} + B\delta_0^{\mu}\sqrt{1 - \frac{\delta^2}{\delta_0^2}}\operatorname{sign}\dot{\delta} + c_1\delta - c_2\delta^2\operatorname{sign}\delta + c_3\delta^3 = -m\ddot{z},$$

где *z* – смещение контейнера (основания).

Решение этого нелинейного уравнения при гармоническом возбуждении $z = z_0 \cos(\omega t + \varphi)$ определяем методом гармонической линеаризации [7]. Полагая, $\delta = \delta_0 \cos \omega t$, представим функцию эквивалентной восстанавливающей силы в виде

$$f_{eq}(\delta) = b_{eq}\delta + c_{eq}\delta$$

где коэффициенты линеаризации b_{eq} , c_{eq} установлены по формулам

$$b_{eq} = -\frac{1}{\pi\omega\delta_0} \int_0^{2\pi} f_i(\delta_0 \cos\xi, -\omega\delta_0 \sin\xi) \sin\xi d\xi = \frac{B\delta_0^{\mu-1}}{\omega},$$
(4)

$$c_{eq} = \frac{1}{\pi \delta_0} \int_0^{2\pi} f_e(\delta_0 \cos \xi) \cos \xi d\xi = c_1 - \frac{8}{3\pi} c_2 \delta_0 + \frac{3}{4} c_3 \delta_0^2,$$
(5)

получаем линеаризованное уравнение движения

$$m\ddot{\delta} + b_{eq}\dot{\delta} + c_{eq}\delta = m\omega^2 z_0 \cos(\omega t + \varphi),$$

Рис. 4. Зависимость коэффициента виброизоляции груза от частоты при различных амплитудах ускорений контейнера: *I* – 0.5g; *2* – 0.75g; *3* – 1.0g; *4* – 1.25g: (а) – поперечная (горизонтальная) амортизация; (б) – продольная (вертикальная) амортизация.

установившееся решение которого характеризуется амплитудой

$$\delta_0 = \frac{a_{in}}{\sqrt{(\omega_0^2 - \omega^2)^2 + (B\delta_0^{\mu - 1}/m)^2}}.$$
(6)

Здесь $\omega_0(\delta_0) = \sqrt{\left(c_1 - \frac{8}{3\pi}c_2\delta_0 + \frac{3}{4}c_3\delta_0^2\right)/m}$ – резонансная частота, зависящая от ампли-

туды (уравнение скелетной кривой), $a_{in} = \omega^2 z_0$.

Критерием эффективности виброзащиты груза при кинематическом возбуждении служит коэффициент виброизоляции [11], характеризующий степень уменьшения ускорения, передаваемого от контейнера к грузу

$$\beta = \frac{a_{out}}{a_{in}} = \sqrt{\frac{\omega_0^4 + (B\delta_0^{\mu-1}/m)^2}{(\omega_0^2 - \omega^2)^2 + (B\delta_0^{\mu-1}/m)^2}}$$

На рис. 4а приведены графики зависимости коэффициента виброизоляции груза, размещенного на "мягких" амортизаторах, от частоты возбуждения при различных значениях амплитуды ускорения контейнера.

Динамика груза при продольной (вертикальной) амортизации. Система находится в поле силы тяжести. Нижний амортизатор поджат весом груза. Верхний амортизатор приведен в соприкосновение с грузом, но не деформирован и дополнительной реакции не создает. Особенность этой нелинейной колебательной системы состоит в том, что при "мягких" амортизаторах начальное поджатие может заметно изменить ее жесткость. На рис. 5 показано смещение нагрузочных характеристик амортизаторов (штриховые кривые) при наличии начального поджатия δ_{st} нижнего амортизатора. Теперь нагрузочная характеристика системы в целом становится несимметричной при отсчете осадки δ от положения статического равновесия.

Участок характеристики $\delta > 0$ соответствует сжатию нижнего амортизатора, участок $-\delta_{st} < \delta < 0$ – совместной работе двух амортизаторов. На участке $\delta < -\delta_{st}$ происходит отрыв груза от нижнего амортизатора. На участке совместной работы амортизаторов их симметричные нагрузочные кривые складываются и практически "линеаризуются", образуя участок почти постоянной жесткости $c^* = 2mg/\delta_{st}$.

Рис. 5. Смещение нагрузочных характеристик нижнего (*1*) и верхнего (*2*) амортизаторов (штриховые кривые) и характеристика восстанавливающей силы без учета веса груза (*3*) и с его учетом (*4*).

Уравнение вертикальных колебаний амортизированного груза может быть записано в виде

$$m(\ddot{\delta} + \ddot{z}) = mg - H(\delta_{st} + \delta)f_1(\delta_{st} + \delta) + H(-\delta)f_2(-\delta) - f_i,$$
(7)

где $H(\delta)$ – функция Хэвисайда, включающая или отключающая реакцию амортизатора; $f_1(\delta) = c_1 \delta - c_2 \delta^2 + c_3 \delta^3$ – реакция нижнего амортизатора, $f_2(-\delta) = -(c_1 \delta + c_2 \delta^2 + c_3 \delta^3)$ – реакция верхнего амортизатора, f_i – диссипативная сила.

Принимая допущение об отсутствии влияния статической нагрузки на величину рассеиваемой при колебаниях энергии и предполагая близость процесса к гармоническому, будем использовать линеаризованное выражение силы внутреннего трения с коэффициентом вязкости (4). Тогда уравнение (7) примет вид

$$m\ddot{\delta} + \frac{B\delta_0^{\mu-1}}{\omega}\delta + f(\delta) = -m\ddot{z},$$

где $f(\delta) = H(\delta_{st} + \delta)f_1(\delta_{st} + \delta) - H(-\delta)f_2(-\delta) - mg$ – восстанавливающая сила, график ее зависимости от осадки показан на рис. 5 (кривая 4).

Рассматривая гармоническое возбуждение системы $z = z_0 \cos(\omega t + \varphi)$, найдем установившиеся колебания $\delta = \Delta + \delta_0 \cos \omega t$ методом прямой линеаризации функции восстанавливающей силы $f(\delta)$ [12]. Сначала определим смещение центра размаха колебаний Δ из условия равенства значений потенциальной энергии системы при амплитудных отклонениях

$$\int_{\Delta-\delta_0}^{\Delta+\delta_0} f(\delta)d\delta = 0.$$
 (8)

Нелинейное уравнение (8) решается относительно Δ при заранее задаваемых значениях амплитуды осадки амортизатора δ_0 .

Далее по методу линеаризации с весовой функцией [12] найдем резонансную частоту системы

$$\omega_0^2(\delta_0) = \frac{5}{2m\delta_0^5} \int_{-\delta_0}^{\delta_0} f(\delta - \Delta)\delta^3 d\delta, \tag{9}$$

вычисляя интеграл (9) при помощи квадратурных формул Гаусса.

Рис. 6. Экспериментальная зависимость коэффициента виброизоляции груза от частоты. Цифры у кривых соответствуют различным амплитудам ускорений стола вибростенда: I - 0.5g; 2 - 0.75g; 3 - 1.0g; 4 - 1.25g.

При известной скелетной кривой по уравнению амплитудно-частотной характеристики (АЧХ)

$$\omega^{2} = \omega_{0}^{2}(\delta_{0}) \pm \sqrt{\left(\frac{a_{\text{in}}}{\delta_{0}}\right)^{2} - \left(\frac{B\delta_{0}^{\mu-1}}{m}\right)^{2}}$$

определяем частоты ω , соответствующие заданным значениям δ_0 . Затем строим график коэффициента виброизоляции груза.

Перейдем к результатам. Для груза массой m = 40 кг статическая осадка "мягкого" амортизатора согласно экспериментальной нагрузочной характеристике (рис. 3) составляет $\delta_{st} \approx 3.0$ мм. Такая осадка заметно меняет жесткость системы. На рис. 46 представлены графики зависимости коэффициентов виброизоляции от частоты, полученные при амплитудах ускорений контейнера 0.5g; 0.75g; 1.0g; 1.25g. Отметим, что расчеты выполнены при коэффициентах перегрузки $a_{in}/g \leq 1.25$, реализуемых на вибростенде Data Physics Signal Force V400 при массе груза 40 кг, с целью дальнейшей экспериментальной проверки.

Экспериментальное исследование виброизоляции груза. Для физического моделирования виброизоляции груза в контейнере используется экспериментальная установка [6], схематично изображенная на рис. 2. Рассмотрим результаты исследования системы с "мягкими" амортизаторами. Для получения АЧХ системы на стол вибростенда подавалось кинематическое возбуждение с различными амплитудами ускорения и медленно возрастающей частотой. Скорость повышения частоты составляла 0.1 Гц/с; диапазон частот от 5 до 50 Гц. Соответствующие частотные зависимости показаны на рис. 6.

Из графиков видно, что с повышением амплитуды ускорений вибростенда наблюдается снижение пиковых значений коэффициента виброизоляции (динамичности), что косвенно свидетельствует о применимости теории эквивалентного внутреннего трения при моделировании работы полиуретановых амортизаторов. Пиковые значения β в расчете (рис. 4б) и эксперименте (рис. 6) согласуются удовлетворительно. Наблюдаемый сдвиг значений резонансной частоты по расчету и в эксперименте объясняется тем, что жесткость в экспериментальной установке повышена за счет системы стабилизации (позиция 8 на рис. 2), которая представляет собой набор стержней, препятствующих боковым смещениям груза при вибрации.

Частотные зависимости, полученные экспериментально в настоящей (рис. 6) и предыдущей [6] работах авторов, несколько различаются значениями резонансных ча-

стот и максимумов коэффициентов виброизоляции, т.к. испытания проведены с амортизаторами разных партий.

Выводы. Предложена математическая модель системы виброизоляции, учитывающая нелинейный характер восстанавливающих сил полиуретановых амортизаторов тоннельного типа. Характеристики амортизаторов установлены по результатам статических и динамических испытаний. Проведена верификация модели на основе динамических испытаний с различными амплитудами ускорений стола вибростенда. Результаты, полученные для малоразмерных образцов амортизаторов, могут быть распространены на натурный объект методом подобия. Разработанная модель может быть использована в практических расчетах систем амортизации объектов.

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Wu J.H., Li C.H., Chiu H.T., Shong Z.J., Tsai P.A.* Anti-vibration and vibration isolator performance of poly(styrene-butadiene-styrene)/ester-type polyurethane thermoplastic elastomers // Polymers for Advanced Technologies. 2010. 21. P. 164.
- 2. Bek M., Betjes J., von Bernstorff B.S., Emri I. Viscoelasticity of new generation thermoplastic polyurethane vibration isolators // Preprint in Physics of Fluids. December 2017. № 29 (12) P. 42.
- 3. *Mendelsohn M.A., Rudd G.E., Rosenblatt G.B.* Chemical and Engineering Properties of Polyurethane Isolator Pads // Industrial & Engineering Chemistry Product Research and Development. 1975. V. 14. № 3. P. 181.
- 4. *Lv Z.Q., Shu L.H.* Shock Mechanics Model and Characteristic Analysis of Polyurethane Isolator with Displacement Restrictor // Advanced Materials Research. 2012. V. 503–504. P. 972.
- 5. Алашеев В.И., Белкин А.Е., Бобров А.В., Ярошевич Н.В. Анализ работы полиуретанового амортизатора тоннельного типа в условиях ударного нагружения // Известия высших учебных заведений. Машиностроение. 2017. № 5. С. 4.
- 6. Белкин А.Е., Даштиев И.З., Никитин Е.А., Сергиенко В.В. Физическое и математическое моделирование виброизоляции груза в контейнере с применением полиуретановых амортизаторов // Известия высших учебных заведений. Машиностроение. 2018. № 7. С. 11.
- 7. Коловский М.З. Нелинейная теория виброзащитных систем. М.: Наука, 1966. С. 320.
- 8. Лукомская А.И., Евстратов В.Ф. Основы прогнозирования механического поведения каучуков и резин. М.: Химия, 1975. С. 360.
- 9. *Пановко Я.Г.* Внутреннее трение при колебаниях упругих систем. М.: Физматгиз. 1960. С. 194.
- 10. Измаилов И.Ф., Солодов М.В. Численные методы оптимизации. М.: Физматлит, 2005. С. 304.
- 11. Бидерман В.Л. Теория механических колебаний. М.: URSS, 2017. С. 406.
- 12. Пановко Я.Г. Основы прикладной теории колебаний и удара. М.: URSS, 2015. С. 272.