= МЕХАНИКА МАШИН ==

УДК 621:53.8

МЕТОД ОПРЕДЕЛЕНИЯ ИНЕРЦИОННЫХ ХАРАКТЕРИСТИК ТЕЛ

© 2020 г. А.К.Алешин

Институт машиноведения имени А.А. Благонравова РАН, г. Москва, Россия e-mail: aleshin ak@mail.ru

> Поступила в редакцию 07.08.2019 г. Принята к публикации 25.10.2019 г.

Разработан метод определения массы, координат центра масс и тензора инерции тела. Особенность метода в задании исследуемому телу вращения и конечных фиксируемых линейных и угловых перемещений. Реакция динамической системы измерительного стенда на изменения в расположении масс тела и пробного груза на вращающейся платформе, содержит полную информацию об инерционных характеристиках тела.

Ключевые слова: колебания, вращательное движение, инертная масса, тензор инерции, пробный груз, центр масс, кинетическая энергия, интервал времени **DOI:** 10.31857/S0235711920010046

1. Постановка задачи. Метод определения момента инерции тела по периоду его колебаний, как физического маятника, совместно с методом пробных грузов, применяемым при балансировке роторов, широко используют для экспериментального определения масс и моментов инерции тел [1–10]. Возможности такого совместного технологического приема можно значительно расширить и определять одновременно не только массу и момент инерции, но и координаты центра масс, а также тензор инерции тела для широкой номенклатуры изделий, прочностные свойства которых не позволяют им испытывать динамические перегрузки при испытаниях. Это относится к тонкостенным корпусным деталям авиационных и машиностроительных конструкций, пространственным фермам, уникальным объектам зоологической природы. Проблема в том, что если к исследуемому объекту не применима модель твердого тела из-за его деформаций в процессе навязанных ему колебаний, то он сам становится колебательным звеном в измерительной цепи. В результате образуется сложная колебательная система, в которой увеличиваются динамические погрешности измерений инерционных характеристик.

В качестве альтернативы широко применяемым в настоящее время колебательным процессам, сообщаемым исследуемому телу, известен метод определения массы и координат центра масс тела в заданной плоскости, основанный на сообщении вращательного движения [11].

Однако применяемый в этом методе технологический прием задавать телу и пробному грузу конечные линейные перемещения при вращательном движении, позволяет определять только массу тела и две координаты центра масс в заданной плоскости. Положение центра масс в пространстве остается неизвестным. Невозможно также определить компоненты тензора инерции.

2. Решение задачи. Предлагается дополнительно, кроме линейных перемещений, задаваемых телу и пробному грузу в плоскости вращения, сообщать им последователь-

Рис. 1. Измерительный стенд с манипулятором: *1* – исследуемое тело; *2* – планшайба; *3* – кронштейн; *4* – винтовой механизм; *5* – каретка; *6* – платформы.

но, угловые повороты на 45° и 90° градусов относительно специально выбранных осей. В каждом новом фиксированном угловом положении тела и пробного груза, поразному проявляются их инерционные свойства, вызванные вращательным движением. Измеряемая реакция динамической системы стенда на ряд заданных угловых ориентаций тела и пробного груза в пространстве содержит достаточную информацию для определения тензора инерции и координат центра масс в пространстве.

Для выполнения заданных линейных и угловых перемещений разработан манипулятор (рис. 1).

Исследуемое тело 1 установлено на планшайбе 2, которая может поворачиваться относительно кронштейна 3 на углы 45° и 90° градусов вокруг оси *B* и фиксироваться в каждом из этих положений. Кронштейн 3 вместе с двумя винтовыми механизмами 4, работающими всегда синхронно, образуют поворотный механизм вокруг оси *C* на углы 45° и 90°. Вся конструкция манипулятора базируется на каретке 5, которая может перемещаться в радиальном направлении в плоскости платформы 6 с помощью привода (на рис. 1 привод не показан). Это линейное конечное перемещение необходимо для нахождения координат центра масс. Механизм манипулятора обеспечивает три степени свободы: поворот вокруг осей *B* и *C*, а также линейное смещение за счет вращения винтовых механизмов 4. С помощью этих механизмов центр масс *S* тела может быть совмещен с осью *C*. Вся процедура определения инерционных характеристик состоит из двух, последовательно выполняемых этапов: определение массы и координат центра масс в пространстве; определение тензора инерции.

Полагаем, что масса и две координаты центра масс в плоскости планшайбы уже определены, согласно методике [11].

Для определения третьей координаты, совмещаем центр масс S с осью B с помощью перемещения тела на планшайбе. Затем повернув механизм манипулятора вокруг оси C на 90°, центр S располагаем в горизонтальной плоскости, проходящей через ось C

Рис. 2. Поворот изделия для определения третьей координаты центра масс.

(рис. 2). Пользуясь известным методом [11], находим расстояние R от оси вращения до центра масс. Зная R, определяем третью координату центра масс S относительно плоскости планшайбы, как разность: $L_1 - R$. С помощью механизма 4 (рис. 1) совмещаем центр масс S с осью C. Центр масс S находится в точке пересечения осей B и C (рис. 3).

С изделием в центре масс *S* связываем систему координат $OX_1Y_1Z_1$. В начальном положении ось OX_1 совмещена с осью *C*, а ось OZ_1 – с осью *B*.

Повороты на 45° и 90°, задаваемые манипулятором телу и системе координат $OX_1Y_1Z_1$, позволяют определить известным методом [12] шесть компонент тензора инерции.

В основе метода лежит известная теорема М.М. Гернет о соотношениях между шестью осевыми и тремя центробежными моментами инерции при специальном выборе координатных осей, относительно которых определяют шесть осевых моментов инерции. Это три координатные оси системы $OX_1Y_1Z_1$, а также три биссектрисы прямых углов, образованных этими осями: ось U – биссектриса угла X_1OZ_1 , ось V – биссектриса угла X_1OY_1 ; ось W – биссектриса угла Y_1OZ_1 .

Для определения шести осевых центральных моментов инерции относительно указанных осей необходимо каждую из них совместить с осью вращения. Для этого основание 1 стенда закрепляется неподвижно (рис. 3), а каретка 2 находится в центральном положении и ось *B* совпадает с осью вращения платформы 3. Сообщая планшайбе 4 последовательно повороты вокруг осей *B* и *C*, можно каждую из шести координатных осей совместить с осью вращения платформы. Например, для совмещения оси OX_1 необходимо планшайбу 4 повернуть вокруг оси *B* на 90°, а затем на 90° вокруг оси *C*. Задавая изделию ускоренное вращение и измеряя крутящий момент *M*, угловую скорость ω и угол поворота φ , по теореме об изменении кинетической энер-

Рис. 3. Положение центра масс для определения тензора инерции: *1* – основание; *2* – каретка; *3* – платформа; *4* – планшайба; *5* – торсионный вал; *6*, *7* – фотоэлектрические датчики.

гии $T = J\omega^2/2$, можно рассчитать осевой момент инерции *J* вращающихся масс относительно каждой из шести осей из уравнения

$$\frac{\partial}{\partial \varphi} \left(\frac{J \omega^2}{2} \right) = M - M_r, \tag{1}$$

где M_r – момент сопротивления вращению в опорах качения стенда.

Уравнение (1) может быть сведено к интегралу, если все входящие функции будут зависеть от одного аргумента ф. Для этого измерительная система стенда разработана так, что функции ω , M и M_r , определяются экспериментально, как функции одного аргумента ф, (рис. 3). Крутящий момент M от двигателя передается платформе 3 через торсионный вал 5 с известной угловой жесткостью j. На концах торсиона 5 расположены два фотоэлектрических датчика 6 и 7для измерения угла поворота платформы 3, угла закручивания ψ торсиона 5 и расчета крутящего момента $M = j\psi$ – как функции угла ϕ [13]. Датчик 6 измеряет угол поворота ϕ платформы 3 и ее угловую скорость ω , как функцию ϕ : $\omega(\phi_k) = \frac{\Delta \phi}{\Delta t_k}$ (k = 1, 2, ..., N), где $\Delta \phi$ – шаг следования отверстий, модулирующих световой поток на подвижных дисках 8. Интервал времени Δt_k измеряется таймером по командам датчика 6. Погрешность измерения интервала Δt_k фотоэлектрическим методом не более 10^{-7} с [13].

Для любого положения планшайбы 4 в пространстве, осевой момент инерции J_i вращающихся деталей стенда всегда может быть рассчитан и поэтому известен (i = 1,

2, 3). Интегрируя уравнение (1) для шести угловых положений тела, получим шесть уравнений баланса энергий

$$(J_{1} + J_{Z})(\omega_{1}^{2}(\varphi_{n}) - \omega_{1}^{2}(\varphi_{m})) = 2 \int_{\varphi_{m}}^{\varphi_{n}} M_{Z}(\varphi) d\varphi - 2 \int_{\varphi_{m}}^{\varphi_{n}} M_{rZ}(\varphi) d\varphi =$$

$$= 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{Z}(\varphi) \Delta \varphi - 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{rZ}(\varphi, \omega(\varphi)) \Delta \varphi;$$

$$(J_{2} + J_{Y})(\omega_{2}^{2}(\varphi_{n}) - \omega_{2}^{2}(\varphi_{m}^{2})) = 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{Y}(\varphi) \Delta \varphi - 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{rY}(\varphi, \omega(\varphi)) \Delta \varphi;$$

$$(J_{2} + J_{X})(\omega_{3}^{2}(\varphi_{n}) - \omega_{3}^{2}(\varphi_{m}^{2})) = 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{X}(\varphi) \Delta \varphi - 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{rX}(\varphi, \omega(\varphi)) \Delta \varphi;$$

$$(J_{2} + J_{V})(\omega_{4}^{2}(\varphi_{n}) - \omega_{4}^{2}(\varphi_{m}^{2})) = 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{V}(\varphi) \Delta \varphi - 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{rV}(\varphi, \omega(\varphi)) \Delta \varphi;$$

$$(J_{3} + J_{U})(\omega_{5}^{2}(\varphi_{n}) - \omega_{5}^{2}(\varphi_{m}^{2})) = 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{U}(\varphi) \Delta \varphi - 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{rU}(\varphi, \omega(\varphi)) \Delta \varphi;$$

$$(J_{3} + J_{W})(\omega_{6}^{2}(\varphi_{n}) - \omega_{6}^{2}(\varphi_{m}^{2})) = 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{W}(\varphi) \Delta \varphi - 2 \sum_{\varphi_{m}}^{\varphi_{n}} M_{rW}(\varphi, \omega(\varphi)) \Delta \varphi;$$

где J_i – известные осевые моменты инерции деталей стенда для трех угловых положений планшайбы 2 при поворотах вокруг оси $C; J_X, J_Y...J_W$ – определяемые осевые моменты инерции тела.

В каждом из шести уравнений содержатся по два неизвестных: момент инерции тела и величина работы момента сил трения $\sum_{\phi_m}^{\phi_n} M_r(\phi, \omega(\phi))\Delta\phi$ на отрезке $[\phi_m, \phi_n]$, т.е. система из шести уравнений содержит двенадцать неизвестных. Для их определения необходима дополнительная информация. Ее можно получить, применив метод пробных грузов, модифицируя и расширяя его возможности введением дополнительной технологической операции. Она состоит в том, что на планшайбу 4 вместо исследуемого тела устанавливается пробный груз с такой же массой, и выполняются те же шесть экспериментов, что и с исследуемым телом. Воспроизводятся те же законы изменения скорости $\omega_1(\phi), \omega_2(\phi), ..., \omega_6(\phi)$, для тех же пространственных угловых положений планшайбы 4. Это всегда можно сделать, регулируя систему управления двигателем привода вращения планшайбы, поскольку известны масса груза и его осевые моменты инерции J_{Ti} . Пробный груз – это цилиндр, собираемый из отдельных дисков с известными инерционными характеристиками.

Затем сообщается ускоренное вращение планшайбе с установленным пробным грузом согласно функции изменения скорости, например, $\omega_1(\varphi)$ на отрезке [φ_m , φ_n]. Определив по экспериментальным данным работу крутящего момента $M_{1Z}(\varphi)$ на отрезке [φ_m , φ_n], получим дополнительное уравнение баланса энергий к первому уравнению системы (2)

$$(J_1+J_{T1})(\omega_1^2(\varphi_n)-\omega_1^2(\varphi_m))=2\sum_{\varphi_m}^{\varphi_n}M_{1Z}(\varphi)\Delta\varphi-2\sum_{\varphi_m}^{\varphi_n}M_{1rZ}(\varphi,\omega_1(\varphi))\Delta\varphi,$$

АЛЕШИН

где $(J_1 + J_{T1})$ – известный суммарный момент инерции стенда и пробного груза; $\sum_{\phi_m}^{\phi_n} M_{1rZ}(\phi, \omega(\phi)) \Delta \phi$ – работа момента сил трения в данном эксперименте на отрезке $[\phi_m, \phi_n]$.

Полагаем, что моменты сил трения $M_{rZ}(\varphi, \omega(\varphi))$ и $M_{1rZ}(\varphi, \omega(\varphi))$ в опорах качения зависят от веса вращающихся элементов стенда и скорости $\omega(\varphi)$. Поскольку вес пробного груза равен весу исследуемого тела, а скорости на участке движения $[\varphi_m, \varphi_n]$ в обоих экспериментах совпадают, полагаем равными и работы моментов сил трения в обоих случаях, т.е.

$$\sum_{\varphi_m}^{\varphi_n} M_{rZ}(\varphi, \omega(\varphi)) \Delta \varphi = \sum_{\varphi_m}^{\varphi_n} M_{1rZ}(\varphi, \omega(\varphi)) \Delta \varphi.$$
(3)

С учетом равенства (3) получим систему двух уравнений с двумя неизвестными: J_Z и $\sum_{\alpha}^{\phi_n} M_{rZ}(\phi, \omega(\phi)) \Delta \phi$

$$(J_{1} + J_{Z})(\omega_{1}^{2}(\varphi_{n}) - \omega_{1}^{2}(\varphi_{m})) = 2\sum_{\varphi_{m}}^{\varphi_{n}} M_{Z}(\varphi)\Delta\varphi - 2\sum_{\varphi_{m}}^{\varphi_{n}} M_{rZ}(\varphi, \omega_{1}(\varphi))\Delta\varphi,$$

$$(J_{1} + J_{T1})(\omega_{1}^{2}(\varphi_{n}) - \omega_{1}^{2}(\varphi_{m})) = 2\sum_{\varphi_{n}}^{\varphi_{m}} M_{1Z}(\varphi)\Delta\varphi - 2\sum_{\varphi_{n}}^{\varphi_{m}} M_{rZ}(\varphi, \omega(\varphi))\Delta\varphi.$$
(4)

Решение системы относительно J_Z имеет вид

$$J_{Z} = J_{T1} + \frac{2\left(\sum_{\varphi_m}^{\varphi_n} M_Z(\varphi)\Delta\varphi - \sum_{\varphi_m}^{\varphi_n} M_{1Z}(\varphi)\Delta\varphi\right)}{\omega_1^2(\varphi_n) - \omega_1^2(\varphi_m)}.$$
(5)

Проведя аналогичные эксперименты для пяти других угловых положений пробного груза, получим значения пяти остальных центральных осевых моментов инерции тела: J_X , J_Y , J_V , J_U , J_W . Например, момент инерции J_U равен

$$J_U = J_{T3} + \frac{2\left(\sum_{\varphi_m}^{\varphi_n} M_U(\varphi)\Delta\varphi - \sum_{\varphi_m}^{\varphi_n} M_{1U}(\varphi)\Delta\varphi\right)}{\omega_5^2(\varphi_n) - \omega_5^2(\varphi_m)}.$$
(6)

Здесь *J*₇₃ – это момент инерции пробного груза в данном эксперименте.

Из формул (5) и (6) следует, что определяемые моменты инерции тела зависят от моментов инерции пробного груза J_{Ti} . Однако можно доказать, что количественные значения моментов инерции, найденные по формулам (5) и (6) не зависят от J_{Ti} .

Действительно, из уравнений системы (4) следует линейное соотношение между работой двигателя, за вычетом потерь энергии на трение, и моментом инерции вращающихся масс $(J_1 + J_Z)$ или $(J_1 + J_{T1})$ с коэффициентом пропорциональности $\lambda =$

$$=\frac{\omega_{\rm l}^2(\varphi_n)-\omega_{\rm l}^2(\varphi_m)}{2}$$

Покажем, что изменение момента инерции пробного груза J_{T1} на произвольную величину ΔJ , не изменит решения системы уравнений (4) и расчетная величина момента инерции J_Z не изменится.

Уравнение баланса энергий с добавленным моментом инерции ΔJ имеет вид

$$((J_1 + J_{T1}) + \Delta J)(\omega_1^2(\varphi_n) - \omega_1^2(\varphi_m)) = 2\sum_{\varphi_m}^{\varphi_n} M_{2Z}(\varphi) \Delta \varphi - 2\sum_{\varphi_m}^{\varphi_n} M_{rZ}(\varphi, \omega(\varphi)).$$
(7)

Преобразуем обе части уравнения (7) следующим образом. Работу момента двигателя $2\sum_{\phi_m}^{\phi_n} M_{2Z}(\phi) \Delta \phi$ в правой части (7) можно представить как сумму двух слагаемых. Это работа $2\sum_{\phi_m}^{\phi_n} M_{1Z}(\phi) \Delta \phi$, затраченная на сообщение кинетической энергии массам $(J_1 + J_{T1})$ и на работу против сил трения, плюс дополнительная работа ΔA – на сообщение кинетической энергии добавленной массе с моментом инерции ΔJ

$$(J_1 + J_{T1})(\omega_1^2(\varphi) - \omega_1^2(\varphi)) + \Delta J(\omega_1^2(\varphi_n) - \omega_1^2(\varphi_m)) =$$

= $2\sum_{\varphi_m}^{\varphi_n} M_{1Z}(\varphi) \Delta \varphi + \Delta A - 2\sum_{\varphi_m}^{\varphi_n} M_{rZ}(\varphi, \omega(\varphi)).$

Полученное уравнение отличается от второго уравнения системы (4) тем, что к обе-

им его частям прибавлено одно и то же число $\Delta A = \Delta J(\omega_l^2(\varphi_n) - \omega_l^2(\varphi_m))$. Но это эквивалентное преобразование линейного уравнения, не меняющее его корней. Следовательно, полученное новое уравнение совместно с первым уравнением системы (4) имеет те же корни, что и исходная система. Таким образом, изменение момента инер-

ции пробной массы не влияет на величины J_Z и $\sum_{\omega_m}^{\varphi_n} M_{rZ}(\varphi, \omega(\varphi)) \Delta \varphi$.

Из формул (5) и (6) следует также, что собственные инерционные характеристики стенда не влияют на решения (5) и (6) системы (4), поскольку они вообще не входят в расчетные формулы.

Необходимо отметить, что установка дополнительной пробной массы, предусмотренная в методе пробных грузов, меняет динамические характеристики стенда и может быть причиной увеличения погрешности измерений. Но в предлагаемом методе суммарная масса подвижных частей всегда постоянна в процессе выполнения всех экспериментов. Меняются только осевые моменты инерции.

Найденные шесть осевых центральных моментов инерции тела J_X , J_Y , J_Z , J_V , J_U , J_W позволяют по известным формулам рассчитать три центробежных момента инерции [12]

$$J_{YX} = J_{XY} = \frac{J_X + J_Y}{2} - J_V, \quad J_{YZ} = J_{ZY} = \frac{J_Y + J_Z}{2} - J_W,$$
$$J_{ZX} = J_{XZ} = \frac{J_X + J_Z}{2} - J_U.$$

Получены все шесть компонент тензора инерции.

3. Заключение. Разработаны метод и устройство, на котором без переустановки изделия определяются его масса, координаты центра масс и тензор инерции. Переустановка изделия и смена измерительных баз, как известно, источник дополнительных погрешностей.

Единственной измеряемой физической величиной и источником информации для определения инерционных характеристик является время, которое измеряется технологически наиболее просто и точно.

Предложенный метод позволяет расширить номенклатуру исследуемых изделий. Кроме того, упрощается метрологическое обеспечение экспериментов, поскольку фотоэлектрические датчики работают как оптические конечные выключатели.

Установка пробной массы не меняет динамические свойства измерительного стенда и не увеличивает тем самым погрешность получаемых оценок инерционных характеристик. Это отличает предлагаемый метод от уже известных, где приближенно полагается независимость динамических свойств стенда от установки на него дополнительной пробной массы.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Российского фонда фундаментальных исследований (16-29-04273 офи_м).

СПИСОК ЛИТЕРАТУРЫ

- 1. Алалыкин С.С., Богатырев А.В., Иванова Т.Б., Пивоварова Е.Н. Определение моментов инерции и положения центра масс робототехнических устройств // Вестник Удмуртского университета. Физика и Химия. Приборы и методы экспериментальной физики. 2014. № 4. С. 79.
- 2. Алышев А.С., Мельников В.Г., Мельников Г.И. Идентификация момента инерции маятниковой системы в условиях вязкого трения // Ж. Научно-технический вестник информационных технологий, механики и оптики. 2016. Т. 16. № 5. С. 928.
- 3. Беляков А.О., Сейранян А.П. Определение моментов инерции крупногабаритных тел по колебаниям в упругом подвесе // Ж. Известия РАН. Механика твердого тела. 2008. № 2. С. 49.
- 4. Богданов В.В., Панченко И.Н., Някк В.И. и др. РФ Патент 2506551, 2014.
- Laryushkin P., Glazunov V., Erastova K. On the Maximization of Joint Velocities and Generalized Reaction in the Workspace and Singulariti Anaysis of Parallel Mechanisms // Robotica. Cambridge University Press. 2019. V. 37. P. 675.
- Виденкин Н.А. Метрологическое обеспечение автоматизированных измерительно-вычислительных комплексов по определению параметров геометрии масс космических аппаратов: Дис... канд. техн. наук: М., 2017. 153 с.
- Glazunov V.A., Kheylo S.V., Tsarkov A.V. The Control Complex Robotic System on Parallel Mechanism. Smart Electromechanical Systems. Springer 2018. Editors A.E. Gorodetskiy and I.L. Tarasova. P. 137.
- 8. Ромащенко С.В., Морозков И.С., Шатров А.К., Шевцов Е.А. Определение моментов инерции крупногабаритных трансформируемых конструкций космических аппаратов // Ж. Актуальные проблемы авиации и космонавтики. 2010. № 6. С. 103.
- 9. *Kloepper R., Akita H., Okuma M., Terada S.* An experimental identification method for rigid body properties enabled by gravity-depended suspension modeling // The 1st Joint International Conference on Multibody System Dynamics, (Lappeenranta, Finland, May 25–27, 2010). P. 9.
- Previati G., Gobbi M., Mastinu G. Measurement of Inertia Tensor A Review // Proceed. 73rd Annual Conference of the Society of Allied Weight Engineers (Long Beach, California, May 5, 2014). P. 23.
- Алешин А.К. Метод определения массы и координат центра масс тела в заданной плоскости // Ж. Проблемы машиностроения и надежности машин. 2011. № 2. С. 9.
- 12. Гернет М.М., Ратобыльский В.Ф. Определение моментов инерции. М.: Машиностроение, 1977. С. 246.
- Киселев М.И., Козлов А.П., Морозов А.Н., Назолин А.Л., Пронякин В.И., Соловьев А.В. Измерение периода вращения валопровода турбоагрегата фотоэлектрическим методом // Ж. Измерит. Техника. 1996. № 12. С. 28.