ЭКСПЕРИМЕНТАЛЬНАЯ МЕХАНИКА, ДИАГНОСТИКА, ИСПЫТАНИЯ

УДК 536.461:537.84:621.4

МЕТОДЫ ДИАГНОСТИКИ ПОТОКОВ СТОЛКНОВИТЕЛЬНОЙ ПЛАЗМЫ, ИСТЕКАЮЩИХ ИЗ ТЕХНОЛОГИЧЕСКИХ ПЛАЗМОТРОНОВ, ПЛОСКИМИ ЗОНДАМИ

© 2020 г. В. А. Котельников^{1,2}, М. В. Котельников^{1,2,*}, Г. С. Филиппов^{1,2,**}

¹Институт машиноведения им. А.А. Благонравова РАН, г. Москва, Россия ²Московский авиационный институт (национальный исследовательский университет) (МАИ), г. Москва, Россия *e-mail: mvk_home@mail.ru **e-mail: filippov.gleb@gmail.com

Поступила в редакцию 04.06.2018 г. Принята к публикации 25.10.2019 г.

На основании вычислительных и натурных экспериментов разработано несколько алгоритмов обработки вольтамперных характеристик плоских пристеночных и выносных зондов в случае слабо ионизованной низкотемпературной столкновительной плазмы. Предложенные методы диагностики будут полезны для специалистов, использующих технологические плазмотроны в различных отраслях народного хозяйства: в плазмохимии, при плазменном напылении покрытий, плазменной обработке материалов, в нефтегазовом комплексе, в авиационной и ракетной технике и других областях.

Ключевые слова: низкотемпературная плазма, зондовая диагностика, пристеночный зонд, выносной зонд, вольтамперные характеристики

DOI: 10.31857/S0235711920010083

Потоки плотной слабо ионизованной плазмы находят применение в технологических системах различного назначения: в плазмохимии; при плазменном напылении покрытий; для сварки, резки, сверления материалов; для воздействия на нефтяные и газонесущие пласты в нефтегазовом комплексе [1–6]. При воздействии на нефтяные пласты осуществляется импульсный разряд, либо микровзрыв, вследствие чего возникает импульсный поток слабо ионизованной плазмы, который оказывает термическое, акустическое, ударно-волновое воздействие на пласт, что повышает его эффективность.

Зондовый метод является одним из основных диагностических методов потоков низкотемпературной слабо ионизованной плазмы, позволяющий получить распределения концентраций и направленных скоростей ионов плазмы, а также поля напряженности и потенциала электрического поля в потоке.

Методы проведения зондового эксперимента и обработки зондовых характеристик зависят от геометрической формы зондов. В [7] подробно рассмотрены теория и методика диагностики потоков плотной плазмы зондами цилиндрической формы. В настоящей статье уделено основное внимание зондам плоской геометрии. Плоские пристеночные зонды в отличие от цилиндрических не нарушают аэродинамику струи и менее подвержены воздействию тепловых потоков из плазмы на их поверхность. Предположим, что время существования плазменного импульса велико по сравнению с характерным временем релаксации в плазме. Как показано в [7], это условие выполняется, если концентрация ионов $n_i \ge 10^{17}$ м⁻³.

Теории плоского зонда в потоке плотной слабо ионизованной плазмы посвящено ряд работ американских авторов. Обзор этих работ можно найти в монографии Чана П., Тэлбота Л., Туряна К. [8]. Исследования плоских зондов в отечественной литературе представлены в работах [9–12, 19, 21]. Методами математического моделирования получен набор вольтамперных характеристик (ВАХ) для пристеночного и выносного плоского зонда, ориентированного как вдоль потока параллельно вектору скорости, так и перпендикулярно ему.

По результатам проведенных вычислительных экспериментов предложены методики обработки ВАХ плоских зондов.

Алгоритм 1: формула Чана [8].

По формуле Чана, применительно к плоскому пристеночному зонду, имеем

$$i_i = \frac{0.47}{\sqrt{2}} \left(\frac{2}{\mathrm{Sc}_i}\right)^{2/3} = \frac{j_{i\mathrm{Hac}}}{e(n_i u_i)_{\delta}} \sqrt{\frac{\mathrm{Re}_x}{L}},\tag{1}$$

где j_i – безразмерная плотность ионного тока, j_{ihac} – экспериментальная плотность тока, n_i , u_i – концентрация и скорость направленного движения ионов, Sc_i – ионное число Шмидта, Re_x – число Рейнольдса вблизи точки расположения зонда x; $L = (1 - 2)^{0.2}$

 $=\left(\frac{\rho v_x}{\rho v^*}\right)^{0.2}$, ρ – плотность, v – кинематическая вязкость; символом * обозначается

точка, имеющая максимальную температуру в пограничном слое, δ – внешняя граница пограничного слоя. В большинстве практически важных случаев параметр L можно принять за единицу. Достоверность формулы Чана при условии, что толщина пограничного слоя велика по сравнению с толщиной слоя объемного заряда зонда, неоднократно проверялась экспериментально. Ошибка при вычислении концентрации заряженных частиц по формуле (1) не превышала 30%.

Алгоритм 2: Формулы В.А. Котельникова [10] применимы для плоских пристеночных зондов при произвольном соотношении между толщиной пограничного слоя и слоя объемного заряда. Конструктивно зонд выбираем в форме удлиненного прямоугольника с размером по ширине $2r_p$. Вектор скорости u_i направлен перпендикулярно удлиненной стороне прямоугольника.

Алгоритм 2.1. Если вклад в зондовый ток градиента концентрации вблизи зонда мал по сравнению с вкладом от градиента потенциала, то имеет место зависимость концентрации на внешней границе слоя объемного заряда от плотности зондового тока [11]

$$n_i = \left(\frac{j_{ip} \cdot \sqrt{\varepsilon_0 k T_{i\infty}}}{e^2 D_i K_U K_r E_0}\right)^{2/3},\tag{2}$$

где $T_{i\infty}$, D_i – температура и коэффициент диффузии ионов, $E_0 = E/M_E$, E – напряженность электрического поля, K_U , K_r , E_0 – коэффициенты, полученные в численных экспериментах (рис. 1).

$$M_{\varphi} = \left(\frac{k T_{i\infty}}{e}\right)^{1/2}; \quad M_r = r_D = \left(\frac{\varepsilon_0 k T_{i\infty}}{n_i e^2}\right)^{1/2}; \quad M_E = \frac{M_{\varphi}}{M_r}; \quad M_u = \frac{D_i}{r_D}$$

 K_U равен отношению плотности ионного тока на зонд при наличии скорости u_0 к плотности тока на тот же зонд в покоящейся плазме; K_r равен отношению плотности

Рис. 1. Зависимость E_0, K_u, K_r от параметров $u_0 = \frac{u_i}{M_u}, r_0 = \frac{r_p}{M_r}, \phi_0 = \frac{\phi_p}{M_{\phi}}.$

тока на зонд размером r_0 к плотности тока на зонд большого размер ($r_0 \ge 10^3$) в покоящейся плазме. Если разделить экспериментально измеренную плотность тока на ($K_r \cdot K_U$), то получим плотность тока на зонд большого размера в покоящейся плазме.

Для нахождения n_i по формуле (2) строится итерационный процесс: 1) считаются заданными размер зонда $2r_p$, температура ионов $T_{i\infty}$, коэффициент диффузии иона D_i , скорость направленного движения ионов; 2) выбирается точка на экспериментальной ВАХ при достаточно большом отрицательном потенциале зонда φ_p (известны φ_p и j_{ip}); 3) задается начальное значение концентрации n_{i1} . Это можно сделать, например, по формуле В.А. Котельникова для случая покоящейся плотной плазмы при бесконечно тонком слое объемного заряда [13]

$$n_i = \left(\frac{11\varepsilon_0 k T_{i\infty} j_{ip}}{D_i^2 e^4}\right)^{1/2};$$
(3)

4) подсчитываются $r_{D1} = \left(\frac{\varepsilon_0 k T_{i\infty}}{n_{i1} e^2}\right)^{1/2}; r_{01} = \frac{r_p}{r_{D1}}; \varphi_{01} = \frac{e\varphi_0}{k T_i}; u_{01} = \frac{u_i}{D_i/r_{D1}}; 5)$ по получен-

ным значениям r_{01} ; ϕ_{01} ; u_{01} из кривых (рис. 1) находятся E_{01} , K_{r1} , K_{u1} ; 6) по формуле (3) находится n_{i2} .

Если $|n_{i1} - n_{i2}| < \delta$, где δ малое наперед заданное число, то расчет прекращается и полагается $n_i = n_{i2}$. В противном случае возвращаемся к п. 3, задаем концентрацию ионов n_{i2} и продолжаем циклический процесс до сходимости.

Алгоритм 2.2. Если условие
$$\left|\frac{\partial n_i}{\partial y}\right| \ll \left|\frac{en_i}{kT_i}E\right|$$
 не выполняется, то справедлива формула [12]

$$n_{i} = \left[\frac{\left(\frac{j_{ip}}{eD_{i}K_{u}K_{r}} + \frac{\partial n_{i}}{\partial y}\right) (\varepsilon_{0}kT_{i\infty})^{1/2}}{eE_{0}} \right]^{2/3}.$$
(4)

Для нахождения n_i в этом случае строится итерационный процесс с одним вложенным циклом: 1) считается заданным r_p , $T_{i\infty}$, D_i , u. Выбирается точка на экспериментальной ВАХ при достаточно большом отрицательном потенциале (заданы φ_p и j_{ip}); 2) выбираем концентрацию ионов n_{i1} , например, по формуле (3); 3) подсчитываем r_{D1} ,

$$r_{01} = \frac{r_p}{r_{D1}}, \phi_{01} = \frac{e\phi_p}{kT_{i\infty}}, u_{01} = \frac{u_i r_{D1}}{D_i}; 4$$
) по полученным $r_{01}, \phi_{01}, u_{01}$ из кривых рис. 1 находим

коэффициенты K_{r1} , K_{u1} , E_{01} ; 5) вычисляем $(j_{ip})_1 = \frac{j_{ip}}{K_{r1}K_{u1}}$, где $(j_{ip})_1$ – размерная плот-

ность тока на зонд большого размера $(2r_p \ge 10^3)$ при нулевой направленной скорости. Далее следует встроенный цикл, в результате которого определяется n_{i2} . Если $|n_{i1} - n_{i2}| < \delta$, где δ малое наперед заданное число, то расчет прекращается. В противном случае осуществляется цикл, начиная с п. 3.

Приведем структуру встроенного цикла для нахождения n_{i2} по заданным $\phi_0 = \frac{\phi_p}{M_{\phi}}$ и

 $j_{i0} = \frac{J_{ip1}}{M_j}$ для случая покоящейся плазмы и большого значения $r_0 (r_0 \ge 10^3)$. ВАХ такого зонда, полученные в вычислительном эксперименте, приведены на рис. 2.

1. Заданы ВАХ (рис. 2), температура ионов $T_{i\infty}$, коэффициент диффузии ионов D_i , размерная плотность тока на зонд большого размера при отсутствии направленной скорости $(j_{ip})_1$.

2. При выбранном ϕ_0 из рис. 2 определяется безразмерная плотность тока $(j_{i0})_1^*$.

3. Из соотношения
$$\frac{(j_{ip})_1}{(j_{i0})_1^*} = M_j = \frac{en_{i2}D_i}{r_{D1}}$$
, находим $n_{i2} = \frac{\frac{(j_{ip})_1}{(j_{i0})_1^*} \cdot r_{D1}}{eD_1}$.

Алгоритм 2.3. Алгоритм предложен В.А. Котельниковым и М.В. Котельниковым для зондов большого размера ($2r_0 > 10^3$) с параллельной ориентацией зонда относительно вектора скорости, если на зонд подан достаточно большой отрицательный потенциал ($|\phi_0| \ge 40$). Как показано в [12], для зонда такого размера влияние на зондовый ток краевых и концевых эффектов мало́. Поэтому можно ожидать, что геометрическая форма зонда (диск, квадрат, прямоугольник) не имеет значения.

Рис. 2. ВАХ плоского зонда бесконечного размера в случае покоящейся плазмы.

Рис. 3. Зависимость плотности ионного тока насыщения на зонд от размера зонда ($\phi_0 = -40, \varepsilon = 1, D_0 = 30$).

Алгоритм расчета. На рис. 3 представлена зависимость среднего значения плотности тока на зонд от параметров r_0 и u_0 , полученная в результате численного эксперимента. Из рис. 3 следует, что при $2r_0 > 10^3$ исчезает зависимость j_{i0} от r_0 и u_0 . Плотность тока выходит на стационарное значение $j_{i0} \approx 0.15$. Переход к размерным величинам с использованием масштабов (подстрочные надписи на рис. 1) позволяет получить выражение для концентрации заряженных частиц

$$n_i = \left[\frac{j_{ip}\left(\frac{\varepsilon_0 k T_{i\infty}}{e^2}\right)^{1/2}}{e D_i \times 0.15}\right]^{2/3},$$

Рис. 4. Расположение плоского зонда в критической точке: (а) – тело цилиндрической геометрии; (б) – тело сферической геометрии; *1* – зонд, *2* – обтекаемое плазмой тело.

где $j_{ip}\left[\frac{A}{M^2}\right]$ – плотность ионного тока на зонд, $e = 1.6 \times 10^{-19}$ Кл, $\varepsilon_0 = 8.85 \times 10^{-12} \frac{\Phi}{M}$, D_i – коэффициент диффузии ионов, равный в случае слабой степени ионизации коэффициенту диффузии для нейтрального газа [17].

Алгоритм 3 А.В. Кошеварова [18–20]. Если алгоритмы № 1, 2 разработаны применительно к плоскому пристеночному зонду, ориентированному вдоль потока, то алгоритм № 3 относится к случаю плоского зонда, расположенного в передней критической точке тел кругового сечения, обтекаемых потоком слабоионизованной столкновительной плазмы (рис. 4). Должно быть выполнено условие $2r_p \ge 10^3$.

Алгоритм следующий: 1) предполагаем, что радиус сферы или цилиндра R; коэффициент диффузии ионов D_i ; электрическое число Рейнольдса Re_3 ; ионное число

Шмидта Sc_i, известны; 2) из формулы $j_{ip} = j_{i0} \cdot M_j$, где $M_j = \frac{en_i D_i}{R}$, находим $n_i =$

 $=\frac{\left(\frac{j_{ip}}{j_{i0}}\right)R}{eD_i}$; 3) в работе [20] получены формулы для j_{i0} : a) для цилиндра: если $j_{i0} = 1.22 \,\mathrm{Sc}_i^{-0.1} \,\mathrm{Re}_2^{0.5}$, то

$$n_i = \frac{j_{ip} \cdot R}{1.22(Sc_i)^{-0.1} \cdot Re_2^{0.5} eD_i};$$

б) для сферы: если $j_{i0} = 1.42 \text{Sc}_i^{-0.1} \text{Re}_{9}^{0.5}$, то

$$n_i = \frac{j_{ip} \cdot R}{1.42(\mathbf{Sc}_i)^{-0.1} \cdot \mathbf{Re}_{\mathfrak{I}}^{0.5} eD_i}$$

Все приведенные алгоритмы обработки ВАХ плоских зондов подтверждены методическими исследованиями и неоднократно применялись в практике зондовых измерений.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

1. Иванов Ю.А., Лебедев Ю.А., Полак Л.С. Методы контактной диагностики в неравновесной плазмохимии. М.: Наука, 1981. 190 с.

- 2. Достанко А.П., Грушецкий С.В., Киселевский Л.И. и др. Плазменная металлизация в вакууме. М.: Наука и техника, 1983. 279 с.
- Шалимов М.П., Панов В.И. Сварка вчера, сегодня, завтра / Под научной редакцией Запарий В.В. Екатеринбург: УГТУ-УПИ, 2006. 227 с.
- Дементьев В.А., Сдобырев В.В., Пономарев В.А. и др. Плазменное выращивание монокристаллов TiB₂, ZrB₂, NbB₂ // Высокочистые и монокристаллические материалы. М.: Наука, 1987. С. 71.
- 5. Хусаинов Р.Р. Обоснование комбинированного повышения нефтеотдачи пластов с применением поверхностноактивных веществ и плазменно-импульсной технологии. Дис. ... канд. техн. наук. Санкт-Петербург: НМСУ "Горный", 2014. 146 с.
- 6. Хусаинов Р.Р., Молчанов А.А., Максютин А.В. Результаты применения технологии плазменно-импульсного воздействия на нефтегазовом месторождении Жданице // Ж. Геология, география и глобальная энергия. Астрахань: АГУ, 2013. № 2. С. 27.
- 7. Котельников В.А., Котельников М.В. Диагностика потоков плазмы, истекающих из технологических плазмотронов, цилиндрическими зондами // Ж. Проблемы машиностроения и надежности машин. 2017. № 2. С. 91.
- 8. *Чан П., Телбот Л., Турян К.И.* Электрический зонд в неподвижной и движущейся плазме. Теория и применение. М.: МИР, 1972. 202 с.
- 9. Muñoz-Cordovez G., Veloso F., Valenzuela-Villaseca V., Vescovi M., Useche W., Wyndham E., Favre M. Emission of fast ions from conical wire array Z-pinches studied at different background pressures // Physics of Plasmas. 2018. V. 25. Iss. 10. № 102101.
- 10. *Котельников В.А., Котельников М.В.* Плоский пристеночный зонд в потоке плотной плазмы // ТВТ. 2017. Т. 55. № 3. С. 345.
- 11. Котельников М.В. Плоский электрический зонд: теория и приложения. М.: Изд. МАИ, 2015. 212 с.
- 12. Streltsov A.V., Mishin E.V. Ultralow Frequency Electrodynamics of Magnetosphere-Ionosphere Interactions Near the Plasmapause During Substorms // Journal of Geophysical Research: Space Physics. 2018. V. 123. Iss. 9. P. 7441.
- Котельников В.А. К расчету плотности ионного тока в плотной слабоинизованной плазме при условии тонкого столкновительного слоя объёмного заряда // Инж.-физ. журн. 1984. Т. 16. № 2. С. 322.
- 14. Савельев И.В. Курс физики. Т. 1. Механика. Молекулярная физика // М.: Наука. Гл. ред. физ.-мат. лит., 1989. 352 с.
- 15. Бенилов М.С., Рогов Б.В., Тирский Г.А. Теоретическое определение ионного тока насыщения на электрические зонды в дозвуковых потоках плазмы // ТВТ. 1981. Т. 19. № 5. С. 1031.
- 16. Бенилов М.С., Тирский Г.А. О токах насыщения в плотной плазме // ПМТФ. 1979. № 6. С. 16.
- Бенилов М.С., Рогов Б.В., Тирский Г.А. Об ионном токе насыщения на электрический зонд в медленно движущейся плазме // ПМТФ. 1982. № 3. С. 5.
- 18. *Егорова З.М., Кашеваров А.В., Цхай Н.С.* Ионный ток насыщения на электрические зонды в потоке плазмы при малых числах Рейнольдса // ПМТФ. 1990. № 1. С. 159.
- 19. *Кашеваров А.В.* О плотности тока насыщения в критической точке электрического зонда // ТВТ. 1995. Т. 33. № 1. С. 140.
- Кашеваров А.В. Электрические зонды в медленно движущейся и покоящейся столкновительной плазме. Дис. ... канд. физ.-мат. наук, г. Жуковский. 2005. С. 204.
- Tichý M., Pétin A., Kudrna P., Horký M., Mazouffre S. Electron energy distribution function in a low-power Hall thruster discharge and near-field plume // Physics of Plasmas. 2018. V. 25. Iss. 6. № 061205.