– НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ — МАШИН И КОНСТРУКЦИЙ

УДК 666.3-122

ВЛИЯНИЕ ДИСПЕРСНОГО СОСТАВА SiC НА ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА РЕАКЦИОННО-СПЕЧЕННОГО КАРБИДА КРЕМНИЯ

© 2020 г. С. Н. Перевислов^{1,*}, М. В. Томкович², М. А. Марков³, И. Н. Кравченко⁴, Ю. А. Кузнецов⁵, М. Н. Ерофеев⁴

¹ Институт химии силикатов им. И.В. Гребенщикова РАН, Санкт-Петербург, Россия
 ² Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
 ³ НИЦ "Курчатовский институт" – ЦНИИ КМ "Прометей", Санкт-Петербург, Россия
 ⁴ Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия
 ⁵ Орловский государственный аграрный университет им. Н.В. Парахина, Орел, Россия
 *e-mail: perevislov@mail.ru

Поступила в редакцию 13.06.2020 г. Принята к публикации 29.07.2020 г.

В статье получены плотные керамические материалы на основе карбида кремния, методом реакционного спекания, с высоким уровнем механических свойств, применяемые в качестве узлов трения (подшипников скольжения, деталей пар трения) и высокотемпературных изделий, огнеупорных материалов и др. Показано влияние разного дисперсного состава порошков карбида кремния, на микроструктуру, размер зерен после спекания, а также физико-механические свойства.

Ключевые слова: карбид кремния, реакционное спекание, физико-механические свойства, микроструктура

DOI: 10.31857/S0235711920060073

Карбид кремния является материалом, обладающим чрезвычайно широким комплексом свойств, таким как высокая прочность и теплопроводность, низкий коэффициент линейного термического расширения, сохранение уровня механических свойств в широком температурном интервале, стойкость к окислению до критических температур и высокая твердость, что позволяет использовать SiC в качестве высокотвердых материалов, работающих в экстремальных условиях значительных температур и агрессивных сред [1, 2]. Также, благодаря своей износостойкости, карбид кремния используют для получения абразивных кругов, шлифовальных материалов, подшипников скольжения и качения и абразивного инструмента для обработки жаростойких сплавов в машиностроении [3–5].

Материалы на основе карбида кремния получают разными способами: горячим и горячим изостатическим прессованием, жидкофазным и реакционным спеканием. Максимальные свойства достигаются при использовании первых двух методов, однако из-за высокой энергоемкости и технологической сложности производства они не нашли широкого применения [6].

Наиболее технологичным является метод реакционного спекания, которым получают материалы, имеющие ряд преимуществ: использование более дешевых крупных исходных порошков, низкие температуры спекания, получение практически безусадочных изделий, что позволяет использовать метод для изготовления деталей любой сложности и конфигурации в промышленном масштабе [7].

№ состава	Содержан	VERODAL MAG 0		
	Марки М40	Марки М40 Марки М28		этлерод, мас. 70
1	50	30	20	15
2	60	40	_	15
3	60	—	40	15
4	60	30	10	15
5	70	30	_	15
6	50	20	30	15
7	70	_	30	15
8	80	_	20	15
9	50	50	_	15
10	50	10	40	15

Таблица 1. Составы материалов, исследуемые в работе

Целью статьи является изучение влияния различного дисперсного состава порошков карбида кремния на физико-механические свойства (плотность заготовок при формовании, плотность спеченных материалов, пористость, модуль упругости, прочность при изгибе, коэффициент трещиностойкости, твердость по Виккерсу) материалов, полученных реакционным спеканием (пропиткой жидким кремнием).

Материалы и методы исследования. Реакционно-спеченный ("самосвязанный") карбид кремния получают пропиткой жидким кремнием пористых заготовок, состоящих из частиц первичного карбида кремния (SiC¹) и углерода, за счет растворения углерода и его транспорта через расплав кремния, и кристаллизации, на поверхности первичных частиц, вторичного карбида кремния (SiC¹¹) [8, 9].

Как показано в работе [10] для максимальной упаковки частиц при формовании изделий необходимо использовать порошки карбида кремния разного гранулометрического состава. Составы материалов, исследуемые в работе, представлены в табл. 1. Углерод в количестве 15 мас. % (сверх 100% SiC), вводили в материал на стадии перемешивания исходных компонентов.

Размер частиц порошка карбида кремния определяли на лазерном анализаторе дисперсности MasterSizer 2000: М40 – $d_{0.5} = 27.8$ мкм; М28 – $d_{0.5} = 14.8$ мкм; М5 – $d_{0.5} = 3.7$ мкм. Порошки карбида кремния в необходимом соотношении перемешивали в барабанном смесителе с техническим углеродом, шихту пластифицировали и гранулировали.

Из полученной шихты методом полусухого формования прессовали образцы размером $5 \times 5 \times 45$ мм, которые сушили и пропитывали кремнием при температуре 1600°С в атмосфере вакуума. Спеченные образцы поступали на пескоструйную обработку, для удаления излишков кремния с поверхности материалов.

Плотность образцов определяли методом гидростатического взвешивания. Пористость измеряли с помощью оптического микроскопа Meiji Techno IM 7200 и компьютерного анализатора изображения. Модуль упругости определяли на установке 3BУК-130, методом резонансных колебаний. Прочность при трехточечном изгибе измеряли на установке ShimadzuAG-300kNX. Твердость и коэффициент трещиностойкости определяли путем внедрения в материал пирамиды Виккерса и измерения размера диагоналей отпечатка и исходящих из его углов трещин на микротвердомере ПМТ-3М. Микроструктуру исследовали на оптическом Meiji Techno IM 7200 и электронном микроскопе TESCAN VEGA 3 SBH.

Рис. 1. Микроструктуры реакционно-спеченных SiC-материалов: (а) – состав 1; (б) – состав 2; (в) – состав 10.

Результаты исследований и их обсуждение. Реакционное спекание SiC-материалов включает в себя формование заготовок из смеси частиц SiC и углерода. Пористые заготовки пропитывают жидким Si, в результате проходит синтез вторичного карбида кремния, в соответствии с реакцией

$$\operatorname{Si}_{(\mathsf{X})} + \operatorname{C}_{(\mathsf{TB})} = \operatorname{Si}\operatorname{C}_{(\mathsf{TB})}^{\mathrm{II}}.$$
(1)

В процессе спекания происходит контактное (на границе раздела фаз Si–C) взаимодействие кремния и углерода с образованием вторичного карбида кремния при температуре ~1200°С. При температуре выше 1420°С кремний переходит в жидкое состояние, растворяя углерод и насыщая им кремниевый расплав с образованием фазы SiC^{II}, до предела растворимости кремния в карбиде кремния, после чего из расплава начинают кристаллизовываться зерна вторичного карбида кремния в межзеренном пространстве первичных частиц SiC^I [11–13]. Микроструктура SiC-материала характеризуется наличием зерен SiC^I (темная фаза), фазы SiC^{II} (занимает 15–20 об. %), в межзеренном пространстве первичных частиц и фазы твердого раствора на основе кремния (2–5 об. %) (рис. 1). Таким образом заполняется все поровое пространство до получения плотного монолитного материала [14–18]. Остаточный кремний (Si_{ост}) или фаза твердого раствора на основе кремния снижают высокотемпературные свойства (температура эксплуатации изделий не превышает 1200°С). При температуре 1300°С керамика начинает разупрочняться и практически полностью теряет прочность при 1400°С.

Значительный уровень механических свойств может быть достигнут на материалах, характеризующихся высокой плотностью (близкой к теоретической) и низким содержанием дефектов (трещин, пор). Для реакционно-спеченного карбида кремния, при условии практически беспористого материала, определяющим фактором, влияющим

Давление,		Плотность материалов после спекания ρ (±0.02), г/см ³								
ΜПа	1 сост.	2 сост.	3 сост.	4 сост.	5 сост.	6 сост.	7 сост.	8 сост.	9 сост.	10 сост.
25	3.02	3.02	3.05	3.03	3.03	3.05	3.07	3.03	3.04	3.08
50	3.04	3.05	3.08	3.04	3.03	3.07	3.08	3.03	3.05	3.09
75	3.05	3.05	3.09	3.05	3.05	3.08	3.09	3.06	3.06	3.11
100	3.07	3.06	3.10	3.06	3.05	3.09	3.10	3.07	3.07	3.12

Таблица 2. Плотность реакционно-спеченных SiC-материалов, при разном давлении формования заготовок

Таблица 3. Модуль упругости реакционно-спеченных SiC-материалов, при разном давлении формования заготовок

Давление,	Модуль упругости материалов $E_{\rm ynp}$ (±10), ГПа									
МПа	1 сост.	2 сост.	3 сост.	4 сост.	5 сост.	6 сост.	7 сост.	8 сост.	9 сост.	10 сост.
25	362	368	378	365	352	384	387	365	378	389
50	370	378	388	373	361	385	399	372	379	395
75	381	387	391	379	366	388	403	382	381	403
100	387	389	396	386	373	395	405	391	384	409

Таблица 4. Прочность при изгибе реакционно-спеченных SiC-материалов, при разном давлении формования заготовок

Прочность при изгибе $\sigma_{_{\rm ИЗГ}}$ (±10), МПа									
1 сост.	2 сост.	3 сост.	4 сост.	5 сост.	6 сост.	7 сост.	8 сост.	9 сост.	10 сост.
315	310	281	288	292	295	249	316	309	324
382	335	310	309	300	342	284	338	313	344
347	353	339	328	324	361	320	342	327	374
385	371	395	377	384	381	358	350	346	400
	1 coct. 315 382 347 385	1 сост. 2 сост. 315 310 382 335 347 353 385 371	Пр 1 сост. 2 сост. 3 сост. 315 310 281 382 335 310 347 353 339 385 371 395	Прочность 1 сост. 2 сост. 3 сост. 4 сост. 315 310 281 288 382 335 310 309 347 353 339 328 385 371 395 377	Прочность при изги 1 сост. 2 сост. 3 сост. 4 сост. 5 сост. 315 310 281 288 292 382 335 310 309 300 347 353 339 328 324 385 371 395 377 384	I сост. 2 сост. 3 сост. 4 сост. 5 сост. 6 сост. 315 310 281 288 292 295 382 335 310 309 300 342 347 353 339 328 324 361 385 371 395 377 384 381	Прочность при изгибе о _{изг} (±10), М 1 сост. 2 сост. 3 сост. 4 сост. 5 сост. 6 сост. 7 сост. 315 310 281 288 292 295 249 382 335 310 309 300 342 284 347 353 339 328 324 361 320 385 371 395 377 384 381 358	Прочность при изгибе о _{изг} (±10), МПа 1 сост. 2 сост. 3 сост. 4 сост. 5 сост. 6 сост. 7 сост. 8 сост. 315 310 281 288 292 295 249 316 382 335 310 309 300 342 284 338 347 353 339 328 324 361 320 342 385 371 395 377 384 381 358 350	Прочность при изгибе о _{изг} (±10), МПа1 сост.2 сост.3 сост.4 сост.5 сост.6 сост.7 сост.8 сост.9 сост.315310281288292295249316309382335310309300342284338313347353339328324361320342327385371395377384381358350346

на значение плотности, является исходный размер частиц SiC, правильность выбранного дисперсного состава, оптимальное давление формования заготовок, что приводит к получению материалов с максимальной плотностью (табл. 2), достигающих наивысшего уровня механических характеристик (табл. 3–5).

При минимальном давлении формования (25 МПа) спеченные материалы характеризуются повышенной пористостью и, как следствие, высоким содержанием Si_{ост}. На модуль упругости и прочность при изгибе сильно влияет количество остаточного кремния, охрупчивающего материал и уменьшающего уровень его механических свойств (табл. 3, 4).

Наивысшие свойства спеченных материалов достигнуты при оптимальном давлении формования заготовок, поэтому дальнейший комплекс свойств определяли при давлении формования 100 МПа.

Максимальная плотность после спекания у материалов состава 10, при практически равном содержании карбида кремния марок M40 и M5 и небольшом количестве (10 мас. %) порошка SiC марки M28. Для образцов состава 10 характерны высокие механические свойства: $E_{\rm vnp} = 409 \pm 10$ ГПа; $\sigma_{\rm изг} = 400 \pm 10$ МПа; $\sigma_{\rm сж} = 2030 \pm 15$ МПа.

№ состава	Прочность при сжатии σ_{cw} (±15), МПа	Коэффициент трещино- стойкости K_{1C} (±0.2), МПа	Твердость по Виккерсу $HV(\pm 0.2), \Gamma\Pi a$
1	1650	3.4	20.7
2	1587	3.0	20.8
3	1818	3.5	21.0
4	1602	3.2	21.0
5	1851	3.6	21.0
6	1778	3.4	20.8
7	1703	3.4	20.8
8	1567	3.0	21.0
9	1801	3.4	20.5
10	2030	4.0	20.7

Таблица 5. Механические свойства реакционно-спеченных SiC-материалов

Таблица 6. Физические свойства реакционно-спеченных материалов

№ состава	Размер зерен SiC ^I	Длина п	Пористость	
	d _{0.5} , мкм	l _{min}	l _{max}	П _{общ} ,* об. %
1	21.1	1.1	21.8	19.2
2	25.9	1.5	20.6	20.8
3	20.8	2.1	19.6	18.7
4	24.7	2.0	25.7	20.5
5	27.4	1.6	23.4	21.2
6	20.6	1.5	19.4	18.5
7	23.6	1.2	20.9	20.1
8	26.4	1.4	22.0	21.1
9	24.4	1.4	23.4	20.3
10	19.3	1.1	15.4	17.4

* Пористость керамики после вытравливания кремния и вторичного карбида кремния в 48% фтороводородной кислоте.

Прочность при изгибе и сжатии, коэффициент трещиностойкости и твердость по Виккерсу сильно зависят от Si_{ост}, при минимальном его количестве (максимальной плотности — материал состава 10), достигается наивысший уровень механических характеристик (табл. 5). Разрушение материалов подчиняется интеркристаллитному механизму (трещина проходит вдоль зерен, по более слабой межзеренной фазе), что также наблюдается при разрушении материалов на основе карбида бора, полученных реакционным спеканием [19].

Для анализа размера частиц SiC^I, размера и объемного количества пор, образцы подвергали травлению 48% фтороводородной кислотой в течение 10–15 ч, для удаления фаз SiC^{II} и Si_{ост}. Микрофотографии травленных шлифов представлены на рис. 2. Физические свойства реакционно-спеченных материалов представлены в табл. 6.

Сравнивая жидкофазно-спеченные [20, 21], горячепрессованные карбидокремниевые [22], спеченные нитридокремниевые [23], реакционно-спеченные материалы на основе карбида бора [24, 25] и твердофазно-спеченные материалы в системе Мо-

Рис. 2. Микроструктуры травленных шлифов реакционно-спеченных SiC-материалов: (а) – состав 1; (б) – состав 2; (в) – состав 10.

 $Si_2-SiC-ZrB_2$ [26], в системе $SiC-B_4C-Me^dB_2$ [27, 28] и армированные материалы [29] с реакционно-спеченными SiC-материалами (табл. 7) можно отметить высокий уровень механических свойств последних, в сочетании с более экономичной технологией производства, что определяет широкий спектр их применения: узлы трения (подшилники скольжения, детали пар трения); лопатки ГТД, работающие в экстремальных условиях высоких температур и агрессивных сред; сопла для пескоструйной обработ-

Материал	Метод получения	ρ, г/см ³	<i>Е</i> _{упр} , ГПа	σ _{изг} , МПа	<i>К_{1С}</i> , МПа м ^{1/2}	<i>НV</i> , ГПа
SiC	Реакционное спекание	3.05-3.10	380-410	380-400	3.5-4.0	20-21
SiC [18, 19]	Жидкофазное спекание	3.20-3.25	420-450	500-550	4.5-5.0	21-22
SiC [20]	Горячее прессование	3.25	450-480	600–650	5.0-5.5	24-26
Si ₃ N ₄ [21]	Жидкофазное спекание	3.15-3.18	430-450	600–650	5.0-5.2	16-17
B ₄ C [22, 23]	Реакционное спекание	2.60-2.65	380-420	350-380	3.2-3.5	28-30
MoSi ₂ –SiC–TiB ₂ [24]	Твердофазное спекание	4.60-4.80	550-580	350-380	4.5-5.0	26-27
$SiC-B_4C-ZrB_2[25, 26]$	Твердофазное спекание	5.20-5.40	560-600	350-380	4.5-5.0	25-26
SiC+10 об. % SiC _f [27]	Реакционное спекание	3.00-3.05	320-350	420-450	5.0-5.5	19–20

Таблица 7. Физико-механические свойства реакционно-спеченных материалов на основе SiC и Si_3N_4

ки; абразивоустойчивые, коррозионноустойчивые, высокотемпературные изделия, а также бронематериалы.

Выводы. 1. Путем подбора оптимального дисперсного состава шихты в статье получены высокоплотные керамические материалы ($\rho = 3.12 \text{ г/см}^3$) из карбида кремния методом реакционного спекания. Максимальными механическими свойствами ($E_{ynp} = 409 \pm 10 \text{ ГПа}; \sigma_{u3r} = 400 \pm 10 \text{ МПа}; \sigma_{cx} = 2030 \pm 15 \text{ МПа}$) обладает материал, содержащий следующий исходный фракционный состав порошка SiC: марки M40 – 50 мас. %, M28 – 10 мас. % и M5 – 40 мас. %. 2. Полученные реакционным спеканием материалы на основе карбида кремния, по уровню механических характеристик, приближаются горячепрессованным и жидкофазно-спеченным материалам на основе SiC, при этом имеют ряд преимуществ: использование крупных порошков карбида кремния; более низкая температура спекания; безусадочная технология материалов, что позволяет получать изделия крупных размеров, сложный геометрической формы.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Briggs J.* Engineering ceramics in Europe and the USA J. Briggs // Enceram. Meith Wood. UK, Worcester. 2011. 331 p.
- 2. Коломейченко А.В. Повышение износостойкости металлокерамических покрытий, нанесенных методом карбовибродугового упрочнения / Под ред. А.В. Коломейченко, И.Н. Кравченко, Н.В. Титов, М.Н. Ерофеев, С.В. Карцев // Проблемы машиностроения и автоматизации. 2019. № 4. С. 4.
- 3. Дроздов Ю.Н. Трибология технической керамики // Проблемы машиностроения и надежности машин. 2003. № 6. С. 51.
- 4. *Носенко В.А.* Влияние контактного взаимодействия на износ абразивного инструмента при шлифовании // Проблемы машиностроения и надежности машин. 2005. № 1. С. 73.
- 5. Дроздов Ю.Н. Прикладная трибология (трение, износ, смазка) / Под ред. Ю.Н. Дроздов, Е.Г. Юдин, А.И. Белов; под ред. Ю.Н. Дроздова. М.: "Эко-Пресс", 2010. 604 с.
- 6. *Гаршин А.П., Гропянов В.М., Зайцев Г.П., Семенов С.С.* Керамика для машиностроения. М.: ООО Изд. "Научтехлитиздат". 2003. 384 с.
- 7. Гаршин А.П., Чулкин С.Г. Реакционноспеченные карбидокремниевые материалы конструкционного назначения. Физико-механические и триботехнические свойства. СПб.: Изд. Политехнического ун-та. 2006. 84 с.
- 8. *Параносенков В.П., Чикина А.А., Андреев М.А*. Конструкционные материалы на основе самосвязанного карбида кремния // Огнеупоры и техническая керамика. 2006. № 7. С. 37.
- 9. Параносенков В.П., Чикина А.А., Шкарупа И.Л. Самосвязанный карбид кремния ОТМ-923 // Огнеупоры и техническая керамика. 2004. № 2. С. 23.
- Гаршин А.П. Структура и свойства конструкционных износостойких материалов на основе карбида кремния, полученных методом реакционного спекания. Дис. ... д.т.н. СПб.: Изд. Политехнического ун-та. 2000. 267 с.
- Федорук Р.М., Примаченко В.В., Савина Л.К., Полтарак Е.В. и др. Исследования влияния добавок графита и удельной поверхности кремния на теплопроводность и другие свойства реакционно связанных карбидкремниевых изделий // Сборник научных трудов. 2004. Т. 104. С. 31.
- 12. *Huang Q.-W., Zhu L.-H.* High-temperature strength and toughness behaviors for reaction-bonded SiC ceramics below 1400°C // Mater. Lett. 2005. V. 59. № 14–15. P. 1732.
- 13. *Clijsters S., Liu K., Reynaerts D., Lauwers B.* EDM technology and strategy development for the manufacturing of complex parts in SiSiC // Journal of Materials Processing Technology. 2010. V. 210. № 4. P. 631.
- 14. Sangsuwan P., Orejas J.A., Gatica J.E., Tewari S.N. et al. Reaction-bonded silicon carbide by reactive infiltration // Industrial & engineering chemistry research. 2001. V. 40. № 23. P. 5191.

- Wang Y.-X., Tan Sh.-H., Jiang D.-L. The fabrication of reaction-formed silicon carbide with controlled microstructure by infiltrating a pure carbon preform with molten Si // Ceramics international. 2004. V. 30. № 3. P. 435.
- 16. Параносенков В.П., Чикина А.А., Андреев М.А. Конструкционные материалы на основе самосвязанного карбида кремния // Огнеупоры и техническая керамика. 2006. № 7. С. 37.
- 17. Параносенков В.П., Чикина А.А., Шкарупа И.Л. Самосвязанный карбид кремния ОТМ–923 // Огнеупоры и техническая керамика. 2004. № 2. С. 23.
- 18. Гаршин А.П., Чулкин С.Г. Реакционно-спеченные карбидокремниевые материалы конструкционного назначения. Физико-механические и триботехнические свойства. СПб.: Изд. Политехнического ун-та. 2006. 84 с.
- 19. Perevisiov S.N. Evaluation of the crack resistance of reactive sintered composite boron carbidebased materials // Refractories and Industrial Ceramics. 2019. V. 60. № 3. P. 168.
- 20. Perevisiov S.N., Lysenkov A.S., Titov D.D., Tomkovich M.V. et al. Production of ceramic materials based on SiC with low-melting oxide additives // Glass and Ceramics. 2019. V. 75. № 9–10. P. 400.
- 21. Frolova M.G., Leonov A.V., Kargin Y.F., Lysenkov A.S. et al. Molding features of silicon carbide products by the method of hot slip casting // Inorganic Materials: Applied Research. 2018. V. 9. № 4. P. 675.
- Perevisiov S.N., Lysenkov A.S., Titov D.D., Tomkovich M.V. Hot-pressed ceramic SiC-YAG materials // Inorganic Materials. 2017. V. 53. № 2. P. 220.
- Lysenkov A.S., Kim K.A., Titov D.D., Frolova M.G. et al. Composite material Si₃N₄/SiC with calcium aluminate additive // Journal of Physics: Conference Series. IOP Publishing. 2018. V. 1134. № 1. P. 012036.
- 24. Perevisiov S.N., Shcherbak P.V., Tomkovich M.V. Phase composition and microstructure of reactionbonded boron-carbide materials // Refractories and Industrial Ceramics. 2018. V. 59. № 2. P. 179.
- 25. Perevisiov S.N., Lysenkov A.S., Titov D.D., Tomkovich M.V. et al. Materials based on boron carbide obtained by reaction sintering // IOP Conference Series: Materials Science and Engineering. IOP Publishing. 2019. V. 525. № 1. P. 012074.
- 26. Markov M.A., Ordan'yan S.S., Vikhman S.V., Perevislov S.N. et al. Preparation of MoSi₂-SiC-ZrB₂ structural ceramics by free sintering // Refractories and Industrial Ceramics. 2019. V. 60. № 4. P. 385.
- 27. Ordan'yan S.S., Rumyantsev V.I., Nesmelov D.D., Korablev D.V. Physicochemical basis of creating new ceramics with participation of boron-containing refractory compounds and its practical implementation // Refractories and Industrial Ceramics. 2012. V. 53. № 2. P. 108.
- 28. Ordan'yan S.S., Nesmelov D.D., Danilovich D.P., Udalov Y.P. Revisiting the structure of SiC-B₄C-Me^dB₂ systems and prospects for the development of composite ceramic materials based on them // Russian Journal of Non-Ferrous Metals. 2017. V. 58. № 5. P. 545.
- 29. Perevisiov S.N., Afanas'eva L.E., Baklanova N.I. Mechanical properties of SiC-fiber-reinforced reaction-bonded silicon carbide // Inorganic Materials. 2020. V. 56. № 4. P. 425.