НОВЫЕ ТЕХНОЛОГИИ В МАШИНОСТРОЕНИИ

УДК 621.01,62-231.3,621.81

КИНЕМАТИЧЕСКИЙ И КИНЕТОСТАТИЧЕСКИЙ (СИЛОВОЙ) АНАЛИЗ КОМБИНИРОВАННОГО КРИВОШИПНО-ПОЛЗУННОГО МЕХАНИЗМА С ДВОЙНЫМ ВИНТОВЫМ ШАРНИРОМ

© 2021 г. А.С. Фомин^{1,*}, Д.В. Петелин¹

¹ Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия *e-mail: alexey-nvkz@mail.ru

> Поступила в редакцию 22.03.2020 г. Принята к публикации 22.10.2020 г.

В настоящей статье представлен новый кривошипно-ползунный механизм, образованный объединением плоской и винтовой групп звеньев нулевой подвижности. В разработанном механизме вращательное движение ведущего звена трансформируется в движение выходного звена по винтовой траектории. Представлена детализированная сборочная компьютерная модель синтезированного механизма, в соответствии с которой проведен кинематический и кинетостатический (силовой) анализ. С учетом выполненных расчетов и результатов компьютерного конструирования изготовлен физический прототип механизма.

Ключевые слова: степень свободы, группа нулевой подвижности, кривошипно-ползунный механизм, кинематический анализ, кинетостатический (силовой) анализ, винтовая траектория

DOI: 10.31857/S0235711921010107

В технике широкое применение находят кривошипно-ползунные механизмы, являющиеся частным случаем рычажного четырехзвенника. Данные механизмы широко используются, например, в архитектурах подвижных пространственных ферм [1], автомобильных моторах [2], прессах [3, 4], различных промышленных роботах и установках [5], медицинских приборах [6] и ряде иных механических систем для выполнения различных технологических операций.

Структурно кривошипно-ползунный механизм состоит из четырех звеньев — кривошипа, шатуна, ползуна и стойки, сопряженных между собой одноподвижными кинематическими парами. Такой механизм обеспечивает преобразование вращения ведущего звена (кривошипа) в линейное перемещение выходного звена (ползуна). Таким образом, он является простейшим по структуре плоским механизмом, как имеющим минимальное число звеньев (четыре) и приводов (один). Однако, несмотря на простоту конструкции, изучение кривошипно-ползунных механизмов является актуальным направлением современных исследований [7–12].

Настоящее исследование направлено на расширение функциональных возможностей кривошипно-ползунного механизма, а именно, на разработку новой модификации механизма, в котором выходное звено могло бы иметь кроме поступательного движения дополнительный поворот, при обеспечении минимального числа звеньев, кинематических пар и приводов синтезируемого механизма. Соблюдение этих критериев позволит обеспечить простоту конструкции, надежность и эффективность функционирования такого механизма.

Рис. 1. Сборочная компьютерная модель кривошипно-ползунного механизма с двойным винтовым шарниром.

Разработка кинематической схемы механизма. Поставленную задачу можно реализовать путем разработки комбинированного кривошипно-ползунного механизма, в котором на ползун наслаивается дополнительная группа нулевой подвижности с минимальным числом звеньев и кинематических пар, при этом обеспечивающая выходному звену синтезируемого механизма дополнительное движение. Такой группой нулевой подвижности является однозвенная группа (монада) с четырьмя наложенными связями. Известно, что с учетом четырех наложенных связей могут создаваться винтовые кинематические цепи, когда вращательное и поступательное движения реализуются относительно общей оси, либо клиновые кинематические цепи, когда возможными являются два поступательных движения относительно двух осей [14].

Примем винтовую монаду в качестве группы нулевой подвижности, наслаиваемой на ползун кривошипно-ползунного механизма. Полученный таким образом механизм представлен на рис. 1 в виде детализированной сборочной компьютерной модели, где кривошип 1, шатун 2, ползун 3 и стойка 5 образуют одноподвижный кривошипно-ползунный механизм. На ползун 3, оканчивающийся винтом, наслаивается однозвенная группа нулевой подвижности в виде гайки 4. Она образует винтовые кинематические пары с ползуном 3 и со стойкой 5. Таким образом, общая подвижность такого механизма оказывается равной одному.

Входное движение задается кривошипу 1 и преобразуется в поступательное движение ползуна 3, которое далее трансформируется в винтовое движение выходного звена, гайки 4. Строение механизма, организованное таким образом, дает возможность использования минимального числа звеньев и одноподвижных шарниров, а также обеспечивает выходному звену возможность воспроизведения циклического пространственного движения.

Фактически данный механизм образован путем последовательного наслоения на ведущее звено групп нулевой подвижности с разным числом и типом наложенных связей: плоской диады ВВП с тремя связями и винтовой монады с четырьмя связями. При наслоении кинематических цепей с разным типом наложенных связей, в том числе цепей с нулевой подвижностью, должно соблюдаться условие совпадения их движений. В рассматриваемом случае диада ВВП функционирует в пространстве для плоских кинематических цепей, где реализуются поступательные смещения вдоль двух осей и поворот в плоскости этих же осей, а винтовая монада функционирует в пространстве, где реализуются вращательное и поступательное движения относительно общей оси. Поэтому совпадающим в данном случае движением для обеих групп является либо поступательное, либо вращательное в зависимости от расположения этих групп друг относительно друга. В рассматриваемом механизме данные группы объединены через общее поступательное движение, когда ось гайки находится в плоскости звеньев диады ВВП. При соединении кинематических цепей без обеспечения совпадения общих движений, работоспособный механизм построить невозможно. По данному принципу можно образовывать и более сложные механизмы, в том числе механизмы, одновременно включающие в свой состав кинематические цепи с последовательной и параллельной структурой [15].

Кинематический анализ механизма. Обратимся к кинематическому анализу механизма. С каждым из его звеньев свяжем пространственную систему координат, направив оси y_i (i = 1...5) вдоль продольных осей звеньев, при этом начало неподвижной системы координат $O_5 x_5 y_5 z_5$ расположим в центре шарнира 1-5, а начало системы координат $O_4 x_4 y_4 z_4$ свяжем с центром масс выходного звена (рис. 1). Уравнение замкнутости контура кривошипно-ползунной части механизма запишется в виде

$$\mathbf{T}^{(1,5)}\mathbf{T}^{(2,1)}\mathbf{T}^{(3,2)}\mathbf{T}^{(5,3)} = \mathbf{E},$$
(1)

где \mathbf{E} – единичная матрица соответствующего порядка, $\mathbf{T}^{(1,5)}$, $\mathbf{T}^{(2,1)}$, $\mathbf{T}^{(3,2)}$ и $\mathbf{T}^{(5,3)}$ – матрицы преобразования последующей системы координат в предыдущую, определяемые, как

$$\mathbf{T}^{(1,5)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos \alpha_1 & -\sin \alpha_1 \\ 0 & 0 & \sin \alpha_1 & \cos \alpha_1 \end{pmatrix}, \quad \mathbf{T}^{(2,1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ l_1 & 0 & \cos \alpha_2 & -\sin \alpha_2 \\ 0 & 0 & \sin \alpha_2 & \cos \alpha_2 \end{pmatrix},$$

$$\mathbf{T}^{(3,2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ l_2 & 0 & \cos \alpha_3 & -\sin \alpha_3 \\ 0 & 0 & \sin \alpha_3 & \cos \alpha_3 \end{pmatrix}, \quad \mathbf{T}^{(5,3)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -s_1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$
(2)

где α_1 — угол поворота кривошипа *1* относительно стойки *5*; l_1 — длина кривошипа *1*; α_2 — угол поворота шатуна *2* относительно кривошипа *1*; α_3 — угол поворота шатуна *2* относительно ползуна *3*; s_1 — смещение ползуна *3* относительно стойки *5*.

Решая уравнение (1) с учетом матриц (2), получим зависимости для определения параметров α_3 и s_1

$$\alpha_3 = \arcsin\left(\frac{l_1 \sin \alpha_1}{l_2}\right), \quad s_1 = l_1 \cos \alpha_1 + l_2 \cos \alpha_3.$$
(3)

С учетом суммы углов треугольника, образованного длинами звеньев 1 и 2 (l_1 , l_2) и расстоянием s_1 , получим, что $\alpha_2 = 2\pi - (\alpha_1 + \alpha_3)$. Для определения кинематических параметров выходного звена (гайки 4) найдем скорости и ускорения ползуна 3, как $V_3 =$ $= \omega_1 V_{3\alpha 1}$ и $a_3 = \omega_1^2 a_{3\alpha 1} + \varepsilon_1 V_{3\alpha 1}$, где ω_1 и $\varepsilon_1 -$ угловые скорость и ускорение кривошипа 1, $V_{3\alpha 1} = ds_1/d\alpha_1$ и $a_{3\alpha 1} = dV_{3\alpha 1}/d\alpha_1 -$ аналоги линейных скорости и ускорения, получаемые путем дифференцирования уравнения (3) для s_1 по обобщенной координате α_1

$$V_{3\alpha 1} = -l_1 \left(\sin \alpha_1 + \frac{\cos \alpha_1 \sin(\arcsin b)}{\sqrt{1 - b^2}} \right),$$
$$a_{3\alpha 1} = -l_1 \left(\cos \alpha_1 - \frac{\sin \alpha_1 \sin(\arcsin b)}{\sqrt{1 - b^2}} + \cos \alpha_1 \left(\frac{l_1^2 \sin 2\alpha_1 \sin(\arcsin b)}{2l_2^2 \sqrt{(1 - b^2)^3}} + \frac{l_1 \cos \alpha_1 \cos(\arcsin b)}{l_2(1 - b^2)} \right)$$

где $b = (l_1 \sin \alpha_1)/l_2$.

Угол α₄, определяющий поворот выходного звена (гайки 4) относительно ползуна 3, определится, как

$$\alpha_4 = 2\pi\Delta s_1 / (p_1 + p_2), \tag{4}$$

где Δs_1 — изменение смещения ползуна *3*; p_1 — шаг резьбы между винтовой частью ползуна *3* и гайкой *4*; p_2 — шаг резьбы между гайкой *4* и винтовой частью стойки *5*.

Смещение гайки 4 относительно стойки 5, определяемое параметром *s*₄, можно найти из следующего уравнения

$$s_4 = s_1 + s_2 + s_3, (5)$$

где s_2 – заданная длина безвинтовой части ползуна 3; s_3 – осевое смещение гайки 4 относительно ползуна 3, которое определяется, как $s_3 = s_3^0 + s_3^1$, где s_3^0 – начальное смещение гайки 4 относительно ползуна 3; s_3^1 – смещение гайки 4 за ее поворот: $s_3^1 = \alpha_4 p_1/2\pi = \Delta s_1 p_1/(p_1 + p_2)$.

Остальные кинематические параметры выходного звена (гайки 4) — линейные скорость (V_{L4}) и ускорение (a_{L4}), направленные в плоскости $O_5y_5z_5$, а также угловые скорость (ω_4) и ускорение (ε_4), определятся, как

$$V_{L4} = V_3 p_2 / (p_1 + p_2), \quad a_{L4} = a_3 p_2 / (p_1 + p_2), \\ \omega_4 = 2\pi V_3 / (p_1 + p_2), \quad \varepsilon_4 = 2\pi a_3 / (p_1 + p_2).$$
(6)

На рис. 2а представлены диаграммы изменения значений линейного s_4 (диаграмма 1) и углового α_4 (диаграмма 2) смещений выходного звена. На рис. 26 показаны диаграммы изменения значений линейных V_{L4} и a_{L4} (диаграммы 1 и 2), а также угловых ω_4 и ε_4 (диаграммы 3 и 4) скоростей и ускорений выходного звена. При расчете были приняты следующие значения заданных параметров: скорость вращения кривошипа 1, $n_1 = 5$ об/мин при $\omega_1 = \text{const}$; длина кривошипа 1, $l_1 = 0.07$ м; длина шатуна 2, $l_2 = 0.135$ м; длина безвинтовой части ползуна 3, $s_2 = 0.25$ м; длина $s_3^0 = 0.025$ м; шаг резьбы в шарнире 3-4, $p_1 = 0.025$ м; шаг резьбы в шарнире 4-5, $p_2 = 0.030$ м. Касательные скорость и ускорение выходного звена, направленные в плоскости $O_5 x_5 z_5$, можно определить, как $V_{R4} = \omega_4 d_4/2$, $a_{R4} = \varepsilon_4 d_4/2$, где d_4 – диаметр гайки 4.

Рис. 2. Кинематическое исследование механизма: (а) – диаграммы изменения значений линейного s_4 (*I*) и углового α_4 (*2*) смещений выходного звена; (б) – диаграммы изменения значений линейных V_{L4} (*I*), a_{L4} (*2*) и угловых ω_4 (*3*), ε_4 (*4*) скоростей и ускорений выходного звена.

Кинетостатический (силовой) анализ механизма. При проектировании механизмов и машин, при проведении динамических, прочностных и энергетических расчетов, требуется информация о влиянии как внешних сил и моментов пар сил, действующих на звенья, так и внутренних силовых составляющих, действующих в кинематических парах. Обратимся к кинетостатическому (силовому) анализу синтезируемого механизма с целью определения реакций в кинематических парах и нахождению уравновешивающего момента на ведущем звене, с учетом которого подбирается привод механизма. Результаты кинетостатического анализа являются основой для расчета элементов и узлов механизмов и машин на прочность и жесткость, расчета подшипников, расчета износа в кинематических парах и иных проектных и проверочных расчетов. На рис. 3 представлена схема сил и моментов пар сил, приложенных к модели исследуемого механизма.

Задача кинетостатического исследования данного механизма решалась численными методами. При расчете были приняты следующие значения масс звеньев: масса кривошипа 1, $m_1 = 0.022$ кг; масса шатуна 2, $m_2 = 0.026$ кг; масса ползуна 3, $m_3 = 0.150$ кг; масса гайки 4, $m_4 = 0.090$ кг.

Алгоритм исследования кинетостатики данного механизма состоит в следующем. Вначале отделяется однозвенная группа нулевой подвижности (гайка 4), представленная на рис. 4a, и определяются реакции в винтовых шарнирах 3-4 (\mathbf{R}_{34}) и 4-5 (\mathbf{R}_{45}), а также точки приложения данных реакций, определяемые длинами h_{34} и h_{45} . При расчете данной группы учитываются сила тяжести (\mathbf{G}_4), сила инерции (\mathbf{F}_{i4}) и момент силинерции (M_{i4}) гайки 4, а также силы трения (\mathbf{F}_{f34} , \mathbf{F}_{f45}), имеющие касательную и радиальную составляющие, и моменты трения (M_{f34} , M_{f45}) в винтовых шарнирах 3-4 и 4-5. В качестве внешней силы принята сила сопротивления (\mathbf{F}_r), направленная противоположно движению выходного звена (гайки 4). С учетом этих параметров на рис. 46 приведены диаграммы изменения значений реакций \mathbf{R}_{34} (диаграмма 4) и \mathbf{R}_{45} (диаграмма 5) в зависимости от времени (полный поворот кривошипа при $\alpha_1 = 360^\circ$ соответствует времени t = 12 с).

Далее исследуется диада *ВВП* (звенья 2–3), показанная на рис. 4в, и определяются реакции в шарнирах 1-2 (\mathbf{R}_{12}) и 3–5 (\mathbf{R}_{35}). После этого находится реакция в шарнире 2–3 (\mathbf{R}_{23}). При расчете данной группы звеньев учитываются силы тяжести (\mathbf{G}_2 , \mathbf{G}_3), силы инерции (\mathbf{F}_{12} , \mathbf{F}_{13}) шатуна 2 и ползуна 3, а также момент сил инерции

Рис. 3. Модель механизма с приложенными силами и моментами пар сил.

шатуна 2 (M_{i2}), сила трения в поступательном шарнире 3–5 (\mathbf{F}_{f35}) и моменты трения M_{f21} и M_{f23} во вращательных шарнирах 1–2 и 2–3. Реакция \mathbf{R}_{34} для данной группы является заданной, так как она была определена из условия равновесия предыдущей группы (гайки 4). На рис. 46 представлены диаграммы изменения значений составляющих и абсолютных реакций \mathbf{R}_{12} и \mathbf{R}_{23} (диаграммы 1–3, 5 и 6) и \mathbf{R}_{35} (диаграмма 6) в зависимости от времени.

Далее обратимся к рассмотрению равновесия ведущего звена, кривошипа 1, показанного на рис. 4г, и определим реакции в шарнире 1-5 (\mathbf{R}_{15}) и уравновешивающий момент (M_C).

При анализе ведущего звена учитываются сила тяжести (G_1) и сила инерции (F_{i1}) кривошипа 1, а также момент трения M_{f15} во вращательном шарнире 1–5. Составляющие реакции R_{12} в данном случае являются заданными, так как они были определены из условия равновесия диады *BBП* звеньев 2–3. На рис. 4д показаны диаграммы изменения значений составляющих и абсолютной реакции R_{15} (диаграммы 1–3) в зависимости от времени. На рис. 4е представлена диаграмма изменения значений уравновешивающего момента на ведущем звене (M_C) в зависимости от времени. В связи с тем, что вращение гайки 4 происходит в плоскости, перпендикулярной движению остальных подвижных звеньев механизма, в шарнирах 1–5, 1–2, 2–3 и 3–5 возникают реакции R_{X15} , R_{X12} , R_{X23} и R_{X35} , направленные вдоль оси *x*. Численные значения данных реакций существенно меньше значений реакций в остальных кинематических парах механизма, поэтому они фактически не влияют на величину уравновешивающего момента на ведущем значений реакций в остальных кинематических парах механизма, поэтому они фактически не влияют на величину уравновешивающего момента на ведущем так величину уравновешивающего момента на ведущи в остальных кинематических парах механизма, по-

Разработка физического прототипа механизма. Результаты кинетостатического анализа позволяют провести дальнейший расчет элементов механизма на прочность и жесткость, расчет подшипников, расчет износа в кинематических парах, а также про-

Рис. 4. Кинетостатическое исследование механизма: (а) – схема однозвенной группы нулевой подвижности (звено 4) с приложенными силами и моментами пар сил; (б) – диаграммы изменения значений реакций \mathbf{R}_{12} и \mathbf{R}_{23} (*I*), \mathbf{R}_{34} (4), \mathbf{R}_{45} (5), \mathbf{R}_{35} (6); (в) – схема двухзвенной группы нулевой подвижности (звенья 2, 3) с приложенными силами и моментами пар сил; (г) – схема ведущего звена с приложенными силами и моментами пар сил; (д) – диаграммы изменения значений составляющих \mathbf{R}_{Y15} (*I*) и \mathbf{R}_{Z15} (2), и абсолютной \mathbf{R}_{15} (3) реакций; (е) – диаграмма изменения значений уравновешивающего момента пары сил M_C .

вести ряд других расчетов, обеспечивающих эффективное функционирование механизма. Проведенный кинетостатический анализ позволил с учетом найденного момента сопротивления (M_C) подобрать привод механизма. Был выбран редукторный двигатель с крутящим моментом 0.15~1.5 Нм.

На основе сборочной компьютерной модели механизма (рис. 1) был создан ее физический прототип, представленный на рис. 5. Элементы прототипа частично изготовлены

Рис. 5. Физический прототип кривошипно-ползунного механизма с двойным винтовым шарниром.

посредством трехмерной печати из полимерных материалов, частично использованы стандартные элементы деталей машин (резьбовые соединения, профили и т.д.).

Результаты исследования компьютерной модели и физического прототипа были сопоставлены по положениям и определено их расхождение. В частности было исследовано смещение s_1 выходного звена (гайки 4) относительно стойки 5 для двенадцати положений механизма. В табл. 1 представлены численные значения дан-

Угол поворота ведущего звена (кривошипа 1), α ₁ , град	Численные значения смещения выходного звена (гайки 4), s ₁ , мм		Погрешность, Δ, %
	Компьютерная модель	Физический прототип	
0	473.8	470.5	0.69
30	466.2	464.0	0.47
60	446.9	443.0	0.87
90	424.9	428.5	0.84
120	408.7	404.5	1.03
150	400.0	397.0	0.75
180	397.4	393.5	0.98
210	400.0	401.0	0.25
240	408.7	409.5	0.19
270	424.9	425.5	0.14
300	446.9	447.0	0.02
330	466.2	467.5	0.28

Таблица 1. Сравнительный анализ смещений *s*₁ выходного звена (гайки *4*) для компьютерной модели и физического прототипа механизма

ных смещений для компьютерной модели и физического прототипа механизма, а также погрешность (Δ , %) в их расхождении в зависимости от угла поворота ведущего звена (α_1).

Заключение. В настоящем исследовании представлен новый метод конструирования механизмов, заключающийся в объединении кинематических цепей с разным типом наложенных связей. С применением данного метода разработан новый кривошипно-ползунный механизм с двойным винтовым шарниром, организованный последовательным наслоением на ведущее звено плоской группы нулевой подвижности с тремя наложенными связями и винтовой группы нулевой подвижности с четырьмя наложенными связями. В соответствии с входящими в состав механизма структурными группами, выполнен его кинематический и кинетостатический анализ, на основании которого, а также с учетом разработанной компьютерной модели данного механизма, был создан его физический прототип. Выполнен сравнительный анализ численных значений смещений выходного звена механизма для компьютерной модели и физического прототипа. Применение разработанного механизма может быть реализовано в технологических процессах, требующих циклическое движение исполнительных элементов по винтовым траекториям.

ФИНАНСИРОВАНИЕ ИССЛЕДОВАНИЯ

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-31-00440.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ganiev R.F., Glazunov V.A.* Handling mechanisms of parallel structure and their application in modern equipment // Doklady Physics. 2014. V. 59. P. 582.
- Jalili N., Wagner J., Dadfarnia M. A piezoelectric driven ratchet actuator mechanism with application to automotive engine valves // Mechatronics, 2003. V. 13. I. 8–9. P. 933.
- 3. *Zheng E., Zhou X.* Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system // Mechanism and Machine Theory. 2014. V. 74. P. 10.
- 4. *Chen Y., Sun Y., Chen C.* Dynamic analysis of a planar slider-crank mechanism with clearance for a high speed and heavy load press system // Mechanism and Machine Theory. 2016. V. 98. P. 81.
- 5. *Koser K.* A slider crank mechanism based robot arm performance and dynamic analysis // Mechanism and Machine Theory. 2004. V. 39. I. 2. P. 169.
- 6. *Hong M.B., Jo Y.* Design of a novel 4-DOF wrist-type surgical instrument with enhanced rigidity and dexterity. IEEE/ASME // Transactions on Mechatronics. 2014. V. 19. № 2. P. 500.
- Daniel G.B., Cavalca K.L. Analysis of the dynamics of a slider-crank mechanism with hydrodynamic lubrication in the connecting rod-slider joint clearance // Mechanism and Machine Theory. 2011. V. 46. I. 10. P. 1434.
- 8. *Khemili I., Romdhane L.* Dynamic analysis of a flexible slider–crank mechanism with clearance // European Journal of Mechanics A/Solids. 2008. V. 27. I. 5. P. 882.
- 9. *Erkaya S., Uzmay I.* Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism // Multibody System Dynamics. 2010. V. 24. P. 81.
- Azimi A., Mohammad O., Ghazavi R. Stabilizing slider-crank mechanism with clearance joints // Mechanism and Machine Theory. 2012. V. 53. P. 17.

- Alyushin Y.A., Volkov A.E., Rykunov D.A. Dynamic effects in the crank-slider mechanisms // Journal of Machinery Manufacture and Reliability. 2004. V. 3. P. 5.
- Ha J.-L., Fung R.-F., Chen K.-Y., Hsien S.-C. Dynamic modeling and identification of a slidercrank mechanism // Journal of Sound and Vibration. 2006. V. 289. I. 4–5. P. 1019.
- Dvornikov L., Fomin A. Development of basic conditions for division of mechanisms into subfamilies // Procedia Engineering. 2016. V. 150. P. 882.
- Glazunov V.A., Koliskor A.S., Krainev A.F., Model B.I. Classification principles and analysis methods for parallel-structure spatial mechanisms // Journal of Machinery Manufacture and Reliability. 1990. V. 1. P. 30.
- Ganiev R.F., Glazunov V.A., Filippov G.S. Urgent problems of machine science and ways of solving them: wave and additive technologies, the machine tool industry, and robot surgery // Journal of Machinery Manufacture and Reliability. 2018. V. 47. I. 5. P. 399.