= МЕХАНИКА МАШИН ==

УДК 532.5;532.517

НАУЧНЫЕ ОСНОВЫ ВОЗБУЖДЕНИЯ ВЫСОКОИНТЕНСИВНЫХ ГИДРОАКУСТИЧЕСКИХ ВОЛН С ПОМОЩЬЮ ДЕТОНАЦИИ СМЕСИ ВОДОРОДА И КИСЛОРОДА

© 2021 г. Р. Ф. Ганиев^{1,*}, И. Н. Гришняев¹, Г. П. Лысенко^{1,2}, Л. Е. Украинский^{1,**}

¹ Институт машиноведения им А.А. Благонравова РАН, Москва, Россия ² Московский авиационный институт (национальный исследовательский университет), Москва, Россия *e-mail: sekretar@imash.r **e-mail: ukrainsky@nwmtc.ac.ru

Поступила в редакцию 26.06.2020 г. Принята к публикации 22.10.2020 г.

Установлены научные основы генерирования интенсивных гидроакустических волн в жидкости в результате детонации стехиометрической смеси водорода и кислорода. Высказана идея о возможности осуществления указанного процесса с помощью глубоководного электролизера, которая подтверждена экспериментально. Методами математического моделирования исследованы процессы горения и детонации объема стехиометрической смеси водорода и кислорода, окруженного жидкой средой, начальные условия повышения давления и температуры на границе раздела "продукты детонации—жидкая среда" в момент взрыва, обеспечивающие возникновение и распространение гидроакустической волны в жидкой среде. Оценена зависимость пикового давления полученной волны, длительности ее положительной фазы и длительности первого периода волны от объема водорода и кислорода, давления и других параметров. Показана возможность использования установленного эффекта для повышения нефтеотдачи пластов в нефтегазодобыче.

Ключевые слова: электролиз, детонация, ударные волны в нефтяных пластах **DOI**: 10.31857/S0235711921010119

В нефтегазодобывающей промышленности главным направлением технического прогресса являются с одной стороны интенсификация процесса добычи, а с другой — увеличение процента извлекаемых пластовых запасов. Как известно [1], обе эти задачи можно решить методами волновой технологии. Например, гидроакустические волны возбужденные проточными гидродинамическими генераторами в призабойной зоне скважины, позволяют интенсифицировать приток нефти, а высокоамплитудные волны, возбужденные ударно-волновыми генераторами, действующими на основе станков-качалок, воздействуя на удаленные области пласта, могут способствовать повышению нефтеотдачи [1]. В настоящей статье анализируется возможность использования для решения обозначенных задач детонации стехиометрической смеси кислорода и водорода.

Оба упомянутых эффекта (интенсификация притока и повышение нефтеотдачи) достигаются также с помощью гидроразрыва пласта (ГРП). В широко распространенных в настоящее время промышленных методах ГРП воздействие на пласт осуществляется с помощью приложения значительного статического давления. Возможно ли осуществить ГРП с помощью быстро изменяющихся во времени интенсивных волн,

Рис. 1. Схема расположения генератора гидроакустических волн в области нахождения продуктивного нефтяного пласта: *1* – источник питания электролизера и свечи зажигания; *2* – уровень Земли; *3* – прибор для осуществления электролиза воды (электролизер); *4* – свеча зажигания; *5* – камера сгорания смеси водорода и кислорода (камера высокого давления – КВД); *6* – обсадная колонна нефтяной скважины; *7* – генератор гидроакустических волн в сборе (без источника питания); *8* – обратный клапан; *9* – резервуар с электролитом.

распространяющихся по пласту? Как их возбудить на практике? Статья также посвящена изучению этих вопросов.

Рассмотрим возможность использования для создания гидроакустических волн глубоководного электролизера, вырабатывающего порции стехиометрической смеси водорода и кислорода при высоком давлении и обеспечивающего детонацию полученной смеси.

1. Глубоководный импульсный электролизер для генерации гидроакустических волн. С целью проведения экспериментальных исследований были разработаны конструктивные элементы и макет глубоководного импульсного электролизера (ГИЭ), предназначенного для работы в нефтяных скважинах глубиной несколько километров, где давление воды и нефти может достигать сотни атмосфер. Для проверки работоспособности ГИЭ был создан стенд, имитирующий его работу в области нахождения продуктивного нефтяного пласта на глубине ~2 км.

Основными элементами глубоководного импульсного электролизера, предназначенного для создания гидроакустических волн в области нахождения продуктивного нефтяного пласта, являются (рис. 1): генератор стехиометрической смеси водорода с кислородом *3*, основанный на электролизе воды (в дальнейшем называемый электролизером); камера сгорания смеси водорода и кислорода при высоком давлении *5*; калильная свеча зажигания *4*, обеспечивающая инициирование горения водорода в кислороде за счет поданного на нее постоянного напряжения.

Работа ГИЭ в скважине заключается в следующем. При подаче питания на электролизер 3 в камеру сгорания 5 через трубопровод, снабженный обратным клапаном 8, начинает поступать смесь водорода и кислорода, вытесняя воду из полости. Калильный элемент свечи 4 выходит из воды, раскаляется и инициирует горение, переходящее в детонацию. При этом за счет повышения давления, обратный клапан 8 закрывается и изолирует полость электролизера от газообразных продуктов реакции. После

Рис. 2. Внешний вид макета ГИЭ в сборе с электролизером и камерой сгорания.

окончания процесса детонации продукт реакции (водяной пар) конденсируется, и камера сгорания заполняется водой. Это обеспечивает охлаждение калильного элемента свечи. Процесс повторяется, что обеспечивает генерирование ГИЭ последовательности импульсов. Количество импульсов определяется объемом электролита, находящегося в резервуаре 9 на поверхности земли.

В ходе экспериментальных исследований была отработана конструкция макета ГИЭ, рассчитанного на внешнее давление окружающей водной среды до 20 МПа [2] и выдерживающего без разрушения ударные волны, возникающие при сгорании водородо-кислородной смеси. Его внешний вид показан на рис. 2.

Считая кислородно-водородную смесь идеальным газом, при объеме камеры сгорания в 2.5 см³ и при внешнем давлении 20 МПа можно согласно закону электролиза Фарадея вычислить массу выделившихся газов, а следовательно, и время, между заполнением камер сгорания. Принимая, что в жидкости, окружающей камеру сгорания, растворено максимально возможное количество кислорода и водорода минимальное время между микровзрывами, при рассматриваемых условиях, при токе электролиза 10 А, составит ~4 мин.

Разработанный, изготовленный и исследованный на стенде при давлении 15 МПа макет глубоководного импульсного электролизера благодаря совмещению источника водорода и кислорода с камерой сгорания, разработке специального электролизера и рациональной компоновке имеет характерный размер ~100 мм. За счет этого он технологически удобен для использования в нефтедобывающей промышленности и в частности, в обсадных колоннах скважин диаметром 170 мм.

2. Математическое моделирование генерации гидроакустических волн глубоководным импульсным электролизером. Для исследования возникающей гидроакустической волны представим рассматриваемый процесс в виде двух этапов: в ходе первого этапа происходит реакция окисления водорода, и распространение детонационной волны по стехиометрической смеси; на втором этапе идет распад взрыва, образование и распространение гидроакустической волны. Первый этап происходит в камере высокого давления (рис. 1, поз. 5), а второй – в области низкого давления (ОНД) (область жидкости вне камеры сгорания).

Стехиометрическая смесь водорода с кислородом вырабатывается электролизером в пропорции 0.667H₂ + 0.333O₂.

Оценка параметров детонационной волны, распространяющейся в КВД. Физико-математическое моделирование поведения смеси $0.667H_2 + 0.333O_2$ в процессе горения является актуальной проблемой. Здесь представляется обоснованным применение некоторых кинетических моделей процессов воспламенения и последующего сверхзвукового горения газовых смесей, которые дают достоверную информацию о динамике превращений по мере развития реакции и адекватно описывают процесс, как на стадии воспламенения, так и на стадии горения.

При моделировании реакции окисления водорода можно воспользоваться детальными кинетическими механизмами, приведенными в [3] и представляющими достаточно полный механизм горения водорода в кислороде с границами разброса значений констант скоростей прямых и обратных реакций и ролью этих реакций в процессе.

Чисто формально стехиометрическое уравнение взаимодействия водорода с кислородом можно представить в виде прямой тримолекулярной реакции

$$2H_2 + O_2 \leftrightarrow 2H_2O. \tag{1}$$

Действительный механизм отличен от (1) и является сложным химическим процессом взаимодействия водорода с кислородом, имеющим ряд специфических особенностей, например, в зависимости [4]: 1) от начальной температуры и стехиометрии ведущий механизм процесса может быть цепно-тепловым, цепным разветвленным, цепным неразветвленным и даже неценным (тепловым); 2) от начального давления процесс может иметь либо гомогенный, либо гомогенно-гетерогенный характер; 3) от начальных температур и давления процесс может демонстрировать один, два, три и даже четыре предела самовоспламенения ("четвертый предел" носит вырожденный характер) и т.д.

Все это позволяет рассматривать окисление водорода как модельный процесс, который описывается атомной матрицей, каждая строка которой дает число атомов отдельных элементов, входящих в определенное (одно и то же) вещество, а каждый столбец показывает число атомов определенного (одного и того же) элемента, входящих в каждое сложное молекулярное соединение, участвующее в процессе [3]

$$A = \begin{vmatrix} H & O & OH & HO_2 & H_2O & H_2O_2 & O_2 & H_2 \\ 1 & 0 & 1 & 1 & 2 & 2 & 0 & 2 \\ 0 & 1 & 1 & 2 & 1 & 2 & 2 & 0 \end{vmatrix} \begin{cases} H \\ O \end{cases}.$$
 (2)

Атомная матрица (2), включает восемь химических компонентов: H_2 , O_2 , H_2O , OH, H, O, HO_2 , H_2O_2 и ее можно разложить на уравнения состояния прямых и обратных реакций, представленных в табл. 1 [3]. В табл. 1 вещество M может принимать значение одного из химических компонентов матрицы (2). Общим для этого типа реакций являются скорости прямой и обратной реакции [3].

При моделировании процессов горения водорода встает вопрос о выборе кинетического механизма горения. В [5] и [6] использовались кинетические схемы, состоящие из 42 и 38 реакций, включенных в табл. 1. При этом наиболее полный механизм окисления водорода в воздухе включает в себя 308 прямых и обратных реакций [7], а водорода в кислороде 60 реакций, представленных в табл. 1.

В общем виде стехиометрические уравнения реакций табл. 1 можно записать в виде [3]

$$\sum_{i=1}^{\mu} \mathbf{v}_{ij} A_i = \sum_{i=1}^{\mu} \mathbf{v}_{ij}^r A_i^r,$$

где A_i – химические символы исходных реагирующих веществ; V_{ij} – стехиометрические коэффициенты; μ – количество компонентов в смеси (для рассматриваемого случая $\mu = 8$); r – обозначены величины, относящиеся к продуктам реакции; индексом j – номер реакции. Если химический компонент i не является исходным продуктом (продуктом реакции), соответствующий стехиометрический коэффициент равен нулю.

1	$H_2 + O_2 \leftrightarrow 2OH$	16	$\mathrm{HO}_2 + \mathrm{H} \leftrightarrow 2\mathrm{OH}$
2	$OH + H_2 \leftrightarrow H_2O + H$	17	$HO_2 + H \leftrightarrow H_2O + O$
3	$\mathrm{H} + \mathrm{O}_2 \leftrightarrow \mathrm{OH} + \mathrm{O}$	18	$HO_2 + H \leftrightarrow H_2 + O_2$
4	$O + H_2 \leftrightarrow OH + H$	19	$HO_2 + O \leftrightarrow OH + O_2$
5	$O + H_2O \leftrightarrow 2OH$	20	$H + H_2O_2 \leftrightarrow H_2O + OH$
6	$2H + M \leftrightarrow H_2 + M$	21	$O + H_2O_2 \leftrightarrow OH + O$
7	$2O + M \leftrightarrow O_2 + M$	22	$H_2 + O_2 \leftrightarrow H_2O + O$
8	$\mathrm{H} + \mathrm{OH} + \mathrm{M} \leftrightarrow \mathrm{H_2O} + \mathrm{M}$	23	$H_2 + O_2 + M \leftrightarrow H_2O_2 + M$
9	$2OH + M \leftrightarrow H_2O_2 + M$	24	$OH + M \leftrightarrow O + H + M$
10	$O + OH + M \leftrightarrow H_2O + M$	25	$HO_2 + OH \leftrightarrow H_2O + O_2$
11	$H + O_2 + M \leftrightarrow HO_2 + M$	26	$H_2 + O + M \leftrightarrow H_2O + M$
12	$HO_2 + H_2 \leftrightarrow H_2O_2 + H$	27	$O + HO_2 + M \leftrightarrow H_2O + M$
13	$HO_2 + H_2 \leftrightarrow H_2O + OH$	28	$O + H_2O_2 \leftrightarrow H_2O + O_2$
14	$HO_2 + H_2O \leftrightarrow H_2O_2 + OH$	29	$H_2 + H_2O_2 \leftrightarrow 2H_2O$
15	$2\mathrm{HO}_2 \leftrightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2$	30	$\mathrm{H} + \mathrm{HO}_2 + \mathrm{M} \leftrightarrow \mathrm{H}_2\mathrm{O}_2 + \mathrm{M}$

Таблица 1. Реакции, протекающие при окислении водорода в кислороде

Молярно-объемная скорость образования компонента *i* в *j*-реакции выражается формулой [3]

$$R_{ij} = \left(v_{ij}^{r} - v_{ij}\right) \left[v_{+j} \prod_{i=1}^{\mu} W_{i}^{v_{ij}} - v_{-j} \prod_{i=1}^{\mu} W_{i}^{v_{ij}^{r}} \right].$$
(3)

Здесь v_{+j} , v_{-j} – скорости прямой и обратной *j*-реакций; $W_i^{v_{ij}} = \rho_i / M_i$ – молярно-объемная концентрация компонента *i*, моль/м³; $\rho_i = \xi_i \rho$ – парциальная плотность компонента *i*; M_i – молекулярная масса компонента *i*; ξ_i – относительная массовая концентрация компонента *i*: $\rho = \sum_{i=1}^{\mu} \rho_i = \mu_i$ отность смеси. При этом уравнения химической

трация компонента *i*; $\rho = \sum_{i=1}^{\mu} \rho_i$ – плотность смеси. При этом уравнения химической (равновесия) кинетики для молярно-объемных концентраций принимают вид [3]

$$\frac{dW_i}{dt} = \sum_{j=1}^l R_{ij}$$

где l – количество реакций (в рассматриваемом случае l = 60).

В итоге изменения относительных массовых концентраций компонентов находятся из решения уравнений химической кинетики [8]

$$\frac{d\xi_{i}}{dt} = \frac{1}{\rho} M_{i} \left\{ \sum_{j=1}^{l} \rho^{m_{j}} \left(\mathbf{v}_{ij}^{r} - \mathbf{v}_{ij} \right) \left[\mathbf{v}_{+j} \prod_{i=1}^{\mu} \left(\frac{\xi_{i}}{M_{i}} \right)^{\mathbf{v}_{ij}} - \mathbf{v}_{-j} \prod_{i=1}^{\mu} \left(\frac{\xi_{i}}{M_{i}} \right)^{\mathbf{v}_{ij}'} \right] \right\}, \tag{4}$$

где *m_i* – порядок *j*-й реакции.

Кинетические уравнения необходимо дополнить уравнением состояния для много-компонентной смеси [8]

$$p = \rho TR \sum_{i=1}^{\mu} \frac{\xi_i}{M_i}.$$
(5)

С помощью уравнений (4) и (5) при заданных *р* и *Т* можно рассчитать равновесные параметры имеющейся стехиометрической смеси.

Для расчета параметров детонационной волны необходимо воспользоваться уравнениями неравновесной газовой динамики — законами сохранения массы, импульса и энергии в одномерной постановке [8]

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u)}{\partial x} = 0,$$

$$\frac{\partial (\rho u)}{\partial t} + \frac{\partial (\rho u^2 + p)}{\partial x} = 0,$$

$$\frac{\partial (\rho E)}{\partial t} + \frac{\partial (\rho E + p)u}{\partial x} = 0,$$
(6)

где $E = e + u^2/2$ – полная энергия; u, p, e – скорость, давление и внутренняя энергия смеси соответственно. Внутренняя энергия реакционно-способной смеси определяется из соотношения

$$e = c_v T + \sum_{i=1}^{\mu} \xi_i h_{0i} - c_p T_{00},$$

где c_p , c_v – удельные теплоемкости смеси при постоянном давлении и постоянном объеме, $c_p = \sum_{i=1}^{\mu} c_{pi} \xi_i$; $c_v = \sum_{i=1}^{\mu} c_{vi} \xi_i$; h_{0i} – энтальпия образования компонента *i*, $T_{00} = 298$ К. Решая систему уравнений (6) численными методами можно определить параметры детонации.

Для упрощения расчетов систему уравнений (6) можно представить в виде соответствующих условий на поверхности волны — непрерывности потока вещества, потока импульса и потока энергии [9]

$$\rho_0 u_0 = \rho u,$$

$$p_0 + \rho_0 u_0^2 = p + \rho u,$$

$$\frac{h_0}{M_0} + \frac{u_0^2}{2} = \frac{h}{M} + \frac{u^2}{2}.$$
(7)

В последнем уравнении энтальпия неидеального газа *h* связана с идеальной *h*_и соотношением [9]

$$h = h_{\rm H} + \frac{\alpha \rho}{M} - RT + M \frac{p}{\rho},\tag{8}$$

где α — константа Ван-дер-Ваальса, *u*, *u*₀ — скорости газового потока до и после фронта детонационной волны.

Можно предположить, что объем взрыва в нашем случае не изменяется, так, как происходит в КВД. Тогда процесс носит адиабатический характер и его параметры (ρ , p, T) находятся из решения системы уравнений табл. 1, описывающих кинетический механизм окисления водорода, и уравнения состояния многокомпонентной смеси при постоянной внутренней энергии, что для неидеального газа записывается в виде [8]

$$\frac{h_{0\mu} - \frac{\alpha_0 \rho_0}{M_0} - RT_0}{M_0} = \frac{h_{\mu} - \frac{\alpha \rho}{M} - RT}{M},$$
(9)

где индекс "0" обозначает параметр при начальном состоянии системы.

Рис. 3. Схема измеряемых параметров взрывной волны: t_a – время прихода; τ_+ – длительность положительной фазы; τ_- – длительность волны разгрузки; ΔP_{max} – амплитуда волны давления; ΔP_- – амплитуда волны разрежения; I – импульс фазы сжатия; I_- – импульс фазы разрежения; ΔP_2 и τ_2 – вторичный подъем давления и его длительность.

Используя систему уравнений (7)–(9), а также исходные данные для термодинамических расчетов, приведенные в работе [10], можно рассчитать параметры детонационной волны в КВД. Таким образом, мы можем использовать один из двух описанных выше подходов.

Оценка параметров гидроакустической волны, распространяющейся в ОНД. Фугасное воздействие водородосодержащих горючих смесей определяется уровнем давления и импульса в волне давления, порождаемой взрывным превращением. При этом уровень давления в ударной волне будет характеризовать вариант воздействия на продуктивный слой: волновое воздействие или гидроразрыв пласта с образованием трещин, а импульс в волне давления — длину волнового воздействия или длину образующихся трещин. На рис. 3 представлена схема измеряемых параметров взрывной волны [4].

В случае подводного взрыва сферической газовой смеси с энергией e = qV, где V – объем, q – объемная плотность энергии взрываемой смеси, амплитуду взрывной волны в МПа по измерениям [11, 12] на относительном расстоянии $r/r_0 > 2$ можно найти из соотношения

$$\Delta P = (0.149 \pm 0.006) q^{2/3} \Lambda^{-1}, \tag{10}$$

где *r* – расстояние до точки измерения амплитуды ударной волны, $r_{\rm o}$ – радиус облака стехиометрической смеси; Λ – приведенное расстояние, определяемое как $\Lambda = r/e^{1/3}$.

Закономерности поля давлений взрыва в полузамкнутом объеме качественно следуют закономерностям сферического взрыва. Тогда для камер с малым удлинением l/d < 3 (характерно для КВД), где l – длина камеры, d – ее диаметр, экспериментальная зависимость (10) будет иметь другую константу [4]

$$\Delta P = (0.062 \pm 0.006) q^{2/3} \Lambda^{-1}.$$
 (11)

Объемная плотность энергии при газовом взрыве смеси с плотностью ρ_o находится как

$$q = P_{\rm B}/(\gamma - 1),$$

или, приближенно, с использованием параметров детонации [4]

$$q = 0.5\rho_0 D^2 (\gamma^2 - 1)^{-1} (1 - M^{-2}).$$
⁽¹²⁾

Здесь $P_{\rm B}$ — давление взрыва; γ — отношение удельных теплоемкостей продуктов взрыва; D — скорость детонации; M — число Маха детонационной волны в полости.

Размерность основных величин в формуле для ΔP такова: $q - MДж/м^3$; $\Lambda - M/MДж^{1/3}$; e - MДж.

Зависимость импульса давления I от расстояния при детонации газовой смеси в подводной сферической полости установлена в [11, 12] и, если I измерять в Па·с, имеет вид

$$I/e^{1/3} = 3190\Lambda^{-1/3}$$

Объемная плотность энергии взрываемой смеси q, это ее теплотворная способность. При этом под теплотворной способностью вещества понимают количество теплоты, которое выделяется при полном сгорании 1 м³ газообразного взрывчатого вещества (в нашем случае смеси водорода с кислородом).

Различают высшую и низшую теплотворные способности. Если вода, содержащаяся в топливе и образовавшаяся при сгорании водорода, присутствует в конечных продуктах сгорания в виде жидкости, то количество выделившейся теплоты характеризует высшую теплотворную способность; если же вода присутствует в виде пара, то теплотворную способность называют низшей. Высшая теплотворная способность водорода равна 13 МДж/м³для сгорания при постоянном давлении 1 бар и температуре 0°C [13]. Низшая теплотворная способность его составляет 10.8 МДж/м³ или 2575 ккал/м³. Обычно в расчетах используют значение низшей теплотворной способности (теплоты сгорания).

3. Расчет параметров гидроакустической волны, создаваемой глубоководным импульсным электролизером на продуктивном слое. С учетом приведенных выше выражений и данных, представленных в [3, 4, 9, 11, 12] оценим параметры детонационной и гидроакустической волн, порождаемой взрывом стехиометрической смеси водорода с кислородом, вырабатываемой разработанным глубоководным импульсным электролизером.

В качестве исходных данных примем: 1) детонация происходит в полузамкнутом объеме КВД $V_0 = 2.5 \times 10^{-6}$ м³, полностью заполненном (до обреза) в момент, предшествующий подрыву, стехиометрической смесью водорода с кислородом в пропорции 0/667H₂ + 0/333O₂; 2) перед инициированием подрыва смесь водород–кислород имеет начальное давление $p_0 = 0.5-50$ МПа и температуру $T_0 = 300$ K; 3) камера высокого давления имеет размеры в следующей пропорции 1/d < 3; 4) параметры гидроакустической волны рассчитываются на расстоянии 0.09 м от границы раздела стехиометрическая смесь/вода, что обеспечивает выполнение условия $r/r_0 > 2$; 5) гидроакустическая волна распространяется в жидкости с плотностью 1000 кг/м³.

На рис. 4 представлены параметры детонационной волны, генерируемой в КВД, а на рис. 5 параметры гидроакустической волны, распространяющейся в ОНД.

4. Оценка возможности использования глубоководного импульсного электролизера для повышения нефтеотдачи пластов. Рассмотрим возможность применения ГИЭ для создания волнового воздействия на всю залежь или большой ее участок. Эффективность в этом случае будет определяться параметрами генерируемых ГИЭ волн (амплитуда, частота, глубина установки электролизера, выбор излучающей скважины) [1, 13].

Основная цель рассматриваемого здесь волнового воздействия на пласт — обеспечить повышение подвижности нефти в заводненных пластах путем коалесценции мелких капель нефти в крупные образования и повышения тем самым фазовой проницаемости. Для пластов с малой обводненностью интенсивные волны могут способствовать вовлечению в добычу некоторого количества так называемой матричной нефти из мелких пор пластов, которая обычно остается в пластах.

Применение таких методов позволяет достичь заметной интенсификации фильтрационных процессов в пластах и повышения их нефтеотдачи в широком диапазоне амплитудно-частотной характеристики режимов воздействия. При этом положительный

Рис. 4. Параметры детонационной волны, генерируемой в КВД в зависимости от начального давления *p*₀: (а) – давление во фронте детонационной волны и в плоскости Чепмена–Жуге; (б) – скорость детонационной волны; (в) – плотность продуктов детонации во фронте ударной волны, в плоскости Чепмена–Жуге и начальная плотность взрывчатой смеси 0.667H₂ + 0.333O₂; (г) – температура во фронте детонационной волны и в плоскости Чепмена–Жуге.

эффект волнового воздействия обнаруживается как в непосредственно обрабатываемой скважине, так и в отдельных случаях, при соответствующих режимах обработки проявляется в скважинах, отстоящих от источника импульсов давления на сотни и более метров [1, 14, 15].

Для реализации указанного способа обработки ГИЭ должен устанавливаться в одной из скважин выбранного участка месторождения, а воздействие осуществляется на окружающие скважины. Как свидетельствуют результаты обработок нефтяных месторождений, проведенных по описанной схеме с помощью генератора ударных волн, возможно увеличение нефтедобычи на десятки процентов по сравнению с исходным значением в момент начала обработки [1]. При этом реагирующие скважины находятся на расстоянии до 800 м от центра установки генератора.

Положительный эффект воздействия достигается при создании на входе в пласт импульсов давления амплитудой ~8–12 МПа [1]. Используя полученные расчетные данные, приведенные на рис. 5, можно показать, что такое давление ГИЭ создает на продуктивном слое уже при начальном давлении окружающей скважинной жидкости $p_0 \sim 2$ МПа. С ростом p_0 давление, развиваемое на границе жидкость—продуктивный слой P_{nc} , начинает значительно его превышать.

Это позволяет предположить возможность использования ГИЭ в процессах повышения нефтеотдачи пластов как менее металлоемкое и более удобное в использовании по сравнению с оборудованием, применяемым в настоящее время для этих целей.

5. Оценка возможности использования глубоководного импульсного электролизера для проведения гидроразрыва пласта. Что касается гидравлического разрыва пласта, то его используют для воздействия на пласты, характеризующиеся низкой проницаемостью.

Рис. 5. Параметры гидроакустической волны распространяющейся в ОНД, в зависимости от начального давления p_0 : (а) – давление гидроакустической волны на границе раздела продукты взрыва-жидкость P_{Γ} ; (б) – максимальное давление P_{nc} и амплитуда гидроакустической волны ΔP , развиваемые на границе жидкость-продуктивный слой; (в) – длительности положительной фазы и первой пульсации гидроакустической волны на границе жидкость-продуктивный слой.

Разрыв приводит к увеличению дренируемого участка, в результате чего фильтрационные процессы и нефтеотдача пласта увеличиваются.

Оценим возможность использования ГИЭ в процессах гидроразрыва пласта для локального воздействия на пласт при интервальном охвате пластов [16].

Использование ГИЭ для гидроразрыва пласта может быть подобно изложенному в [17], где заряд взрывчатого вещества опускался в скважину, переводился в рабочее состояние (подрывался) и генерировал воздействие жидкости на продуктивный слой.

Гидроразрыв пласта задается давлением гидроразрыва пласта P_{pasp} — это давление, которое необходимо создать в зоне залегания пласта для раскрытия естественных и образования новых трещин (каналов). То есть для расслоения пласта и образования в нем горизонтальной трещины, необходимо внутри пористого пространства создать давление P_{pasp} , превышающее горное на величину временного сопротивления горных пород на разрыв, так как надо преодолеть силы сцепления частиц породы. Давление гидроразрыва пласта можно определить из выражения [18]

$$P_{\rm pasp} = P_{\rm rB} - P_{\rm nn} + P_{\rm p}, \tag{13}$$

где $P_{\rm rB}$ – вертикальное горное давление; $P_{\rm nn}$ – пластовое давление; $P_{\rm p}$ – давление расслоения пород (давление распространения трещины). При этом разницу ($P_{\rm rB} - P_{\rm nn}$) еще называют горизонтальной составляющей горного давления $P_{\rm rr}$.

При полном отсутствии промысловых данных и данных исследований допускается использование эмпирических зависимостей. Например, в [19] приведена зависимость

$$P_{\text{pasp}} = 10^4 H_{\text{fr}} \text{K}, \tag{14}$$

где К = 1.5-2; H_{Π} – в метрах, $P_{\text{разр}}$ – в Па.

Воспользовавшись формулой (14) найдем изменение давления гидроразрыва пласта для глубин 1–5 км – $P_{\text{pa3p}} = 15-100$ МПа. Для более точной оценки можно воспользоваться методикой, изложенной в [20]. Так, в этой работе для конкретных залежей нефти показано, что $P_{\text{pa3p}} = 42.4$ МПа на глубине 3150 м, что отличается от расчетов по формуле (14) на ~15%.

Из представленных на рис. 5 графиков видно, что гидроакустическая волна, создаваемая продуктами взрыва стехиометрической смеси водород—кислород, будет развивать давление достаточное для расслоения продуктивного слоя традиционными способами уже при начальном давлении скваженной жидкости $p_0 = 4.5$ МПа. При этом на границе раздела жидкость—продуктивный слой можно создать динамические нагрузки более 100 МПа с практически мгновенной скоростью нагружения. Под действием такой гидродинамической волны движение потока жидкости в продуктивном слое будет происходить уже не в статическом режиме, как в случае традиционного ГРП, а в импульсном. Мощность динамического удара жидкости на породу пласта будет на несколько порядков выше, чем при обычном ГРП. Это позволяет сделать предположение о возможности использования ГИЭ в процессах гидроразрыва пласта и рекомендовать провести целенаправленные эксперименты.

Преимущества, которые можно достичь, используя для гидроразрыва пласта ГИЭ, определяются отказом от использования мощных насосных агрегатов, в простоте конструкции ГИЭ и существенной экономии энергии.

Заключение. Разработаны технические решения конструктивных элементов и макет генератора гидроакустических волн высокой интенсивности, который успешно прошел стендовые испытания и доказал стабильность работы в условиях приближенных к промысловым. Проведены математические исследования его работы в скважинных условиях и теоретически показана возможность использования ГИЭ для решения вопросов повышения нефтеотдачи пластов. Выдвинуто предположение о возможности применения предлагаемого метода генерации волн для проведения ГРП.

Для подтверждения полученных теоретических результатов будут проведены натурные испытания.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Ганиев Р.Ф., Украинский Л.Е. Нелинейная волновая механика и технологии. М.: НИЦ Регулярная и хаотическая динамика, 2008. 712 с.
- Лысенко Г.П., Котельников В.А., Украинский Л.Е. Глубоководный генератор ударных волн высокой интенсивности // Материалы международной конференции "Машины, технологии и материалы для современного машиностроения". Сборник тезисов конференции. 2018. С. 103.
- 3. Димитров В.И. Простая кинетика. Новосибирск: Наука, 1982. 382 с.
- 4. *Гельфанд Б.Е., Попов О.Е., Чайванов Б.Б.* Водород: параметры горения и взрыва. М.: ФИЗМАТЛИТ, 2008. 288 с.
- 5. Warnatz J. Combustion Chemistry / W. C. Gardiner (Ed.). Berlin: Springer-Verlag, 1984.
- 6. *Tien J.H., Stalker R.J.* Release of chemical energy by combustion in a supersonic mixing layer of hydrogen and air // Combust. Flame. 2002. V. 131. № 3. P. 329.
- 7. Даутов Н.Г., Старик А.М. К вопросу о выборе кинетической схемы при описании детонации в смеси H₂+воздух за ударными волнами // Теплофизика высоких температур. 1993. Т. 31. № 2. С. 292.
- 8. Бедаев И.А., Федоров А.В. Сравнительный анализ трех математических моделей воспламенения водорода // Физика горения и взрыва. 2006. Т. 42. № 1. С. 26.

- 9. Астахов Н.С., Николаев Ю.А., Ульяницкий В.Ю. О параметрах детонации водородно-кислородных и водородно-воздушных смесей при высокой начальной плотности // Физика горения и взрыва. 1984. Т. 20. № 1. С. 98.
- 10. *Гурвич А.М., Шаулов Ю.Х.* Термодинамические исследования методом взрыва и расчеты процессов горения. М.: МГУ, 1955. 165 с.
- Попов О.Е., Когарко С.М. Сравнительная характеристика волн давления при подводных взрывах газообразных и конденсированных ВВ // Физика горения и взрыва. 1977. Т. 13. № 6. С. 926.
- 12. Когарко С.М., Попов О.Е., Новиков А.С. Подводный взрыв газовой смеси как источник волн давления в жидкости // Физика горения и взрыва. 1975. Т. 11. № 5. С. 759.
- Топлива. Высшая теплотворная способность таблица. (Удельная теплота сгорания). Высшая/низшая теплотворная способность – пояснения. http://tehtab.ru/guide/guidephysics/guidephysicsheatandtemperature/comnustionenergy/fuelshighercaloricvalues, 07.04.2020.
- 14. Обзор современных методов повышения нефтеотдачи пласта. http://www.pet-ros.ru/rus/news/?action=show&id=267, 07.04.2020.
- 15. Физические методы. https://studwood.ru/1274300/geografiya/fizicheskie_metody, 07.04.2020.
- 16. Гидравлический разрыв пласта: виды, расчет и технологический процесс. https://fb.ru/article/459390/gidravlicheskiy-razryiv-plasta-vidyi-raschet-i-tehnologicheskiy-protsess, 07.04.2020.
- 17. Способ интенсификации добычи нефти и газа путем гидроразрыва продуктивного нефтегазоносного пласта / Акционерное общество открытого типа "Ноябрьскнефтегазгеология", РФ Патент 2069743С1, МПК Е21В 43/116, 1996.11.27.
- 18. Расчет давления гидроразрыва пласта. https://megalektsii.ru/s27358t4.html, 07.04.2020.
- Расчет гидравлического разрыва пласта. https://studwood.ru/1001342/tovarovedenie/raschyot_gidravlicheskogo_razryva_plasta, 07.04.2020.
- Проектирование гидроразрыва пласта в терригенных коллекторах. Оценка эффективности. СТО Газпром 2-2.3-635-2012. М.: ОАО "ГАЗПРОМ", 2012. 48 с.