НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 539.3:539.42

ИСПОЛЬЗОВАНИЕ ДВУХПАРАМЕТРИЧЕСКОГО КРИТЕРИЯ ДЛЯ ПРОГНОЗИРОВАНИЯ ТРАЕКТОРИИ РОСТА СКВОЗНОЙ ТРЕЩИНЫ В СЖАТОМ ДИСКЕ

© 2022 г. А. М. Покровский^{1,*}, Ю. Г. Матвиенко², М. П. Егранов¹

¹Московский государственный технический университет им. Н.Э. Баумана, Москва, Россия ²Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия *e-mail: pokrovsky@bmstu.ru

> Поступила в редакцию 10.02.2022 г. После доработки 20.05.2022 г. Принята к публикации 21.06.2022 г.

В настоящее время оценка прочности и живучести конструкций с трещинами представляет собой актуальный вопрос современной механики разрушения, прогнозирование траектории трещины — одна из задач такого анализа. В настоящей работе на примере диаметрально сжимаемого круглого диска со сквозной центральной трещиной (бразильского диска) из полиметилметакрилата решена задача прогнозирования траектории магистральной трещины с помощью критерия максимальных тангенциальных напряжений в двух постановках. Показано, что учет Т-напряжений в двухпараметрическом критерии повышает точность моделирования траектории роста трещины, по сравнению с однопараметрическим критерием. Получены результаты значения угла страгивания трещины с использованием аналитических формул и численного моделирования методом конечных элементов. Проведена верификация полученных результатов расчетов посредством сравнения с экспериментальными данными.

Ключевые слова: механика разрушения, коэффициент интенсивности напряжений, Т-напряжения, бразильский диск, двухпараметрический критерий разрушения, траектория трещины, трещина обобщенного нормального отрыва

DOI: 10.31857/S0235711922050133

Распространение трещин является критически важным вопросом в инженерной практике из-за его сильного влияния на качество и работоспособность конструкций. Зачастую поле напряжений в ответственных элементах конструкций неоднородно, поэтому построение траектории трещины при смешанном нагружении является актуальной задачей современной механики разрушения.

В настоящее время предложен и широко используется целый ряд критериев разрушения. Эрдоган (Erdogan) и Си (Sih) предложили критерий максимальных тангенциальных напряжений (MTH) [1], Хусейн (Hussain) и соавторы – критерий максимальной скорости высвобождения упругой энергии деформации [2], Си – критерий минимума плотности энергии деформации [3]. Физическое обоснование критериев различно и область их применения может варьироваться в зависимости от материала, вида конструкции или детали. Локальные критерии позволяют получить направление роста трещины в малой окрестности около вершины трещины, полную траекторию можно построить с помощью итерационных алгоритмов.

Рис. 1. Схема бразильского диска.

Несмотря на то, что результаты, полученные с помощью описанных критериев, в основном, хорошо соотносятся с экспериментальными данными, все равно остается ряд задач, в которых наблюдаются значительные расхождения между теоретическими и экспериментальными данными. Одной из причин этого расхождения является использование только сингулярных членов в разложении функции напряжений в окрестности вершины трещины. Вильямс (Williams) [4] предложил разложение, в которое кроме сингулярных членов входит несингулярный член, называемый Т-напряжениями, которые лежат в плоскости трещины и не зависят от расстояния до ее вершины.

Вильямс и Эвинг (Ewing) впервые предложили критерий максимальных тангенциальных напряжений с учетом КИН и Т-напряжений в задаче о наклонной трещине в пластине [5]. Позднее Смит (Smith) и соавторы развили этот подход и представили обобщенный критерий максимальных тангенциальных напряжений [6]. Они показали, что учет Т-напряжений оказывает существенное влияние на начальный угол роста трещины и момент начала разрушения. Значительный вклад в изучение влияния Т-напряжений на трещиностойкость разных материалов и конструкций внесли Аятоллахи (Ayatollahi), Алиха (Aliha) и другие авторы [7–9]. Подобным образом развиваются и энергетические критерии [10, 11].

Влияние Т-напряжений на трещиностойкость в последнее время исследуются все активнее. Здесь, в первую очередь, необходимо отметить развиваемую в работах [12–16] двухпараметрическую механику разрушения. Обстоятельный обзор и обобщение полученных результатов по изучению Т-напряжений приведены в монографии [12] и статье [17].

Целью настоящей статьи является сопоставление однопараметрического и двухпараметрического критерия МТН на примере задачи по моделированию траектории роста трещины обобщенного нормального отрыва в бразильском диске.

Постановка задачи. Одним из образцов для определения механических характеристик хрупких материалов является бразильский диск (БД) — диаметрально сжимаемая круглая пластинка со сквозной центральной трещиной (рис. 1).

Особенностью БД является тот факт, что при изменении относительной длины трещины $\rho = \frac{a}{R}$ и угла ее наклона к линии действия сжимающей силы *F*, можно получить

любую смешанность нагружения – от нормального отрыва до поперечного сдвига.

В статье рассматриваются результаты испытаний серии образцов со следующими геометрическими характеристиками: радиус диска R = 40 мм, полудлина трещины

a = 10 мм, толщина диска *t* = 4 мм, угол наклона трещины α ∈ $[0^\circ, 7^\circ, 15^\circ, 22^\circ, 30^\circ, 45^\circ, 60^\circ, 75^\circ]$.

Материал диска — полиметилметакрилат (ПММА), его механические характеристики: модуль упругости E = 3000 МПа, предел прочности при сжатии $\sigma_B = 70$ МПа, вязкость разрушения $K_{\rm Ic} = 40$ МПа $\sqrt{\rm MM}$.

Формулировка критериев МТН. Вначале остановимся на однопараметрическом методе. При использовании разложения Вестергарда для описания напряженного состояния у вершины трещины угол страгивания θ^* можно вычислить по формуле [18]

$$\theta^* = 2 \arctan\left(\frac{1 - \sqrt{1 + 8\lambda^2} \operatorname{sign}(K_{\mathrm{I}})}{4\lambda}\right),\tag{1}$$

где $\lambda = K_{\rm I}/K_{\rm II}; K_{\rm I}, K_{\rm II}$ – коэффициенты интенсивности напряжений (КИН) I и II типов.

Выражение для тангенциальных напряжений в полярной системе координат имеет вид [4]

$$\sigma_{\theta}(r,\theta) = \frac{1}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[K_{\rm I} \cos^2 \frac{\theta}{2} - \frac{3}{2} K_{\rm II} \sin \theta \right],\tag{2}$$

где *r* — радиус-вектор, проведенный из вершины трещины; θ — угол относительно оси, проходящей через плоскость трещины.

Вводя понятие эффективного КИН, и записывая формулу для тангенциальных напряжений в виде

$$\sigma_{\theta}\left(r,\theta\right)=\frac{K_{\Im}}{\sqrt{2\pi r}},$$

можно получить выражение для эффективного КИН

$$K_{\mathfrak{s}} = \cos\frac{\theta^*}{2} \bigg[K_{\mathrm{I}} \cos^2\frac{\theta^*}{2} - \frac{3}{2} K_{\mathrm{II}} \sin\theta^* \bigg].$$

Приравнивая, согласно силовому критерию разрушения Ирвина эффективный КИН вязкости разрушения *K*_{Ic}, приходим к условию разрушения

$$K_{\mathfrak{s}} = \cos\frac{\theta^*}{2} \left[K_{\mathrm{I}} \cos^2\frac{\theta^*}{2} - \frac{3}{2} K_{\mathrm{II}} \sin\theta^* \right] = K_{\mathrm{I}c}.$$
 (3)

Далее рассмотрим двухпараметрический метод. В этом случае для описания напряженного состояния у вершины трещины используют разложение Вильямса

$$\sigma_{ij}(r,\theta) = \sum_{n=1}^{\infty} \frac{n}{2} A_n r^{\frac{n}{2}-1} f_{A,ij}^{(n)}(\theta) - \sum_{n=1}^{\infty} \frac{n}{2} B_n r^{\frac{n}{2}-1} f_{B,ij}^{(n)}(\theta)$$

где A_n , B_n — амплитудные, масштабные коэффициенты, зависящие от геометрии образца с трещиной, а также от нагрузки; $f_{A,ij}^{(n)}(\theta)$, $f_{B,ij}^{(n)}(\theta)$ — тригонометрические функции угла θ , определяемые из решения краевых задач о нормальном отрыве и поперечном сдвиге.

Коэффициенты при сингулярных членах в разложении Вильямса связаны с КИН следующими соотношениями

$$K_{\rm I} = \sqrt{2\pi}A_{\rm l},$$
$$K_{\rm II} = -\sqrt{2\pi}B_{\rm l}.$$

Первый несингулярный член разложения – Т-напряжения определяется выражением

$$T = 4A_{2}$$

Запишем формулу для тангенциальных напряжений в вершине трещины, удерживая два первых слагаемых [12]

$$\sigma_{\theta}(r,\theta) = \frac{1}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left[K_{\rm I} \cos^2 \frac{\theta}{2} - \frac{3}{2} K_{\rm II} \sin \theta \right] + T \sin^2 \theta. \tag{4}$$

Согласно критерию МТН, трещина распространяется вдоль линии действия максимальных растягивающих тангенциальных напряжений, поэтому

$$\left. \frac{\partial \sigma_{\theta}}{\partial \theta} \right|_{\theta = \theta^*} = 0.$$
 (5)

Подставляя формулу (4) в условие (5), и заменяя r на r_c , получаем уравнение для вычисления угла страгивания трещины θ^*

$$K_{\rm I}\sin\theta^* + K_{\rm II}(3\cos\theta^* - 1) - \frac{16}{3}T\sqrt{2\pi r_c}\sin\frac{\theta^*}{2}\cos\theta^* = 0,$$
(6)

где $r_c = \frac{1}{2\pi} \left(\frac{K_{\rm Ic}}{\sigma_0} \right)^2$ – размер зоны предразрушения [19]; σ_0 – локальная прочность в зо-

не предразрушения, для хрупких материалов – предел прочности.

Двухпараметрическое условие разрушения получаем аналогично тому, как это было сделано в однопараметрическом подходе. Отличие заключается лишь в выражении для тангенциальных напряжений. Условие разрушения, в который входит эффективный КИН будет выглядеть следующим

$$K_{9} = \cos\frac{\theta^{*}}{2} \left[K_{\rm I} \cos^{2}\frac{\theta^{*}}{2} - \frac{3}{2} K_{\rm II} \sin\theta^{*} \right] + T \sqrt{2\pi r_{c}} \sin^{2}\theta^{*} = K_{\rm Ic}.$$
 (7)

Подставляя в уравнение (7) размер зоны предразрушения, и принимая локальную прочность материала за предел прочности, окончательно получим условие разрушения в следующем виде

$$\cos\frac{\theta^*}{2} \left[K_{\rm I} \cos^2\frac{\theta^*}{2} - \frac{3}{2} K_{\rm II} \sin\theta^* \right] + T \frac{K_{\rm Ic}}{\sigma_{\rm B}} \sin^2\theta^* = K_{\rm Ic}.$$
(8)

Таким образом, в двухпараметрическое условие разрушения, кроме K_1 , K_{II} и K_{Ic} входят еще и Т-напряжения и предел прочности. Для моделирования траектории распространения трещины при использовании однопараметрического МТН необходимо вычислять КИН первого и второго типов для каждого шага продвижения трещины, а при использовании двухпараметрического МТН еще и Т-напряжения.

Расчет параметров механики разрушения. КИН и Т-напряжения можно определить численно с помощью МКЭ или с помощью аналитических соотношений. Аткинсон получил уравнения для нахождения K_{I} и K_{II} в бразильском диске [20],

$$K_{\rm I} = \frac{P}{\pi R t} \sqrt{\pi a} \sum_{i=1}^{n} T_i \left(\frac{a}{R}\right)^{2i-2} A_i(\theta),$$

$$K_{\rm II} = -2 \frac{P}{\pi R t} \sqrt{\pi a} \sin 2\theta \sum_{i=1}^{n} S_i \left(\frac{a}{R}\right)^{2i-2} B_i(\theta),$$
(9)

где $T_i\left(\frac{a}{R}\right)$, $S_i\left(\frac{a}{R}\right)$ – функции относительной длины трещины; $A_i(\theta)$, $B_i(\theta)$ – функции угловой координаты; i – число удерживаемых членов ряда.

Соотношение для определения Т-напряжений в бразильском диске получено авторами [21, 22]

$$T = \frac{P}{\pi R t} f_1 + 2 \frac{P}{\pi R t} \sum_{i=1}^n (C_i(\theta) f_i - C_i(\theta) - D_i(\theta)) \left(\frac{a}{R}\right)^{2(i-1)},$$
(10)

где f_i – постоянные в разложении; $C_i(\theta)$, $D_i(\theta)$ – функции угловой координаты.

Рис. 2. Расчетная КЭ-модель.

При продвижении трещины, она становится не прямолинейной, и аналитические методы расчета КИН и Т-напряжений становятся непригодными. Поэтому при моделировании траектории распространения трещины КИН и Т-напряжения вычислялись с помощью встроенной функции, основанной на вычислении М-интеграла в программном комплексе ANSYS Workbench. Расчетная модель состояла из 20614 8-узловых плоских элементов (рис. 2). На рис. 3 приведено сравнение КИН и Т-напряжений, полученных по аналитическим формулам (9), (10) и численно с помощью МКЭ для исходной трещины при внешней нагрузке $F_1 = 1$ Н.

Значение КИН (рис. 3), рассчитанное численно и аналитически, хорошо совпадают. Т-напряжения различаются значительно для углов наклона трещины $\theta > 28^{\circ}$. Как видно из рисунка именно при этом угле наклона трещины значение K_1 становится отрицательным, а при отрицательных значениях K_1 , как отмечено в работе [20], аналитическое решение (10) не справедливо.

Расчет угла страгивания трещины и разрушающей нагрузки. С помощью уравнений (1) и (6) определены углы страгивания трещины θ* при использовании аналитического и численного расчета КИН и Т-напряжений. Сравнение полученных результатов с экспериментальными данными приведено на рис. 4. Как видно из рисунка двухпараметрический критерий дает немного лучшие результаты по сравнению с экспериментальными данными.

Разрушающая нагрузка вычисляется на основе значений КИН и Т-напряжений, полученных с помощью аналитических соотношений и численного расчета МКЭ. Эффективный КИН определяется по уравнениям (3) и (7). Ввиду линейности рассматри-

Рис. 3. Значение КИН (а) Т-напряжений (б), рассчитанные по аналитическим формулам и численно с помощью МКЭ.

Рис. 4. Сравнение углов страгивания трещины θ^* , град.

ваемой задачи, разрушающую нагрузку можно вычислить с помощью следующего уравнения

$$F_c = F_1 \frac{K_{\rm Ic}}{K_2}.$$

Сравнение полученных результатов с экспериментальными данными приведено на рис. 5.

Моделирование траектории трещины. Моделирование траектории трещины проводилось с использованием шагового алгоритма, который заключается в следующем: 1) создается конечно-элементная модель диска с исходной трещиной; 2) для этой трещины вычисляются $K_{\rm I}$, $K_{\rm II}$ и *T*-напряжения и определяется угол, характеризующий направление роста трещины относительно исходной ориентации, по формулам (1)

Рис. 5. Сравнение значений разрушающей нагрузки F_c, H.

Рис. 6. Тангенциальные напряжения и угол распространения трещины.

для однопараметрического критерия и (6) для двухпараметрического; 3) под этим углом трещина продлевается на заданный шаг, который вычисляется в процессе численного эксперимента. Создается конечно-элементная модель диска с подросшей трещиной; 4) все повторяется, начиная с п. 2. Моделирование продолжается пока трещина не пройдет через весь диск.

Распределение тангенциальных напряжений и угол распространения трещины вблизи ее вершины для трех шагов описанного алгоритма приведены на рис. 6.

Для выбора шага по длине трещины расчеты проводятся с разными шагами и сравнивается траектория. Если при уменьшении шага траектория не изменяется, значит можно использовать данный шаг.

В качестве иллюстрации работы разработанных программных средств на рис. 7 представлены траектории роста трещины в диске с углом наклона трещины $\alpha = 45^{\circ}$, полученные с различным шагом по длине трещины с помощью однопараметрического и двухпараметрического критериев МТН. В табл. 1 приведено изменение КИН, Т-напряжений и угла θ^* в процессе роста трещины для двухпараметрического критерия при шаге 3 мм, данные в столбцах А относятся к однопараметрическому критерию, а в столбцах Б – к двухпараметрическому.

Рис. 7. Траектории роста трещины, полученные с помощью однопараметрического и двухпараметрического критериев MTH с шагом: 7 мм (а), 5 мм (б), 3 мм (в).

Рис. 8. Сравнение смоделированной и экспериментальной траектории трещины, угол $\alpha = 45^\circ$.

Оба критерия (рис. 7) позволяют получить схожую траекторию трещины. Тем не менее, при любом из рассмотренных шагов прироста трещины, траектория, построенная с помощью двухпараметрического критерия, учитывающего Т-напряжения, является более гладкой. Кроме того, из рисунка видно, что траектории, полученные по двухпараметрическому критерию МТН для шагов 3 и 5 мм практически не отличают-

Шаг, №	<i>К</i> _I , МПа√мм		<i>К</i> _{II} , МПа√мм		Т-напряже- ния, МПа	<i>К</i> _э , МПа√мм		θ*, °	
	А	Б	А	Б	А	А	Б	А	Б
1	-28.34	-24.94	-46.81	-41.19	7.64	40.29	40.26	82.3	83.3
2	46.13	40.46	0.59	1.46	-14.35	46.14	40.5	-1.5	-2.57
3	42.68	37.42	8.91	8.06	-12.7	45.29	39.03	-21.9	-15.1
4	47.67	40.96	-1.31	5.72	-18.2	47.72	41.63	3.2	-9.0
5	52.20	46.22	6.19	2.31	-22.64	53.28	46.31	-13.2	-3.1
6	59.45	52.48	-6.71	1.46	-27.23	60.56	52.51	12.6	-1.7
7	66.19	60.18	14.29	1.25	-31.93	70.49	60.20	-22.5	-1.2
8	74.78	69.60	-22.13	0.77	-38.64	83.44	69.61	28.8	-0.6
9	79.15	81.31	38.74	1.71	-48.53	100.8	81.34	-39.8	-1.2
10	87.13	97.06	-56.54	1.97	-63.81	124.1	97.09	45.6	-1.1
11	87.72	122.49	93.65	2.04	-96.23	163.3	122.5	-55.0	-0.9
12	53.02	196.88	-182.8	10.34	-256.81	241.4	193.1	65.0	-1.9

Таблица 1. Изменение параметров механики разрушения для трещины с углом наклона $\theta = 45^{\circ}$ с шагом l = 3 мм

ся, что свидетельствует об адекватном моделировании траектории, начиная с шага, равного 5 мм.

На рис. 8 представлено сравнение численного моделирования траектории роста трещины с использованием двухпараметрического критерия с данными эксперимента. Из рисунка видно, что численные результаты хорошо согласуются с экспериментальными данными.

Заключение. В настоящей статье с помощью двух формулировок критерия максимальных тангенциальных напряжений проведено моделирование разрушения бразильского диска, определены разрушающая нагрузка, угол страгивания трещины и траектория трещины, достоверность полученных результатов подтверждена сравнением с данными эксперимента. В результате проведенного исследования можно сформулировать следующие выводы: 1. Учет Т-напряжений в критерии разрушения позволяет получить более точное значение угла страгивания трещины и разрушающей нагрузки. 2. Траектория трещины обобщенного нормального отрыва, построенная с учетом Т-напряжений является более гладкой и лучше совпадает с экспериментальной.

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке Российского научного фонда (проект № 18-19-00351).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Erdogan F., Sih G.C. On the Crack Extension in Plates under Plane Loading and Transverse Shear // J. of Basic Engineering. 1963. V. 85 (4). P. 519.
- Hussain M.A., Pu S.L., Underwood J. Strain Energy Release Rate for a Crack Under Combined Mode I and Mode II // Proceedings of the 1973 National Symposium on Fracture Mechanics, Maryland, 27–29 August, 1973. P. 2.
- 3. *Sih G.C.* Strain-energy-density factor applied to mixed mode crack problems // Int. J. of Fracture. 1974. V. 10 (3). P. 305.
- 4. *Williams M.L.* On the Stress Distribution at the Base of a Stationary Crack // J. of Applied Mechanics. 1957. V. 24 (1). P. 109.
- 5. *Williams J.G., Ewing P.D.* Fracture under complex stress the angled crack problem // Int. J. of Fracture. 1972. V. 26 (8). P. 441.
- Smith D.J., Ayatollahi M.R., Pavier M.J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading // Fatigue & Fracture of Engineering Materials & Structures. 2001. V. 24 (2). P. 137.
- 7. Ayatollahi M.R., Aliha M.R.M. On determination of mode II fracture toughness using semi-circular bend specimen // Int. J. of Solids and Structures. 2006. V. 43 (17). P. 5217.
- 8. Ayatollahi M.R., Aliha M.R.M. Mixed mode fracture in soda lime glass analyzed by using the generalized MTS criterion // Int. J. of Solids and Structures. 2009. V. 46 (2). P. 311.
- Saghafi H., Ayatollahi M.R., Sistaninia M. A modified MTS criterion for mixed mode fracture toughness assessment of brittle materials // Material Science and Engineering A. 2010. V. 527 (21). P. 5624.
- Ayatollahi M.R., Rashidi Moghaddam M., Berto F. A generalized strain energy density criterion for mixed mode fracture analysis in brittle and quasi-brittle materials // Theoretical and Applied Fracture Mechanics. 2015. V. 79. P. 70.
- Ayatollahi M.R., Rashidi Moghaddam M., Razavi S.M.J., Berto F. Mode I fracture analysis of PMMA using modified energy-based models // Physical Mesomechanics. 2015. V. 18 (4). P. 13.
- 12. Матвиенко Ю.Г. Двухпараметрическая механика разрушения. М.: ФИЗМАТЛИТ, 2020. 208 с.
- 13. *Матвиенко Ю.Г.* Двухпараметрическая механика разрушения в современных проблемах прочности // Проблемы машиностроения и надёжности машин. 2013. № 5. С. 37.
- 14. Степанова Л.В. Влияние высших приближений в асимптотическом разложении М. Уильямса поля напряжений на описание напряжённо-деформированного состояния у вершины трещины. Часть I // Вестник Самарского университета. Естественнонаучная серия. 2019. Т. 25. № 1. С. 63.
- 15. Степанова Л.В. Влияние высших приближений в асимптотическом разложении М. Уильямса поля напряжений на описание напряжённо-деформированного состояния у вершины трещины. Часть II // Вестник Самарского университета. Естественнонаучная серия. 2019. Т. 25. № 1. С. 80.
- 16. Степанова Л.В., Росляков П.С. Многопараметрический анализ поля напряжений у вершины трещины // Вестник Самарского университета. Естественнонаучная серия. 2015. Т. 10. № 132. С. 52.
- 17. Gupta M., Alderliesten R.C., Benedictus R. A review of T-stress and its effects in fracture mechanics // Engineering Fracture Mechanics. 2014. V. 132. P. 218.
- 18. *Панасюк В.В.* Предельное равновесие хрупких тел с трещинами. Киев: Наукова думка, 1968. 246 с.
- Schmidt R.A. A microcrack and its significance to hydraulic fracturing and fracture toughness testing // Proceedings 21st US Symposium on Rock Mechanics, Rolla, Missouri, 28–30 May 1980. P. 581.
- Atkinson C., Smelser R.E., Sanchez J. Combined mode fracture via the cracked Brazilian disc test // Int. J. of Fracture. 1982. V. 18. P. 279.
- 21. Fett T. Stress intensity factors and T-stress for internally cracked circular disks under various boundary conditions // Engineering Fracture Mechanics. 2001. V. 68 (9). P. 1119.
- Hua W., Li Y., Dong S., Li N., Wang Q. T-stress for a centrally cracked Brazilian disc under confining pressure // Engineering Fracture Mechanics. 2015. V. 149 (11). P. 37.