= МЕХАНИКА МАШИН ==

УДК 537.634

МЕХАНИЧЕСКИЕ НАПРЯЖЕНИЯ В МНОГОСЛОЙНЫХ ОСЕСИММЕТРИЧНЫХ МАГНИТНЫХ И ТОКОВЫХ СИСТЕМАХ

© 2022 г. А. К. Андреев

Московский авиационный институт (национальный исследовательский университет), Москва, Россия e-mail: alexande andreev@yahoo.com

> Поступила в редакцию 16.03.2022 г. После доработки 11.08.2022 г. Принята к публикации 19.08.2022 г.

Предложен метод расчета радиальных и аксиальных механических напряжений в многослойных магнитных и токовых системах с произвольными расстояниями между слоями. Напряжения вычисляются из энергии аксиально намагниченных цилиндров. Приведены расчетные формулы 3D-полей и размагничивающих факторов цилиндров, выраженные через функции Бесселя. Представлены тестовые результаты расчетов напряжений и, как дополнение, взаимных индуктивностей системы катушек и индуктивностей отдельных слоев.

Ключевые слова: механические напряжения, размагничивающий фактор, межслойные напряжения, функции Бесселя, пондеромоторные силы, индуктивность

DOI: 10.31857/S0235711922060037

Расчет пондеромоторных сил в магнитных системах необходим при разработке различных устройств и механизмов в машиностроении и других областях. Выполненные ранее подобные расчеты связаны, в основном, с созданием импульсных магнитных полей высокой интенсивности. Работы [1–5] посвящены технической реализации поставленных задач с акцентом на прочностные характеристики изделий. В расчетах используются приближенные формулы определения магнитных полей, полученные методами теоретической электротехники для токовых систем. Обычно рассчитываются интегральные напряжения обмотки по среднему витку.

В статье приведен альтернативный аналитический метод определения пондеромоторных сил и взаимной индуктивности сложных коаксиальных магнитных систем. Метод основан на модели аксиально намагниченного цилиндра и применим для катушек с плотной намоткой.

Катушка, цилиндр и связанные с ними системы координат показаны на рис. 1.

В модели используется факт равенства внутренних энергий аксиально намагниченных цилиндров и геометрически эквивалентных им катушек. Этот метод использовался в работе [6] при расчете взаимных индуктивностей катушек и пондеромоторных сил при взаимном продольном смещении двух магнитных систем. В [6] приведены ссылки на публикации, содержащие детали теоретической модели, не представленные в настоящей статье.

Математическая модель. В расчетах используются формулы, связывающие намагниченность цилиндра \mathbf{M}_z с плотностью поверхностного тока цилиндра $\mathbf{j}_{\text{пов}}$ и поверхностными "магнитными зарядами" [7]: $\mathbf{j}_{\text{пов}} = \text{Rot } \mathbf{M}_z$, $\boldsymbol{\sigma} = -\text{Div } \mathbf{M}_z$. При однородной

Рис 1. Схема определения индукции катушки и цилиндра **B** – (а); Схема расчета поля цилиндра **H** – (б); q(r', z') – точка источника поля; a(r, z) – точка наблюдения. Начало координат расположено в торце систем.

намагниченности ($\mathbf{M}_z = \text{const}$) $\mathbf{J}_{\text{пов}} = [\mathbf{M}_z \mathbf{n}]$ (рис. 1a), $\boldsymbol{\sigma} = \mathbf{M}_z \mathbf{n}$ (рис. 1б), где \mathbf{n} – внешняя нормаль к боковой и торцевым поверхностям цилиндра. В скалярной записи имеем соответственно

$$M_{z} = j_{\text{пов}}, \quad \sigma = M_{z}. \tag{1}$$

При заданных параметрах катушки: длине L, диаметре 2a, числе витков w и токе в витке I плотность тока обмотки j = wI/n. Полагая $j_{пов} = j$ эквивалентная намагниченность равноразмерного цилиндра равна $M_z = j$ (рис. 1а), что обеспечивает равенство индукций катушки и цилиндра **B** во всем пространстве. При определенных выше условиях равноразмерная катушка эквивалентна цилиндру и далее токовая модель (катушка) в расчетах не используется.

Поля в объемах катушки и цилиндра радикально различаются. Согласно дипольной ("зарядовой") модели намагниченности на торцах однородно намагниченного цилиндра возникают поверхностные "магнитные заряды" $\pm \sigma$ (рис. 16). "Заряды" создают размагничивающее поле $\mathbf{H}_p(\mathbf{r})$ в объеме цилиндра, определяемое размагничивающим фактором формы образца $N(\mathbf{r})$, и поле рассеяния вне его, обозначаемое также символом \mathbf{H}_p . Размагничивающее поле $\mathbf{H}_p(\mathbf{r})$ связано с \mathbf{M}_z через размагничивающий фактор $N(\mathbf{r})$

Рис. 2. График векторного поля индукции B - (a); график векторного поля H - (b). Внутренняя область магнитной системы в рамке затемнена.

Вне цилиндра $\mathbf{M}_z = 0$ и размагничивающее поле равно нулю $\mathbf{H}_p = 0$. Поле \mathbf{H}_p терпит разрыв на торцах цилиндра. \mathbf{H}_p и $N(\mathbf{r})$ есть функции координат \mathbf{r} . Вне цилиндра N(r) есть коэффициент пропорциональности между \mathbf{M}_z и полем рассеяния. Поля \mathbf{H}_p внутри и вне образца рассчитываются по единым аналитическим выражениям.

Индукция цилиндра **B** связана с \mathbf{H}_p и \mathbf{M}_z соотношением

$$\mathbf{B} = \boldsymbol{\mu}_0 \left(\mathbf{H}_p + \mathbf{M}_z \right), \tag{3}$$

где μ_0 — магнитная постоянная. На рис. 2 приведены графики векторного поля индукции *B* и поля *H* вдоль осевого сечения цилиндра.

На рис. 3 построены графики изменения B_z и H_z цилиндра вдоль продольного Z (r = 0) и радиального г (z = L/2) направлений.

Размагничивающий фактор аксиально намагниченного цилиндра. Расчет размагничивающего фактора N и поля H_p проводится с использованием модели однородно намагниченного в аксиальном направлении цилиндрического магнита. Для расчета N используется "зарядовая модель" (рис. 1б). То есть, поле цилиндра рассчитывается как суперпозиция полей от торцевых поверхностей с поверхностными "магнитными зарядами" + σ и – σ .

Схема определения потенциала отрицательно заряженного торца цилиндра в точке наблюдения a(z, r) приведена на рис. 16. Точка наблюдения может располагаться как в объеме образца, так и вне его. Магнитостатический потенциал в точке наблюдения определяемый намагниченностью равен [8]

$$\varphi(\mathbf{r}) = \int_{V'} \mathbf{M}(\mathbf{r}') \nabla' \frac{1}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}', \qquad (4)$$

где **r**' – радиус-вектор точки источника q(r', z'); **r** – радиус-вектор точки наблюдения a(r, z). $d^{3}\mathbf{r}'$ – означает элемент объема *V*'. Формулы (4) определяют потенциал как внутри (в объеме) ферромагнетика, так и вне его. Поле внутри и вне ферромагнетика

Рис. 3. Графики изменения индукции B_z и поля H_z одиночного цилиндра с параметрами a = 10 см, L = 20 см, $M_z = 2.5 \times 10^3$ А/м: (а) – вдоль оси Z; (б) – в радиальном направлении г по центру цилиндра (z = L/2).

при известном распределении $M(\mathbf{r}')$ выражается через градиент потенциала (4) в точке наблюдения a(z, r).

При однородной намагниченности M_z вдоль оси Z поля H_p равны

$$H_{p}(\mathbf{r}) = -\nabla \varphi(r) = -M_{z} \left[\nabla \int_{V'} \alpha(\mathbf{r}') \cdot \nabla' \frac{1}{|\mathbf{r} - \mathbf{r}'|} dV' \right] = -M_{z} N(\mathbf{r}),$$
(5)

где $\alpha(\mathbf{r}') = \alpha_z = 1$ — единичный вектор направления намагниченности. Штрихованный и не штрихованный операторы означают дифференцирование по точкам источника $q(\mathbf{r}', z')$ и наблюдения a(r, z), соответственно. Выражение, заключенное в квадратные скобки, определяет размагничивающий фактор $N(\mathbf{r})$. Компоненты поля H_p можно определить следующим образом $H_i = -N_{iz}M_z$, i = r, z. Исключая M_z из (5) можно записать следующий вспомогательный потенциал в цилиндрической системе координат:

$$\Psi_{1}(\mathbf{r}) = -\int_{0}^{a} r' dr' \int_{0}^{2\pi} d\theta' \begin{bmatrix} \frac{1}{\sqrt{r^{2} + r'^{2} + (L - z)^{2} - 2rr'\cos(\theta - \theta')}} \\ -\frac{1}{\sqrt{r^{2} + r'^{2} + z^{2} - 2rr'\cos(\theta - \theta')}} \end{bmatrix} 0 \le z \le L \land |r| \le a.$$
(6)

Потенциалы (6) хорошо изучены и выражаются через специальные функции. Представление через функции Бесселя [9, 10] запишем как

$$\Psi_{1}(r,z) = 2\pi a \int_{0}^{\infty} J_{0}(tr) J_{1}(ta) \Big[e^{-tz} + e^{-(L-z)} \Big] \frac{dt}{t}, \quad (0 \le z \le L) \land |r| \le a,$$
(7)

где $J_0(tr)$, $J_1(ta)$ — функции Бесселя нулевого и первого порядка от действительного аргумента. Применяя теорему Липшица и теорему сложения бесселевых функций получаем формулы для размагничивающих факторов [11]

$$N_{zz}(r,z) = -\frac{\partial}{\partial z} \psi_{1}(r,z) = \frac{1}{2} a \int_{0}^{\infty} J_{0}(tr) J_{1}(ta) \Big[e^{-tz} + e^{-(L-z)} \Big] dt, \quad 0 \le z \le L \land |r| \le a,$$

$$N_{rz}(r,z) = -\frac{\partial}{\partial r} \psi_{1}(r,z) = -\frac{1}{2} a \int_{0}^{\infty} J_{1}(tr) J_{1}(ta) \Big[e^{-tz} - e^{-t(L-z)} \Big] dt, \quad |r| \le a.$$
(8)

Для расчета полей удобно использовать координатную систему с началом координат в центре цилиндра. Размагничивающие коэффициенты для расчета 3D-полей внутри и вне цилиндра равны [6]

$$N_{zz}(n,r,z') = \begin{cases} \frac{1}{2}a(n)\int_{0}^{\infty} J_{0}(tr) J_{1}[ta(n)] \Big[e^{-tz'} + e^{-t[L(n)-z']} \Big] dt, & \text{если} \quad [0 \le z' \le L(n)], \\ \frac{1}{2}a(n)\int_{0}^{\infty} J_{0}(tr) J_{1}[ta(n)] \Big[e^{-tz'} - e^{t[L(n)-z']} \Big] dt, & \text{если} \quad [z' \succ L(n)], \\ \frac{1}{2}a(n)\int_{0}^{\infty} J_{0}(tr) J_{1}[ta(n)] \Big[e^{-t[L(n)-z']} - e^{tz'} \Big] dt, & \text{если} \quad (z' \prec 0), \\ -\frac{1}{2} \Big[\frac{L(n)-z'}{\sqrt{[L(n)-z']^{2}+a^{2}}} + \frac{z'}{\sqrt{z'^{2}+a^{2}}} - \frac{L(n)-z'}{[L(n)-z']} - \frac{z'}{[z']} \Big] \quad \text{везде}; \qquad (9) \end{cases}$$

$$N_{rz}(n,r,z') = \frac{1}{2}a(n)\int_{0}^{\infty} J_{0}(tr) J_{1}[ta(n)] \Big[e^{-tz'} - e^{t[L(n)-z']} \Big] dt, & \text{если} \quad [0 \le z' \le L(n)], \\ \frac{1}{2}a(n)\int_{0}^{\infty} J_{0}(tr) J_{1}[ta(n)] \Big[e^{-tz'} - e^{t[L(n)-z']} \Big] dt, & \text{если} \quad [z' \succ L(n)], \\ \frac{1}{2}a(n)\int_{0}^{\infty} J_{0}(tr) J_{1}[ta(n)] \Big[e^{-t[L(n)-z']} - e^{tz'} \Big] dt, & \text{если} \quad [z' \succ L(n)], \end{cases}$$

где a(n), L(n) – радиус и длина n-го цилиндра, соответственно; z'(z,n) = z + L(n)/2; Z и r – компоненты полей определим как

$$H_{z}(n,r,z') = -M_{z}(n)N_{zz}(n,r,z'), \quad H_{r}(n,r,z') = -M_{z}(n)N_{rz}(n,r,z').$$
(10)

Поле H_r перпендикулярно M_z , не вносит вклада в энергию, и в дальнейших расчетах не учитывается.

С учетом (2), (3), (10) получаем Z компоненту индукции

$$B_{z}(n,r,z') = \begin{vmatrix} \mu_{0}M_{z}(n)[1-N_{zz}(n,r,z')], & \text{если} & 0 < z' \le L(n) \land |r| < a(n), \\ \mu_{0}H_{z}(n,r,z') & \text{везде.} \end{cases}$$
(11)

Расчетная схема пондеромоторных сил для системы 3-х цилиндров (катушек) n = 3 приведена на рис. 4.

В расчетных формулах введены следующие обозначения: M – число слоев катушки (цилиндров); n – порядковый номер слоя (n = 1, ..., M); 2a1 – диаметр 1-го слоя; 2an – диаметр n-го слоя; 2aM – диаметр внешнего слоя; L(n) – длина n-го цилиндра; w(n) – число витков n-го слоя катушки.

В статье для демонстрации модели принято: концентрические цилиндры имеют равные длины L(n), число слоев цилиндров M = 3. Для задания расстояния между слоями по r выбрана степенная функция

Funck(aM, al, n, k) =
$$\left[\left(n - \frac{1}{M} - 1\right)^{k}\right] \cdot (aM - al),$$

Рис. 4. j(n) – плотность поверхностного тока *n*-го цилиндра (катушки), $M_z(n)$ – намагниченность *n*-го слоя цилиндра, z0 – сдвиг *n*-го цилиндра относительно начала координат.

где *k* — показатель степени; *k* = 1 соответствует равным расстояниям между слоями. Радиус *n*-го слоя определяется как

$$a(n) = \begin{cases} a1, если & n = 1 \lor M = 1, \\ не число, если & n > M, \\ a1 + Funck(aM, a1, n, k) & везде. \end{cases}$$

Ниже приведены результаты расчетов для следующих параметров системы:

 $a(n) = \begin{vmatrix} 10 \text{ cm}, & n = 1, \\ 15 \text{ cm}, & n = 2, \\ 20 \text{ cm}, & n = 3; \end{vmatrix} \begin{vmatrix} 20 \text{ cm}, & n = 1, \\ 20 \text{ cm}, & n = 2, \\ 20 \text{ cm}, & n = 3; \end{vmatrix} w(n) = \begin{vmatrix} 100, & n = 1, \\ 100, & n = 2, \\ 100, & n = 3; \end{vmatrix}$ $M_z(n) = \begin{vmatrix} 2.5 \times 10^3 \text{ A/M}, & n = 1, \\ 2.5 \times 10^3 \text{ A/M}, & n = 2, \\ 2.5 \times 10^3 \text{ A/M}, & n = 2, \end{vmatrix} I(n) = \begin{vmatrix} 5 \text{ A}, & n = 1, \\ 5 \text{ A}, & n = 2, \\ 5 \text{ A}, & n = 3; \end{vmatrix}$ $Funck(aM, al, n, k) = \begin{vmatrix} 0 \text{ cm}, & n = 1, \\ 5 \text{ cm}, & n = 2, \\ 10 \text{ cm}, & n = 3. \end{vmatrix}$

Энергия *n*-го цилиндра в поле *i*-го определяется формулой

$$E_{cyl}(n,i,r,z) = 2\pi \int_{-L(n)/2}^{L(n)/2} \int_{0}^{an(n)} \frac{Mz(n)B_{z}(i)}{2} r dr dz, \quad i = 1...n.$$
(12)

При n = i получаем внутреннюю энергию *n*-го цилиндра. Взаимные энергии цилиндров равны. Равенство взаимных энергий не означает равенство взаимных поверхностных напряжений, что объясняется различной площадью поверхности цилиндров вследствие различия их диаметров.

Радиальная $\langle \sigma n i_r \rangle$ и аксиальная $\langle \sigma n i_z \rangle$ плотности сил по цилиндрической и торцевой поверхностям *n*-го цилиндра в собственном поле $B_z(n)$ (усредненные по поверхностям) напряжения H/M^2 равны

$$\langle \sigma n i_r \rangle = \frac{d}{dan(n)} E_{cyl}(n, i, r, z)) / L(n) 2\pi a n(n), \qquad (13)$$

$$\langle \operatorname{\sigma} ni_z \rangle = \frac{d}{dL(n)} E_{cyl}(n,i,r,z)) / \pi an(n)^2 \,. \tag{14}$$

Далее для демонстрации конкретных методов и результатов расчетов используется упрощенная запись основных соотношений. В уравнениях индекс *n* заменяется числами 1, 2, 3. Таким образом, в расчетах теперь фигурируют три цилиндра, между которыми определяются энергетические зависимости. Такой метод делает вычисления более прозрачными и удобен для систем, содержащих небольшое число цилиндров (ориентировочно до пяти). В противном случае необходимо полностью использовать приведенный метод программирования.

Расчет напряжений в системе 3-х концентрических цилиндров (z0 = 0). В новом определении (обозначении) первой цифрой 1 обозначается рассчитываемый цилиндр или катушка. Последующие цифры относятся к внешним относительно его магнитным системам. Вместо индекса *n* используется запись: $Mz(n = 2) \rightarrow Mz^2$, $B_z(n = 1) \rightarrow B_z^2$, $B_z(n = 3) \rightarrow B_z^2$. В новом обозначении, например, энергия 2-го цилиндра в полях 1-го и 3-го записывается в виде

$$E213_{cyl}(L2,a2) = 2\pi \int_{-L(2)/2}^{L(2)/2} \int_{0}^{a2} \frac{M_z 2(B_z 1(Mz1,a1,r,z,L1) + B_z 3(Mz3,a3,r,z,L3))}{2} r dr dz.$$
(15)

Радиальная плотность силы по цилиндрической поверхности 2-го цилиндра в поле 1-го равна

$$\langle \sigma 21_r \rangle = \frac{d}{da2} E 21_{cyl} (L2, a2) / h2\pi a 2.$$
⁽¹⁶⁾

Для плотности силы по поверхности 1-го цилиндра в поле 2-го имеем

$$\langle \sigma 12_r \rangle = -\frac{d}{dal} E 12_{cyl} (L1, a1) / h2\pi a 1.$$
(17)

Легко рассчитываются напряжения, действующие на выделенный цилиндр в поле 2-х других. Так, например, суммарные радиальные напряжения 2-го цилиндра в полях 1-го и 3-го определяются как

$$\langle \sigma 213_r \rangle = \frac{dy}{da2} \left[\frac{E21(L1,a1) + E23(L3,a3)}{L2\pi a2} \right] = \langle \sigma 21_r \rangle + \langle \sigma 23_r \rangle.$$
(18)

Аналогично суммируются аксиальные напряжения.

На рис. 5 показаны взаимные радиальные механические напряжения по образующим цилиндров 3-х попарно.

Длины стрелок изображены в масштабе. Результирующие радиальные напряжения, действующие на отдельный цилиндр, получаются (с учетом знака) суммированием

Рис. 5. Поверхностные радиальные напряжения цилиндров. $\langle \sigma l_r \rangle$, $\langle \sigma 2_r \rangle$, $\langle \sigma 3_r \rangle$ – напряжения, действующие на цилиндрические поверхности отдельных цилиндров в собственных полях (H/м²). $\langle \sigma l_r \rangle = 2.275$, $\langle \sigma 2_r \rangle = 1.867$, $\langle \sigma 3_r \rangle = 1.588$. Взаимные напряжения: $\langle \sigma l 2_r \rangle = 2.259$, $\langle \sigma 2 l_r \rangle = 1.43$, $\langle \sigma 2 3_r \rangle = 2.078$, $\langle \sigma 3 2_r \rangle = 1.767$, $\langle \sigma l_r \rangle = 1.801$, $\langle \sigma 3 l_r \rangle = 0.818$.

напряжений по приведенной схеме рисунка. Так $\langle \sigma 1 32_r \rangle = \langle \sigma 13_r \rangle + \langle \sigma 12_r \rangle = 4.06$, что соответствует расчетам по формуле (18).

Аксиальные напряжения рассчитываются по такой же схеме и эти вычисления в статье не приводятся. Попарные продольные (аксиальные) силы H при смещении n-го цилиндра в поле *i*-го в Z-направлении (рис. 3) вычисляются по формуле $F_{zni}(z0) =$ $<math>= dE_{ni}/dz0$. Для системы цилиндров результирующая сила получается простым суммированием. Например, при смещении 2-го цилиндра с учетом полей 1-го и 2-го цилиндров $F_z 213(z0) = dE213(z0)/dz0$.

На рис. 6 построены графики аксиальных сил F_z , действующих на *n*-й цилиндр (n = 1, 2) при смещении в *Z*-направлении, и соответствующих взаимных индуктивностей *M* эквивалентных катушек (рис. 4).

Радиальные силы стремятся увеличить диаметр магнитной системы, а аксиальные приводят к сжатию системы с торцов. Для катушек возникновение таких сил следует из закона Ампера.

Радиус и номер цилиндра <i>a</i> (<i>n</i>), см	Энергия цилиндра <i>Е_n</i> , Дж	Радиальные напряжения цилиндра (σ,), Н/м ²	Аксиальные напряжения цилиндра $\langle \sigma_z \rangle$, H/m ²	Взаимные энергии цилиндров Е _{пі} , Дж	Взаимные радиальные напряжения (о <i>п_{ти})</i> , Н/м	Индуктивность катушек $L_n, 10^3$ Гн	Взаимная индуктивност) катушек М _и , 10 ⁴ Гн
<i>a</i> 1 = 10	0.017	-2.276	-3.406	$E_{12} = 0.013$	$\langle \sigma 3_{r12} \rangle = -2.585$	$L_1 = 1.359$	$M_{12} = 5.233$
<i>a</i> 2 = 15	0.033	-1.867	-3.013	$E_{13} = 0.011$	$\langle \sigma 2_{r13} \rangle = -3.509$	$L_2 = 2.643$	$M_{13} = 4.811$
<i>a</i> 3 = 20	0.052	-1.588	-2.714	$E_{23} = 0.026$	$\langle \sigma l_{r23} \rangle = -4.06$	$L_3 = 4.149$	$M_{23} = 11.04$

Таблица 1. Параметры магнитной системы n = 3

Рис. 6. $1 - F_z 213$ $(n = 2); 2 - F_z 123$ (n = 1); 3 - M213 (n = 2); 4 - M123 (n = 1).

В случае однородно намагниченного цилиндра полная энергия увеличивается с ростом его диаметра, т.к. возрастает объем цилиндра и размагничивающее поле. Однако плотность энергии размагничивания равна

$$E_p(L, a, r, z) = \left(1/L\pi a^2\right) 2\pi \int_{-L/2}^{L/2} \int_{0}^{a} (MzB_z(L, a, r, z)/2) r dr dz, \quad (\exists m/m),$$

и уменьшается, что и приводит к возникновению сил, увеличивающих диаметр цилиндра.

Индуктивности n = i и взаимные индуктивности катушек вычисляются из энергий и взаимных энергий цилиндров

$$M_{ni} = 2E_{ni}(n,i)/I(n)I(i).$$
 (19)

В табл. 1 суммированы основные результаты расчетов параметров магнитной системы с используемой в статье модели.

Выводы. Показана эффективность расчетов магнитных систем, базирующаяся на концепции размагничивающего фактора цилиндра. Многие задачи расчета токовых систем (катушек) традиционно использующие методы электротехники эффективно решаются средствами, представленными в статье. Все расчетные значения взаимной индуктивности системы катушек, поверхностных механических напряжений и продольных пондеромоторных сил соответствуют данным работы [12].

В модели не накладываются какие-либо ограничения на число слоев, геометрические и магнитные параметры цилиндров (катушек) и их взаимное расположение. Магнитные и геометрические параметры систем задаются с учетом поставленной задачи. Метод применим к расчетам систем с параллельными осями. Модель позволяет рассчитывать гибридные магнитные и токовые системы универсальным методом.

СПИСОК ЛИТЕРАТУРЫ

1. *Монтгомери Д*. Получение сильных магнитных полей с помощью соленоидов. М.: Мир, 1971. 359 с.

- 2. Карасик В.Р. Физика и техника сильных магнитных полей. М.: Наука, 1964. 347 с.
- 3. Кнопфель Г. Сверхсильные импульсные магнитные поля. М.: Изд. МИР, 1972. 385 с.
- 4. Паркинсон Д., Малхолл Б. Получение сильных магнитных полей. М.: Атомиздат. 1971. 200 с.
- 5. Алиевский Б.Л., Октябрьский А.М., Орлов В.Л., Постников В.А. Моделирование магнитных полей осесимметричных систем: Учебное пособие / Под ред. Б.Л. Алиевского. М.: Изд-во МАИ, 2007. 320 с.
- Андреев А.К. Поле многослойной многовитковой катушки с аналитически заданными законами изменений расстояний между слоями и витками // Проблемы машиностроения и надежности машин. 2019. № 1. С. 34. https://doi.org/10.1134/S0235711919010036
- 7. Андреев А.К. Метод расчета пондеромоторных сил и взаимных индуктивностей в коаксиальных осесимметричных магнитных системах // Письма в ЖТФ. 2021. Т. 47. Вып. 11. С. 17. https://doi.org/10.21883/PJTF.2021.11.51001.18729
- 8. Парселл Э. Электричество и магнетизм. М.: Наука, 1975. 439 с.
- Андреев А.К. Метод расчета взаимной индуктивности системы катушек с использованием модели аксиально намагниченного цилиндра // Письма в ЖТФ, 2020. Т. 46. Вып. 21. С. 48. https://doi.org/10.21883/PJTF.2020.21.50198.18042
- 10. Ахиезер А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны. М.: Наука, 1967. 368 с.
- 11. *Bateman H*. Partial differential equations of mathematical physics. New York: Dover Publications, 1944. 556 p.
- 12. Смайт В. Электростатика и электродинамика. М.: Изд. Иностранной литературы, 1954. 604 с.
- 13. Joseph R.J., Schlömann J. Demagnetizing Field in Nonellipsoidal Bodies // Appl. Phys. 1964. V. 36. Nº 5. P. 1579.
- 14. Андреев А.К. Метод расчета поверхностных механических напряжений в осесимметричных магнитных системах // Письма в ЖТФ. 2021. Т. 47. Вып. 9. С. 41. https://doi.org/10.21883/PJTF.2021.09.50907.18626
- 15. Калантаров П.Л., Цейтлин Л.А. Расчет индуктивностей: Справочная книга. Л.: Энергоатомиздат, 1986. 488 с.