НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 658.562.3

ПРОЕКТНАЯ ОЦЕНКА НАДЕЖНОСТИ СОЕДИНЕНИЯ ЦИРКУЛЯЦИОННО-НАГРУЖЕННОГО КОЛЬЦА ПОДШИПНИКА КАЧЕНИЯ С ВАЛОМ КЛАССА ДОПУСКА *j*56

© 2023 г. О. А. Леонов^{1,*}, Н. Ж. Шкаруба¹, Ю. Г. Вергазова¹, П. В. Голиницкий¹, Д. У. Хасьянова²

¹Российский государственный аграрный университет — МСХА им. К.А. Тимирязева, Москва, Россия ²Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия

*e-mail: metr@rgau-msha.ru

Поступила в редакцию 10.02.2023 г. После доработки 11.04.2023 г. Принята к публикации 20.04.2023 г.

Проведено исследование и оценка надежности соединения циркуляционно-нагруженного кольца подшипника качения 50217 и фланца демультипликатора коробки передач ЯМЗ. Выявлено, что при сложении рассеяния размеров анализируемых отверстий и валов формируется рассеяние зазоров и натягов, в котором преобладает вероятность появления посадок с натягом (93%). После запрессовки, за счет смятия шероховатости отверстия и вала увеличивается вероятность появления посадок с зазором (51.7%). Кроме того, при эксплуатации под действием нагрузки появляется вероятность, что соединения с действительным натягом меньше наименьшего функционального (8.1 мкм) могут провернуться. Доказано, что при назначении класса допуска вала *js*6 в соединении будут преобладать посадки с зазором, что приведет к проворачиванию циркуляционно-нагруженного кольца подшипника в более чем у 80% соединений, что значительно снизит надежность подшипникового узла демультипликатора и коробки передач у двигателя ЯМЗ в целом.

Ключевые слова: подшипник качения, выбор посадки, допуск посадки, класс допуска, циркуляционная нагрузка

DOI: 10.31857/S0235711923040089, EDN: XVLRWL

Важным этапом конструирования сборочных улов в машиностроении является выбор и назначение посадок для соединений, т.к. от этого зависит оптимальный запас точности, который должен обеспечить долговечность соединения и уменьшить его себестоимость [1–3]. В настоящее время при конструировании сборочных узлов в машиностроении выбор посадок циркуляционно-нагруженных внутренних колец подшипников используются три основных метода: подобия, прецедентов, и расчетный [4, 5].

При использовании метода подобия класс допуска назначают по аналогии с уже применяемыми соединениями.

Наиболее распространен метод прецедентов, когда в соответствии с ГОСТ 3325-85 "Подшипники качения. Поля допусков и технические требования к посадочным поверхностям валов и корпусов. Посадки", выбирают посадку, удовлетворяющую описанию условий эксплуатации. В соответствии с рекомендациями ГОСТ 3325-85 для посадок циркуляционно-нагруженных внутренних колец подшипников используют следующий ряд основных отклонений: *js*, *k*, *m*, *n*. При легком, нормальном и даже тяжелом режиме работы для подшипниковых узлов сельскохозяйственных машин, центрифуг, турбокомпрессоров, вентиляторов, электромоторов, редукторов и коробок передач автомобилей и тракторов, как и по методу прецедентов, так и по расчетному методу при нулевом классе точности подшипника рекомендуется выбирать посадки L0/js6 или L0/k6. При колебательном нагружении рекомендуется только посадка L0/js6. При анализе рабочих чертежей вышеназванных машин и механизмов выявлено, что чаще всего назначена посадка L0/js6.

Оценка требуемой точности достаточно сложная задача [6]. Для расчета и анализа допусков, отклонений и посадок по системе ISO находят различное программное обеспечение [7, 8]. Особенный интерес представляет подход, называемый моделью GapSpace [9], т.к. эту модель можно интегрировать с САПР (такими как Pro/E) для анализа допусков, используют имитационное моделирование [10]. Также формируют графические модели посадок с натягом [11]. При расчете посадок колец подшипников следует иметь ввиду, что натяги изменяют параметры контакта тел качения [12, 13], а также величины радиальных зазоров [14, 15], в связи с чем исследуются возможности формирования и регулирования предварительного натяга между валом и кольцом [16, 17].

В расчетном методе выбор класса допуска проводят по величине интенсивности радиальной нагрузки, которую рассчитывают по формуле [18]

$$P_r = \frac{F_r k_5 k_o k_a}{B - 2r},\tag{1}$$

где F_r – радиальная нагрузка, H; B – ширина кольца, м; r – радиус фасок, м; k_6 – динамический коэффициент посадки, зависящий от характера нагрузки; k_0 – коэффициент, учитывающий степень ослабления посадочного натяга при полом вале или тонкостенном корпусе; k_a – коэффициент неравномерности распределения радиальной нагрузки между рядами шариков или роликов.

Как правило, при использовании расчетного метода получают те же основные отклонения, что и при использовании метода подобия. Преимущество данного метода – более обоснованный выбор, с учетом реальной нагрузки на проектируемое соединение. С другой стороны, при выборе посадки соединения необходимо учитывать, что заданный ресурс безотказной работы соединения обеспечивается двумя составляющими – износостойкостью поверхностей трения и точностью обработки деталей [19, 20], что в данной формуле не учитывается.

Рекомендуемая посадка L0/js6 — переходная, а это значит, что при сборке подшипникового узла в соединении могут образовываться как зазоры, так и натяги. При этом циркуляционно-нагруженное кольцо в подшипниковом узле должно вращаться вместе с валом, для этого оно должно быть посажено на вал с натягом. В противном случае, если в посадке будет зазор, кольцо будет проворачиваться относительно вала, что приведет к изнашиванию внутренней поверхности кольца и наружной поверхности вала и выходу из строя подшипникового узла.

Известно, что долговечность и надежность работы подшипникового узла в значительной степени зависит от распределения нагрузки по телам качения. Практика показывает, что наличие зазора в посадках колец подшипника в значительной степени влияет на распределение нагрузки между телами качения, а, следовательно, и на долговечность подшипника.

Цель исследования. Оценить надежность соединения в подшипниковом узле циркуляционно-нагруженного кольца с валом при назначении посадки *L0/js*6.

Средства и методы исследований. В исследованиях использованы положения теории точности, теории сопротивления материалов и единой системы допусков и посадок, теории вероятности и математической статистики.

Объект исследований — соединение в подшипниковом узле циркуляционно-нагруженного кольца (деталь типа отверстие) с фланцем (деталь типа вал) демультиплика-

Параметр	Обозначение	Значение для посадки Ø85L0/js6
Диаметр соединения, м	d _n	0.085
Длина соединения, м	l	0.022
Внутренний диаметр вала, м	d_1	0.040
Внутренний диаметр дорожки кольца, м	<i>d</i> ₂	0.1025
Радиальная нагрузка, кН	F_r	4.0
Ширина кольца, м	В	0.028
Радиус фасок, м	r	0.003
Посадка циркуляционно-нагру- женного кольца, мм	_	$85\frac{-0.02}{+0.011}$ -0.011
Допуск отверстия внутреннего кольца, мм	T_D	0.02
Допуск вала, мм	T_d	0.022

Таблица 1. Характеристики подшипника качения и сопрягаемого вала демультипликатора коробки передач для двигателя ЯМЗ

	~ ~													
19	опина /	. N	лет	nono	гиче	ские	x 21	лакто	рис	тики	cne	лств	изме	пении
	Continue a		101	posio	1 11 10	CILIIC	2144	Juni	pric	/ I I I I I I I I I I I I I I I I I I I	v p v	деть	1101010	permin

Средства измерений	Условное обозначение	Диапазон измерений, мм	Цена деления, мм	Погрешность измерений, мм
Нутромер инди- каторный	НИ-100-0.001	50-100	0.001	±0.002
Скоба рычажная	CP-100-0.002	75-100	0.002	± 0.002

тора коробки передач для двигателя ЯМЗ, характеристики представлены в табл. 1. Предмет исследований — параметры распределения зазоров и натягов в посадке L0/js6.

Средства измерений циркуляционно-нагруженного кольца и вала демультипликатора выбраны в соответствии с требованиями ГОСТ 8.051-81 "Государственная система обеспечения единства измерений. Погрешности, допускаемые при измерении линейных размеров до 500 мм". Для измерения диаметра вала демультипликатора была использована скоба рычажная СР-100, а для измерения внутреннего диаметра отверстия подшипника нутромер повышенной точности НИ-100, описание средств измерений представлены в табл. 2.

Результаты исследований и их анализ. Используя исходные данные, представленные в табл. 1, проведем проверочный расчет правильности назначения посадки циркуляционно-нагруженного кольца на фланец демультипликатора КПП ЯМЗ с помощью выражения (1) получим величину интенсивности радиальной нагрузки, которая составила $P_r = 530$ кН/м. Согласно рекомендациям ГОСТ 3325-85 для данной величины интенсивности радиальной нагрузки до 600 кН/м класс допуска *js*6 или *js*5. Таким образом, расчетный метод подтверждает данные по назначению посадки методом прецедентов.

Проверим параметры, характеризующие надежность и долговечность соединения в подшипниковом узле циркуляционно-нагруженного кольца с валом при назначении посадки *L0/js*6. Для проведения исследований отобраны 100 подшипников 50217 и

Рис. 1. Распределение рассеяния размеров внутреннего кольца подшипника при $T_D = 0.02$ мм: I - дифференциальная кривая теоретического распределения; <math>2 - интегральная кривая теоретического распределения; 3 - гистограмма эмпирического распределения.

100 фланцев демультипликатора коробки передач для двигателя ЯМЗ, характеристики которых представлены в табл. 1.

Используя средства измерений (табл. 2), проведены измерения внутреннего диаметра подшипников 50217 и наружного диаметра фланца демультипликатора (поверхность под подшипник).

В результате исследования выявлено, что рассеяние внутреннего диаметра кольца подшипника качения и наружного диаметра вала подчиняется закону нормального распределения (рис. 1, 2), параметры рассеяния измеряемых размеров представлены в табл. 3.

На рис. 1 и 2 представлены распределения размеров внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора относительно поля допуска.

Из рис. 1 видно, что подшипники качения по внутреннему диаметру изготовлены с запасом точности, брак отсутствует. Из рис. 2 видно, что рассеяние размеров наружного диаметра фланца демультипликатора смещено относительно середины поля допуска в сторону исправимого брака, который равен 3.59%. Суммарная вероятность появления бракованных фланцев составляет 4.24%.

На основании полученных данных (табл. 3), проведем анализ параметров распределения зазоров и натягов в посадке *L0/js*6. Рассчитанные параметры распределения зазоров и натягов в соединении внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора представлены в табл. 4.

Если рассматривать соединение вала и отверстия как простые вероятностные характеристики, то получается, что в формируемой посадке соединений натягов будет значительно больше, чем соединений с зазором и для нашего случая эти величины составят: с натягом 93.04%, с зазором 6.94%. Но при формировании соединений с натягом происходит смятие шероховатости поверхности, как отверстия, так и вала. Величину смятия шероховатости рассчитывают по формуле [7]

$$\Delta N_R = 2A\eta (Ra_d + Ra_D),$$

где A – коэффициент перевода параметра Ra в R_z (для регулярного микрорельефа A = 5.4); η – общий коэффициент смятия шероховатости поверхностей при соединении двух

Рис. 2. Распределение рассеяния размеров вала мультипликатора при $T_d = 0.022$ мм: 1 – дифференциальная кривая теоретического распределения; 2 – интегральная кривая теоретического распределения; 3 – гистограмма эмпирического распределения.

деталей (при запрессовки со смазкой $\eta = (0.25 - 0.35)$; Ra_d , Ra_D – параметры шероховатости вала и отверстия (внутреннего диаметра подшипника).

Исходные данные и результаты расчета величины смятия шероховатости представлены в табл. 5.

При эксплуатации, когда соединение нагружают радиальной силой F_r , происходят упругие деформации, которые могут раскрыть стык соединения. Величину натяга, компенсирующую это раскрытие, рассчитывают по формуле [7]

Параметр распределения	Внутренний диаметр подшипника	Наружный диаметр вала
Среднее арифметическое \overline{X} , мм	84.9899	84.9982
Среднее квадратическое σ , мм	0.0023	0.0051
Зона рассеяния ω, мм	0.014	0.0308
Величина сдвига с, мм	-0.0001	-0.0018
Коэффициент риска (неисправимый брак) <i>t</i> 1	4.33	1.8
Коэффициент риска (исправимый брак) t ₂	4.24	2.49
Вероятный процент исправимого брака Q _{иб} , %	0	3.59
Вероятный процент неисправимого брака Q _{нб} , %	0	0.65
Суммарный брак $Q_{\mathrm{бр}}, \%$	0	4.24

Таблица 3. Параметры рассеяния измеренных размеров внутреннего диаметра подшипника и наружного диаметра вала

Параметр посадки	Значения
Среднее квадратическое отклонение зазоров (натягов) σ , мм	0.0056
Наибольший зазор S _{max} , мм	0.011
Наибольший натяг N _{max} , мм	0.031
Средний зазор (натяг) S _e , мм	0.0083
Интервал от нуля до центра группирования зазоров X_0 , мм	-0.0083
Коэффициент риска (от нуля до центра) t_0	1.48
Вероятность появления соединений с натягом в интервале от центра группирования до нуля $Q_{N0}, \%$	43.04
Суммарная вероятность появления соединений с натягом $Q_N, \%$	93.04

Таблица 4. Параметры распределения зазоров и натягов соединения внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора

Таблица 5. Расчет параметров посадки соединений внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора

Параметр	Значение для посадки Ø85L0/js6
Диаметр соединения <i>d_n</i> , м	0.085
Длина соединения <i>I</i> , м	0.022
Внутренний диаметр вала <i>d</i> ₁ , м	0.40
Внутренний диаметр дорожки кольца <i>d</i> ₂ , м	0.1025
Коэффициент трения f	0.08
Радиальная нагрузка <i>F_r</i> , кН	4.0
Коэффициент Пуассона материала вала и внутреннего кольца подшипника μ_d, μ_D	0.27
Модуль упругости вала и кольца подшипника (сталь) <i>E</i> _d , <i>E</i> _D , Па	2×10^{11}
Шероховатость поверхности вала <i>Ra_d</i> , мкм	1.25
Шероховатость поверхности внутреннего кольца подшипника Ra_D , мкм	1.25
Коэффициент Ляме вала C _d	1.30
Коэффициент Ляме внутреннего кольца подшипника C_D	5.67
Поправка на смятие шероховатости ΔN_R , мкм	8.1
Давление от радиальной силы <i>p_r</i> , МПа	2.14
Наименьший функциональный натяг $N_{F_{r\min}}$, мкм	6.3

$$N_{F_{r\min}} = p_r d_n \left(\frac{C_d}{E_d} + \frac{C_D}{E_D} \right),$$

где p_r – давление от радиальной силы, Па; C_d , C_D – коэффициент Ляме вала и внутреннего кольца подшипника; E_d , E_D – модуль упругости вала и кольца подшипника, Па.

Давление от радиальной силы рассчитывают по формуле [7]

$$p_r = \frac{F_r}{d_n l},$$

Параметр посадки	Значения
Среднее квадратическое отклонение зазоров (натягов) σ , мм	0.0056
Наибольший зазор S _{max} , мм	0.019
Наибольший натяг N _{max} , мм	0.023
Средний зазор (натяг) S _e , мм	-0.0002
Интервал от нуля до центра распределения в сторону зазоров $X_{\rm l}$	0.0002
Коэффициент риска (от нуля до центра распределения в сторону зазоров) $t_{\rm l}$	0.042
Интервал (от нуля до $N_{F_{r\min}}$) X_2	0.0063
Коэффициент риска (от нуля до $N_{F_{r\min}}$) t_2	1.12
Вероятность появления соединений с натягом в интервале от центра группирования до нуля $Q_{N\!0},\%$	0.017
Вероятность появления соединений с натягом в интервале от центра группирования (до $N_{F_{r\min}})QN_{F_{r\min}},\%$	36.95
Суммарная вероятность появления соединений с натягом Q_N , %	13.05

Таблица 6. Параметры соединений внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора после сборки (запрессовки)

где *F_r* — радиальная нагрузка, H; *d_n* — диаметр соединения, м; *l* — длина соединения, м. Коэффициент Ляме вала и внутреннего кольца подшипника рассчитывают по формуле [7]

$$C_{d} = \frac{1 + \left(\frac{d_{1}}{d_{n}}\right)^{2}}{1 - \left(\frac{d_{1}}{d_{n}}\right)^{2}} - \mu_{d}; \quad C_{D} = \frac{1 + \left(\frac{d_{n}}{d_{2}}\right)^{2}}{1 - \left(\frac{d_{n}}{d_{2}}\right)^{2}} + \mu_{D},$$

где μ_d , μ_D — коэффициенты Пуассона материала вала и внутреннего кольца подшипника; d_1 — внутренний диаметр вала, м; d_2 — внутренний диаметр дорожки кольца, м.

Исходные данные и результаты расчета величины наименьшего функционального натяга представлены в табл. 5.

Параметры рассеяния зазоров и натягов в соединении внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора после сборки (запрессовки) представлены в табл. 6.

На рис. 3 представлены распределения зазора в соединении внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора. В результате смятия шероховатости происходит смещение зоны рассеяния зазоров и натягов, как следствие – увеличение вероятности появления соединений с зазором и уменьшение с натягом (рис. 3). В нашем случае, вероятность появления соединений с зазором – 51.7%, с натягом – 49.3%.

В результате расчетов видно, что вероятность появления соединений с натягом, которые могут выдержать расчетную нагрузку без проворачивания, для нашего примера составит 13.05%.

Полученное значение указывает на то, что применение рекомендованной посадки *L0/js*6 приведет к проворачиванию циркуляционно-нагруженного кольца подшипника в более чем у 80% соединений, что значительно снизит долговечность работы подшипникового узла, демультипликатора и коробки передач у двигателя ЯМЗ в целом.

Рис. 3. Кривые распределения зазора в соединении внутреннего диаметра подшипника и наружного диаметра фланца демультипликатора.

Для замены подшипникового узла будет необходимо снять коробку передач с машины и провести ее частичную разборку, заменить подшипник и фланец демультипликатора, что достаточно трудоемко и дорого.

Выводы. В результате проведенных исследований рассеяния размеров циркуляционно-нагруженного внутреннего кольца подшипника 50217 и посадочной поверхности фланца демультипликатора коробки передач ЯМЗ, установлено, что диаметр внутреннего кольца изготовлен с запасом точности, вероятность появления брака равна нулю, поверхность цапфы под подшипник обработана с небольшим процентом брака (4.24%), преимущественно исправимым (3.59%). В результате сложения зон рассеяния размеров анализируемых отверстий и валов формируется рассеяние зазоров и натягов в посадке будущего соединения, при этом в полученном распределении преобладает вероятность появления посадок с натягом (93%). В процессе сборки соединения с натягом происходит смятие шероховатости поверхности отверстия и вала, величина которого для данного соединения составляет 8.1 мкм. В результате смятия шероховатости поверхности отверстия и вала увеличивается вероятность появления соединений с зазором (51.7%). При эксплуатации, когда соединение нагружают радиальной силой, происходят упругие деформации, которые раскрывают стык соединения. Установлено, что для анализируемого соединения величина суммарной упругой деформации составляет 6.3 мкм. Вероятность появления соединений с натягом, которые могут выдержать расчетную нагрузку без проворачивания составит всего 13.05%. Таким образом доказано, что при назначении класса допуска вала *js*6 в соединении будут преобладать посадки с зазором, что приведет к проворачиванию циркуляционно-нагруженного кольца подшипника в более чем у 80% соединений. Это значительно снизит надежность подшипникового узла демультипликатора и коробки передач у двигателя ЯМЗ в целом.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Erokhin M.N., Leonov O.A., Shkaruba N.Z. et al.* Application of Dimensional Analysis for Calculating the Total Misalignment between a Seal and a Shaft // J. of Machinery Manufacture and Reliability. 2021. V. 50. № 6. P. 524.
- 2. *Yao H.X., Miao E.M., Niu P.C.* Selection of Hole and Axle Interference Fit Tolerance // Applied Mechanics and Materials. 2011. V. 80–81. P. 475.
- 3. *Li Q., Yang L., Zhao W.Z. et al.* Design of Positioning Mechanism Fit Clearances Based on On-Orbit Re-Orientation Accuracy // Applied sciences-basel. 2019. V. 9 (21). P. 4712.
- Repcic N., Saric I., Muminovic A. Software for Calculation and Analysis of ISO System of Tolerances, Deviations and Fits // 23rd Int. DAAAM Symposium on Intelligent Manufacturing and Automation – Focus on Sustainability. 2012. P. 0195.
- Skvortsov S., Khryukin V., Skvortsova T. Statistical Simulation and Probability Calculation of Mechanical Parts Connection Parameters for CAD/CAM Systems // Int. Russian Automation Conference (RusAutoCon). 2020. V. 641. P. 861.
- 6. *Zou Z.H., Morse E.P.* A gap-based approach to capture fitting conditions for mechanical assembly // Computer-Aided Design. 2004. V. 36 (8). P. 691.
- 7. Якушев А.И., Бежелукова Е.Ф., Плуталов В.Н. Допуски и посадки ЕСДП для гладких цилиндрических деталей (расчет и выбор). М.: Изд-во стандартов, 1978. 256 с.
- 8. *Leonov O.A., Shkaruba N.Zh.* Calculation of Fit Tolerance by the Parametric Joint Failure Model // J. of Machinery Manufacture and Reliability. 2020. V. 49. № 12. P. 1027.
- 9. Zhang Y., Yang M.S. A Coordinate SPC Model for Assuring Designated Fit Quality Via Quality-Oriented Statistical Tolerancing // Computers & Industrial Engineering. 2009. V. 57 (1). P. 73.
- Бехер С.А., Степанова Л.Н., Рыжова А.О., Бобров А.Л. Контроль натяга колец подшипников поверхностными волнами с использованием эффекта акустоупругости // Дефектоскопия. 2021. № 4. С. 13.
 https://doi.org/10.21857/S0120208221040022
 - https://doi.org/10.31857/S0130308221040023
- 11. Рыжова А.О., Бехер С.А., Попков А.А. Использование метода акустоупругости для контроля упругих механических напряжений в материале колец подшипников // Дефектоскопия. 2020. № 11. С. 28.
- 12. Фомин В.И. Расчет циклической нагруженности подшипников качения с учетом вращательной подвижности их колец // Высокие технологии в строительном комплексе. 2022. № 1. С. 175.
- 13. *Холодилов О.В.* Комплексный подход к оценке состояния подшипников качения физическими методами // Трение и износ. 2021. Т. 42. № 3. С. 358. https://doi.org/10.32864/0202-4977-2021-42-3-358-369
- 14. Волняков К.А., Копылов В.М. Оптимизация режимов нагрузки подшипниковых узлов при интенсивных тепловых нагрузках // Робототехника и техническая кибернетика. 2020. Т. 8. № 1. С. 72.

https://doi.org/10.31776/RTCJ.8108

15. Кузьменко И.В. Дефекты посадочных мест подшипников и причины их возникновения // Конструирование, использование и надежность машин сельскохозяйственного назначения. 2019. № 1 (18). С. 101.

- 16. Санинский В.А., Худяков К.В., Смирнова Е.Н., Бурлаков С.В. Способ повышения точности сборки подшипников качения взаимной компенсацией погрешностей комплектующих деталей // Известия Волгоградского государственного технического университета. 2018. № 2 (212). С. 40.
- 17. *Нахатакян Ф.Г., Нахатакян Д.Ф.* Учет радиального зазора в роликовых опорах при определении параметров нагруженности // Известия Тульского государственного университета. Технические науки. 2018. № 2. С. 285.
- Мицкевич В.Г., Маштаков А.П. Анализ работы подшипниковых узлов с подшипниками качения // Современные проблемы совершенствования работы железнодорожного транспорта. 2018. № 14. С. 307.
- 19. Андриенко Л.А., Сазонов В.А. Оценка изменения технического состояния подшипников качения в результате изнашивания // Инженерный журнал: наука и инновации. 2017. № 9 (69). С. 9. https://doi.org/10.18698/2308-6033-2017-9-1680
- Иванщиков Ю.В., Сковородин В.Я., Доброхотов Ю.Н. и др. Исследование функциональной связи конструктивных и рабочих параметров подшипникового узла // Вестник Чувашской государственной сельскохозяйственной академии. 2020. № 1 (12). С. 91. https://doi.org/10.17022/6fya-1p90