НАДЕЖНОСТЬ, ПРОЧНОСТЬ, ИЗНОСОСТОЙКОСТЬ МАШИН И КОНСТРУКЦИЙ

УДК 538.951: 53.097

РОЛЬ СКВАЖНОСТИ ИМПУЛЬСНОГО ТОКА ПРИ РАСТЯЖЕНИИ ТИТАНА

© 2023 г. В. В. Столяров

Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия e-mail: vlstol@mail.ru

Поступила в редакцию 27.02.2023 г. После доработки 07.04.2023 г. Принята к публикации 20.04.2023 г.

Рассмотрено воздействие импульсного тока на деформационное поведение при растяжении титана, полученного постдеформационным отжигом после холодной прокатки крупнозернистого и ультрамелкозернистого состояний. Исследовано влияние скважности импульсного тока в широком интервале на форму кривых "напряжение—деформация" и механические свойства. Показано, что снижение скважности вызывает увеличение теплового эффекта тока, снижение напряжений течения, прочности и пластичности, а также усиленное шейкообразование. Повышение скважности приводит к отсутствию нагрева и проявлению электропластического эффекта, повышению прочности и пластичности, которое зависит от структурного состояния крупнозернистого титана и способа его получения. Рассмотрены возможные физические механизмы упрочнения, связанные с двойникованием, деформационным старением и малоцикловой усталостью.

Ключевые слова: титан, импульсный ток, скважность, растяжение, микроструктура, упрочнение

DOI: 10.31857/S0235711923040168, EDN: XXEOOW

Известно, что электропластический эффект (ЭПЭ) наиболее сильно проявляется при воздействии импульсного тока в отличие от постоянного или переменного тока [1]. Поэтому в настоящей статье рассматривается случай пластической деформации растяжением в сопровождении импульсного тока, а не единичных импульсов. Роль амплитуды импульса (плотности и мощности тока) при растяжении ясна и прогнозируема. Она заключается, как правило, в наличии критической плотности $j_{\rm KD} = 10 - 100 \,{\rm A/mm}^2$ и усилении всех сопровождающих ток эффектов при ее повышении: теплового, электропластического (ЭПЭ), скин- и пинч-магнитопластического при прочих равных условиях эксперимента [2]. Импульсные воздействия разной природы (механические, акустические, ударные, волновые, электрический ток) помимо амплитуды сигнала характеризуются временными параметрами, к которым относятся длительность и период импульсов, соответственно, τ и T. Соотношение параметров T/τ определяет важную для импульсных воздействий характеристику, называемую скважностью Q. Рассматривая интервал возможных величин скважности импульсного тока, можно считать, что она может изменяться от нуля (постоянный ток, $\tau = \infty$) до бесконечности. Применение режима постоянного тока из-за сильного нагрева наименее целесообразно, если предполагается сохранить стабильную исходную структуру и свойства. Повышение скважности, естественно, приведет к снижению теплового эффекта вследствие релаксации термических напряжений и повышению роли непосредственно самого тока, т.е. ЭПЭ. Можно оценить необходимую для релаксации величину Q, при которой роль теплового эффекта в снижении напряжений течения будет минимальной, а роль самого тока максимальной.

В первых работах по ЭПЭ *при растяжении*, как правило, применяли постоянный ток, который соответствует нулевой скважности [3]. Позже, роль скважности косвенно была исследована при растяжении монокристаллов цинка. Повышение частоты импульса с 5×10^{-3} до 5×10^{-1} Гц при длительности импульса 10^{-4} с (что соответствовало снижению скважности на два порядка с 2×10^6 до 2×10^4) привело к снижению деформационного упрочнения и амплитуды скачка напряжения в 3-4 раза, хотя температура образца при этом практически не менялась [1]. В подавляющем большинстве статей по ЭПЭ при растяжении информация о скважности импульсного тока отсутствовала. В чистых металлах [4] или стабильных однофазных сплавах (например, Al-Mg-Si) [5] авторы наблюдали снижение напряжений течения, которое увеличивалось при повышении плотности тока. Напротив, в термически упрочняемом алюминиевом сплаве 2024 (Al-Cu-Mg), наблюдалось упрочнение под действием импульсного тока, как без деформации [6], так и при растяжении [7]. Внимание исследователей ЭПЭ было в основном сфокусировано на роли плотности тока и длительности импульса, оставляя в стороне роль частоты (скважности).

Напротив, в статьях по применению ЭПЭ в процессах обработки давлением данные по частоте импульса приводятся. Для повышения деформируемости при прокатке полос хрупкого при комнатной температуре магниевого сплава AZ31 была использована частота в интервале 200-700 Гц при $\tau=80$ мкс, что соответствовало скважности Q=20-60 [8]. Применение импульсного тока при изгибе алюминиевого сплава 1050-H18 выполнялось при частоте 200-300 Гц и $\tau=50$ мкс, что соответствовало Q=100 [9]. При электропластической прокатке сплава $2\tau-Ti-Al-V$ также были использованы близкие параметры частоты и длительности импульса, которые соответствовали скважности Q=20 [10]. В обзоре, посвященном электроимпульсной обработке, упоминается отдельное влияние длительности импульса 15-30 мкс и частоты 100-200 Гц, которые снижают напряжения течения и повышают пластичность для магниевых сплавов [11]. В последние годы в статьях по 2π 0 при растяжении 2π 1 стали приводится длительность импульса и частота, позволившие оценить скважность, которая находилась в интервале 2π 2 с 2π 3. В целом можно заключить, что выбор скважности происходил произвольным образом без анализа.

В работе [15] исследовано деформационное поведение при растяжении чистого титана в сопровождении постоянного тока (Q=0). Авторы не только подтвердили наличие ЭПЭ, но и обнаружили рекристаллизацию и рост зерен при относительно небольших плотностях тока. Интересно, что структурные изменения не наблюдались при пропускании тока без деформации или при повышенной температуре с деформацией без тока.

Рассмотренные статьи дают представление о влиянии постоянного и импульсного тока в довольно узком интервале скважности, соответствующем довольно большому термическому эффекту и возможно не очень значительному вкладу атермического эффекта тока.

Целью настоящей статьи является исследование влияния скважности импульсного тока при растяжении в крупнозернистом технически чистом титане, полученном разными термомеханическими обработками, в более широком интервале, особенно при условиях, когда тепловой эффект практически отсутствует.

Материал и методы исследования Объектом исследования служил технически чистый титан BT1-0 (зарубежный аналог Grade-2) в виде прутка Ø40 мм. В табл. 1 дан химический состав титана BT1-0 (Grade 2 для сравнения), а также силумина.

Титан был исследован в крупнозернистом (КЗ) состоянии, полученном двумя способами: 1) холодная прокатка (ХП) в калибрах и последующий отжиг при 700°С в течение 1 ч; 2) равноканальное угловое прессование (РКУП) с последующей холодной 28 СТОЛЯРОВ

Гаолица 1. Химическии состав (вес. %) сплавов											
Материал	Si	Cr	Fe	C	О	N	Н				
BT1-0	-	-	0.1	0.2	0.25	0.02	0.010				

0.2

0.15

0.02

0.015

0.1

Таблица 2. Режимы тока

Grade 2

№ обр.	Вид обработки	Вид тока	Плотность тока j , $A/мм^2$	Длительность импульса т, мкс	Скважность, Q	T _{oбp} , °C
1	XΠ + 700°C	без тока	0	_	_	25
2		импульсный	250	1000	20000	26
3			95	100	10	130
4		постоянный	18	_	0	130
1	РКУП +	_	0	_	_	25
2	$+ X\Pi + 700^{\circ}C$	импульсный	250	1000	40000	25
3			95	100	10	130
4		постоянный	18	_	0	130

прокаткой и отжигом при 700°С в течение 1 ч. Детали РКУП процесса и последующей холодной прокатки описаны в [16]. В обоих случаях холодная прокатка выполнялась в калибрах со степенью деформации $\varepsilon = 73\%$.

Механические испытания на растяжение выполняли при комнатной температуре на горизонтальной машине ИР 5081-20 со скоростью 1 мм/мин. Образцы для испытания были изготовлены точением и имели размеры рабочей части $\emptyset 1.65 \times 25 \text{ мм}^2$.

Режимы и вид тока были выбраны так, чтобы на кривых растяжения фиксировалась стадия деформационного упрочнения, а тепловой эффект и температура образца были бы минимальны. Использовали параметры импульсного и постоянного тока, которые позволяли варьировать скважность $Q = T/\tau$, где T, τ – период и длительность импульса, в интервале 0-40000 (рис. 1, табл. 2).

Предполагается, что постоянный ток (Q = 0) является частным случаем импульсного тока при бесконечно большой величине т.

Растяжение выполняли после стабилизации температуры образца, повышение которой было вызвано введением тока. Температуру образца контролировали термопарой и инфракрасной камерой. Расхождение измеренных температур не превышало ± 5 °C.

Рис. 1. Пример осциллограммы при Q = 10 (а) и схема импульсного тока (б).

Рис. 2. Кривые "напряжение—деформация" титана в K3 1 (а) и K3 2 (б) состояниях: I — без тока, 25° C; 2 — импульсный ток, 27° C (а), 27° C (б), $Q = 2 \cdot 10^4$ (а), $Q = 4 \cdot 10^4$ (б); 3 — импульсный ток, 130° C, Q = 10; 4 — постоянный ток, 130° C, Q = 0.

Экспериментальные результаты. На рис. 2 представлены кривые растяжения с разными режимами тока в крупнозернистом титане, структурное состояние которого было получено разными термомеханическими обработками. Видно, что механические свойства титана в состоянии КЗ 1 (рис. 2a) при растяжении без тока (кривые *I*) отличаются меньшим пределом прочности (на 140 МПа) и большим удлинением до разрушения (на 5%) по сравнению с титаном КЗ 2 (рис. 2б).

Введение импульсного тока скважностью $O = (2-4) \times 10^4$ в обоих структурных состояниях титана приводит к появлению скачков напряжения вниз амплитудой около 30 МПа, практически без изменения температуры образца (кривые 2). Амплитуда скачка напряжения уменьшается в два раза при двукратном уменьшении длительности импульса с 1000 до 500 мкс (рис. 2a, область предела текучести, кривая 2). Однако расположение кривых растяжения при токе высокой скважности в обоих типах титана отличается. В титане КЗ1 наблюдается повышение одновременно прочности и удлинения до разрушения, соответственно, на 40-50 МПа и на 10%, а в титане К32 – снижение прочности на 70 МПа в сравнении с растяжением без тока. Снижение скважности тока на три порядка в обоих структурных состояниях титана приводит к заметному повышению температуры до 130°C, исчезновению скачков напряжения, снижению прочности, по сравнению с растяжением без тока, на 100 МПа (в КЗ1) и 230 МПа (в K32), и снижению удлинения до разрушения на 11% (K31) и 8% (K32) (кривые 3). Действие постоянного тока (кривые 4) также повышает температуру образца до 130°C и дополнительно снижает прочностные и пластические характеристики, соответственно, на 200 МПа (КЗ1) и 340 МПа (КЗ2) и 12% (КЗ1) и 10% (КЗ2).

Обсуждение. Представленные результаты свидетельствуют о двух важных следствиях применения электрического тока в процессе растяжения образцов титана. Деформационное поведение материала под током определяется режимом (видом) тока и структурным состоянием исследуемого титана.

Оказалось, что изменение в широком интервале значений такого параметра импульсного тока, как скважность, оказывает сильное влияние на форму деформационной кривой и ее относительное расположение по отношению к растяжению без тока. Снижение скважности фактически означает уменьшение времени релаксации, необ30 СТОЛЯРОВ

Рис. 3. Вид шейки образца на растяжение перед разрушением.

ходимой для восстановления падения напряжений течения, вызванного введением тока.

На всех кривых с низкой скважностью импульсного тока (Q=10) и тем более при постоянном токе (Q=0) сокращается область равномерного удлинения и увеличивается область сосредоточенной деформации (шейки) (рис. 3), что в целом приводит к уменьшению относительного удлинения почти вдвое.

Это в свою очередь смещает точки пиковых нагрузок в область меньших деформаций. Усиление шейкообразования в титане связано с кратным повышением плотности тока при уменьшении сечения и, как следствие, с повышением локальной температуры, возможно до температуры фазового $\alpha \to \beta$ -превращения. В этой связи, ускоренное разрушение образца может быть обусловлено изменением механизма деформации. Отмеченные особенности деформационного поведения согласуются с результатами для зарубежного аналога титана Grade 2 с меньшей прочностью и с меньшим размером зерен 9 мкм, чем титан BT1-0 в настоящей статье. Авторы наблюдали интенсивное шейкообразование при введении тока, сопровождавшееся уменьшением равномерной деформации [17].

Другим важным следствием воздействия импульсного тока является необычный, хотя и слабый, эффект одновременного повышения прочности и пластичности, который фиксировался только для структурного состояния КЗ1 и только для высокой скважности тока. Очевидно, что подобное изменение свойств нельзя связать с тепловым эффектом тока. Из литературы известны случаи упрочнения, вызванные током. Однако они относятся к сложным сплавам и сталям с гетерогенной многофазной структурой, в которых возможны старение [18] или возникновение виброакустических колебаний [19]. Наиболее близок к нашему случаю пример упрочнения при растяжении с током в однофазном сплаве Ti—Al, описанный в работе [20]. В чистых металлах слабый эффект упрочнения под действием постоянного тока был отмечен только для монокристаллического и технически чистого ГЦК алюминия [21], имеющего высокую энергию дефектов упаковки и высокую гомологическую температуру.

Предположительно, наблюдающееся упрочнение в настоящей статье связано с текстурными особенностями титана. Известно, что в силу низкой симметрии ГПУ структуры титана ($c/a \le 1.633$, где c, a — параметры кристаллической решетки), деформационный механизм при комнатной температуре сильно зависит от конкуренции систем двойникования и дислокационного скольжения, ориентации и размера зерен, которые в свою очередь определяются схемой деформации и температурой отжига.

Известно, что кристаллографическая текстура K3 титана после холодной прокатки ($\epsilon > 70\%$) характеризуется присутствием систем двойникования $\{10\,\overline{1}2\}$ (1011), $\{11\,\overline{2}2\}$ (1123) и дислокационного скольжения $\{10\,\overline{1}0\}$ (11 $\overline{2}0$) [22]. В текстуре после холодной прокатки РКУП титана двойникование подавлено и присутствуют только системы скольжения [23]. Как показали наши эксперименты, дисперсность микроструктуры после прокатки РКУП состояния выше — деформационные полосы тоньше и короче (рис. 4а, б).

Различия в текстуре и микроструктуре деформированных состояний наследуются и в микроструктуре титана после отжига. Если текстура рекристаллизации и деформа-

Рис. 4. Микроструктура титана в поперечном направлении: (а) - холодная прокатка 73%; (б) - РКУП + холодная прокатка 73%.

Рис. 5. Микроструктура титана в поперечном сечении после отжига при 700°C: (a) – K3 1; (б) – K3 2 [24].

ции совпадает, то в нашем случае после отжига при 700°C в K31 состоянии двойниковые ориентировки присутствуют (рис. 5а), а в K32 отсутствуют (рис. 5б). Кроме того, размер рекристаллизованного зерна в K31 кратно больше, чем в K32 титане (рис. 5).

Поэтому, в состоянии К31 одиночные импульсы тока при растяжении могут стимулировать поперечное скольжение дислокаций и более высокие напряжения течения, что и наблюдалось для сплава Ti—Al в работе [20]. Другими вероятными механизмами возникающего упрочнения могут быть деформационное старение [25] или малоцикловая усталость при напряжениях выше напряжения течения. Все рассмотренные механизмы требуют постановки специальных исследований для выяснения причин упрочнения.

Практическое применение представленных результатов возможно в процессах обработки давлением для получения длинномерных полуфабрикатов тонкого сечения повышенной прочности и деформируемости.

32 СТОЛЯРОВ

Выводы. 1. Исследовано деформационное поведение при растяжении в сопровождении импульсного тока высокой скважности технически чистого титана ВТ1-0, полученного рекристаллизационным отжигом холоднокатанного крупнозернистого и ультрамелкозернистого состояния. 2. Показано, что электропластический эффект проявляется независимо от теплового нагрева и способен приводить к упрочнению при одновременном повышении пластичности. 3. Предполагается, что физический механизм упрочнения связан с возможностью формирования в микроструктуре титана двойников и поперечного переползания дислокаций. 4. Потенциальное применение электропластического эффекта заключается в его применении к процессам обработки давлением труднодеформируемых материалов с низкой деформируемостью.

ФИНАНСИРОВАНИЕ

Работа выполнена при поддержке Министерства науки и высшего образования Российской Федерации в рамках проекта по соглашению № 075-15-2021-709, уникальный идентификатор проекта RF-2296 61321X0037 (проведение контрольных измерений).

СПИСОК ЛИТЕРАТУРЫ

- 1. Троицкий О.А., Баранов Ю.В., Авраамов Ю.С., Шляпин А.Д. Физические основы и технологии обработки современных материалов (теория, технология, структура и свойства). В 2-х томах. Т. 1. Москва-Ижевск: Институт компьютерных технологий, 2004. 590 с.
- 2. Conrad H. Effects of electric current on solid state phase transformations in metals // Mater. Sci. Eng. A. 2000. 287 (2). P. 227.
- 3. Troitskii O.A. Electromechanical effect in metals // JETP Letters. 1969. № 1. P. 18.
- 4. Varma S.K., Cornwell L.R. The Electroplastic Effect in Aluminum // Scr. Metall. 1979. V. 13. P. 733.
- 5. Roh J.H., Seo J.J., Hong S.T., Kim M.J., Han H.N., Roth J.T. The mechanical behavior of 5052-H32 aluminum alloys under a pulsed electric current // Inter. J. of Plasticity 58, 2014. P. 84. https://doi.org/10.1016/j.ijplas.2014.02.002
- 6. Xu X., Zhao Y., Ma B., Zhang M. Rapid precipitation of T-phase in the 2024 aluminum alloy via cyclic electropulsing treatment // J. of Alloys and Compounds. 2014. V. 610. P. 506. https://doi.org/10.1016/j.jallcom.2014.05.063
- 7. Wu W., Wang Y., Wang J., Wei S. Effect of electrical pulse on the precipitates and material strength of 2024 aluminum alloy // Mater. Sci. Eng. A. 2014. V. 608. P. 190. https://doi.org/10.1016/j.msea.2014.04.071
- 8. Li X., Tang G., Kuang J., Li X., Zhu J. Effect of current frequency on the mechanical properties, microstructure and texture evolution in AZ31 magnesium alloy strips during electroplastic rolling // Mater. Sci. Eng. A. 2014. V. 612. P. 406. https://doi.org/10.1016/j.msea.2014.06.075
- 9. Sánchez Egea A.J., González Rojas H.A., Celentano D.J., Travieso-Rodríguez J.A., Llumà i Fuentes J. Electroplasticity-assisted bottom bending process // J. Mater. Process. Technol. 2014. V. 214. P. 2261.
 - https://doi.org/10.1016/j.jmatprotec.2014.04.031
- 10. Guo D., Deng W., Song P., Lv X., Shi Y., Qu Z., Zhang G. Effect of Strain Rate on Microstructure and Mechanical Properties of Electroplastic Rolled ZrTi Alloym // Adv. Eng. Mater. 2022. V. 24 (7). https://doi.org/10.1002/adem.202101366
- 11. Sheng Y., Hua Y., Wang X., Zhao X., Chen L., Zhou H., Wang J., Berndt C.C. Li W. Application of High-Density Electropulsing to Improve the Performance of Metallic Materials: Mechanisms, Microstructure and Properties // Materials. 2018. V. 11. P. 185. https://doi.org/10.3390/ma11020185
- 12. Kim M.J., Lee M.G., Hariharan K., Hong S.T., Choi I.S., Kim D., Oh K.H., Han H.N. Electric current-assisted deformation behavior of Al-Mg-Si alloy under uniaxial tension // Int. J. Plast. 2017. V. 94. P. 148. https://doi.org/. 09.010. https://doi.org/10.1016/j.ijplas.2016

- 13. *Indhiarto I., Shimizu T., Furushima T., Yang M.* Effect of DC pulsed-current on deformation behavior of magnesium alloy thin sheets // Procedia Manufact. 2018. V. 15. P. 1663. https://doi.org/10.1016/j.promfg.2018.07.270
- 14. Stolyarov V., Korolkov O., Pesin A., Raab G. Deformation Behavior under Tension with Pulse Current of Ultrafine-Grain and Coarse-Grain CP Titanium // Materials. 2023. V. 16. P. 191. https://doi.org/10.3390/ma16010191
- 15. Rudolf C., Goswami R., Kang W., Thomas J. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium // Acta Mater. 2021. V. 209 (1). P. 116776. https://doi.org/10.1016/j.actamat.2021.116776
- 16. Stolyarov V.V., Zhu Y.T., Alexandrov I.V., Lowe T.C., Valiev R.Z. Influence of ECAP routes on the microstructure and properties of pure Ti // Mater. Sci. Eng. A. 2001. V. 299. P. 59.
- 17. Rudolf C., Goswami R., Kang W., Thomas J. Effects of electric current on the plastic deformation behavior of pure copper, iron, and titanium // Acta Mater. 2021. V. 209. P. 116776. https://doi.org/10.1016/j.actamat.2021.116776
- 18. Демлер О., Герштейн Г., Далингер А., Нюрнбергер Ф., Епишин А., Молодов Д.А. Влияние импульсов электрического тока на деформационное поведение монокристаллов никелевого жаропрочного сплава cmsx-4 и подвижность малоугловой границы зерен в бикристаллах алюминия // Изв. РАН. Серия физическая. 2018. Т. 82. № 9. С. 1189. https://doi.org/10.1134/S0367676518090065
- 19. *Савенко В.С., Троицкий О.А., Гуненко А.В.* Физические аспекты электропластической деформации металлов // Вестник Брестского университета, Серия 4, Физика. Математика. 2018. № 1. Р. 40.
- Zhao S., Zhang R., Chong Y. et al. Defect reconfiguration in a Ti–Al alloy via electroplasticity // Nat. Mater. 2021. V. 20. P. 468. https://doi.org/10.1038/s41563-020-00817-z
- Pakhomov M.A., Stolyarov V.V. Specific features of electroplastic effect in mono- and polycrystalline aluminum // Metal Sci. Heat Treat. 2021. V. 63. P. 236. https://doi.org/10.1007/s11041-021-00677-7
- 22. Lee H.P., Esling C., Bunge H.J. Development of the Rolling Texture in Titanium // Textures and Microstructures. 1988. V. 7. P. 317.
- Zherebtsov S.V., Dyakonov G.S., Salem A.A., Malysheva S.P., Salishchev G.A., Semiatin S.L. Evolution of grain and subgrain structure during cold rolling of commercial-purity titanium // Mater. Sci. Eng. A. 2011. V. 528 (9). P. 3474. https://doi.org/10.1016/j.msea.2011.01.039
- 24. *Stolyarov V.V., Zeipper L., Mingler B., Zehetbauer M.* Influence of post-deformation on CP-Ti processed by equal channel angular pressing // Mater. Sci. Eng. A. 2008. V. 476. P. 98. https://doi.org/10.1016/j.msea.2007.04.069
- Lee T., Magargee J., Kwan Ng.M., Cao J. Constitutive analysis of electrically-assisted tensile deformation of CP-Ti based on non-uniform thermal expansion, plastic softening and dynamic strain aging // Int. J. Plast. 2017. V. 94. P. 44. https://doi.org/10.1016/j.ijplas.2017.02.012