НОВЫЕ ТЕХНОЛОГИИ В МАШИНОСТРОЕНИИ

УДК 622.245.59

ВСКРЫТИЕ ПРОДУКТИВНОГО ПЛАСТА В СКВАЖИНЕ СЕТЬЮ ПЕРФОРАЦИОННЫХ КАНАЛОВ-ВОЛНОВОДОВ

© 2023 г. Р. Ф. Ганиев¹, Н. А. Шамов^{1,*}

¹Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия

*e-mail: shamov.na@mail.ru

Поступила в редакцию 12.12.2022 г. После доработки 15.06.2023 г. Принята к публикации 20.06.2023 г.

Определена зависимость амплитуды давления в волне с накопленной в каналах-волноводах энергией от характеристик горной породы и пластовой жидкости. Представлены технология и устройство вторичного вскрытия продуктивного пласта в скважине путем создания перфорационных каналов-волноводов, устройство спуска фильтра-хвостовика в перфорационные каналы.

Ключевые слова: перфорационные каналы-волноводы с дугообразными стволами, объемная скорость фильтрации, радиус кривизны ствола, перфобур, фильтр-хвостовик, репрессионно-депрессионное волновое устройство

DOI: 10.31857/S0235711923050073, EDN: XCPCXM

Усложнение и удорожание получения жидкого и газообразного углеводородного сырья в последние годы, сокращение добычи нефти и газа в освоенных районах, возросшие требования к проведению экологических мероприятий делают необходимым существенное повышение качества вторичного вскрытия продуктивных пластов, применения эффективных и недорогих технологий и средств.

Применение же такой технологии, как гидроразрыв пласта, повышает дебит на начальном этапе эксплуатации, но требует значительных затрат, приводит иногда к нарушению герметичности цементного камня и появлению заколонных водогазоперетоков, росту темпа падения дебита, обводненности нефти, усложнению ремонтных работ в призабойной зоне пласта (ПЗП).

Разработка же месторождений с использованием системы горизонтальных стволов скважин бывает не всегда экономически оправданной, такие стволы могут быть дороже вертикальных [1]. В следующих источниках информации [2–5] рассматриваются известные технологии и технические средства, которые используются для создания боковых стволов малого диаметра во внутрипластовых промысловых системах. Так способ радиально-бурильной перфорации [3–5] позволяет создавать каналы глубиной до 2 м в пласт за счет вращения долота диаметром 30 мм гибким полым валом от винтового двигателя, установленного в корпусе перфоратора. Недостатками такой технологии и данных устройств являются небольшие длины создаваемых каналов, низкие прочность гибкого вала и герметичность в составных звеньях, неудовлетворительная производительность бурения. Образованные же гидромониторным размывом [2, 5] с

Рис. 1. Схема размещения перфорационных каналов в скважине: *I* – обсадная колонна; *2* – кровля пласта; *3* – его подошва; *4* – пласт; *5* – контур загрязнения ПЗП; *6* – перфорационный канал.

помощью гибких труб длинные каналы имеют стволы с непредсказуемой траекторией, требуют больших расходов и давлений промывочной жидкости.

Предлагаемые пути решения. Улучшение фильтрационных характеристик ПЗП предлагается за счет бурения системы длинных многоярусных перфорационных каналов малого диаметра (рис. 1), в которых возможно возникновение нелинейных волновых процессов. Бурение таких каналов в качестве волноводов-резонаторов, позволит улучшить акустические свойства ПЗП, окажет интенсивное воздействие на глубинные области пласта, повысит продуктивность скважин. Под научным руководством академика РАН Р.Ф. Ганиева еще в начале 2000-х годов были разработаны технологии и оборудование для бурения перфорационных каналов (перфобура). Проведены успешные экспериментально-стендовые исследования. Практическая и научная ценность работы подтверждена соответствующими патентами, публикациями в научнотехнических изданиях и защищенными диссертациями, в том числе исследователями и специалистами [7–11] из других организаций и фирм.

Дебит нефтяного пласта, вскрытого длинноствольными каналами, можно приближенно оценить по формуле [1] для многозабойных скважин (рис. 1).

Объемная скорость фильтрации многоствольных перфорационных каналов

$$Q_f = \frac{2\pi n^{0.75} k_0 (P_1 - P_c)}{\mu_c \left[\frac{1}{2A_1} \ln \frac{\frac{h_n}{n_y + 1} (B_1 + A_1) + 2(B_1^2 - A_1^2)}{\frac{h_n}{n_y} (B_1 - A_1) + 2(B_1^2 - A_1^2)} + \frac{1}{h_n} \ln \frac{R_1}{R_2 + \frac{h_n}{2(n_y + 1)} + L_{pk} - l_{kb}}\right]}$$

где

$$A_{l} = \sqrt{\frac{\left[\pi D_{pk} + 2\left(L_{pk} - l_{kb}\right)\right]^{2}}{8}} - \frac{D_{pk}^{2}}{8} + \frac{D_{pk}\left(L_{pk} - l_{kb}\right)}{2}, \quad B_{l} = \frac{\pi D_{pk} + 2\left(L_{pk} - l_{kb}\right)}{8},$$

Рис. 2. Схема притока к скважине к 4-мя длинными каналами: *1* – ствол скважины; *2* – радиальные стволы; *3* – контур загрязнения; *4* – изобарическая линия; *5* – линии тока пластового продукта; *6* – контур зоны залегания остаточной нефти вокруг скважины.

где n — количество каналов; n_y — количество уровней (ярусов) радиальных стволов; D_{pk} — диаметр ствола перфорационного канала; L_{pk} — радиальная длина ствола (отход) канала; l_{kb} — глубина контура блокирования ПЗП твердеющим составом; P_1 — пластовое давление; P_2 — давление в скважине на забое; k_o — исходная проницаемость породы; μ_c — динамическая вязкость пластовой среды; h_n — толщина продуктивного пласта; R_1 — радиус контура питания скважины; R_2 — радиус ствола скважины.

Рассмотрим на численном примере степень влияния количества и длины стволов каналов одного яруса. Исходные данные: $P_1 = 20$ МПа, $P_2 = 15$ МПа, $h_n = 10$ м, $\mu_c = 9$ мПа с, $D_{pk} = 0.056$ м, $k_0 = 0.018$ мкм², $R_1 = 500$ м, $R_2 = 0.106$ м, $l_c = 0.3$ м. В первом случае рассмотрены четыре канала длиной по 30 м (рис. 2).

Во втором – восемь каналов длиной по 30 м, в третьем – восемь каналов длиной по 15 м (рис. 3).

Получены следующие расчетные значения дебитов:

$$Q_{f1} \approx 0.574 \times 10^{-3} \text{ m}^3/\text{c}, \quad Q_{f2} \approx 1.092 \times 10^{-3} \text{ m}^3/\text{c}, \quad Q_{f3} \approx 0.866 \times 10^{-3} \text{ m}^3/\text{c}.$$

Отсюда следует, что не только дебит скважины больше, но и площадь залегания остаточного пластового продукта ожидаемо меньше у многоствольной системы, а создание многоярусных перфорационных стволов оптимальной длины может быть гораздо эффективнее, чем более длинных, но при меньшем количестве и той же суммарной длине каналов.

На рис. 4 представлена схема бурения каналов перфобуром в скважине. На ней изображены трубный толкатель 1, секции перфобура 2, клин-отклонитель 3, гибкая труба 4, статор 5 винтового забойного двигателя (ВЗД), шпиндель двигателя 6, долото 7, поворотно-разъединительный узел 8, якорь 9, желобная емкость 10, подъемник 11, насосный агрегат 12, техническая колонна труб 13, обсадная колонна 14, перфорационный канал 15, нефтяной пласт 16.

Рис. 3. Схема притока к скважине с 8-ю короткими каналами.

Угол искривления ВЗД определен из следующей зависимости:

$$\alpha_k = \arcsin\left\lfloor \frac{L_{st}}{2(R_k + 0.5d_d)} + \frac{L_{sp}}{\varsigma_n R_k + 0.5d_d} \right\rfloor,\,$$

где L_{sp} – длина шпинделя от места искривления ВЗД до конца долота; ζ_n – поправочный коэффициент на разницу форм осевых линий (прямолинейной у шпинделя с долотом и криволинейной у ствола перфорационного канала).

При проектировании перфобура была оценена расчетным и графическим путем возможность получения перфорационных каналов с наименьшим радиусом кривизны ствола при заданных длинах и диаметрах статора винтового забойного двигателя (ВЗД), его шпинделя и долота. Радиус кривизны канала (рис. 5) определяли по формуле

$$R_k \geq \frac{L_{st}^2}{8(d_d - D_{st})} - 0.5D_{st},$$

где L_{st} – длина статора двигателя до места искривления ВЗД; d_d – диаметр долота; D_{st} – наружный диаметр статора двигателя.

Наименьший радиус кривизны ствола перфорационного канала при исходных данных: $L_{st} = 0.6 \text{ M}, D_{st} = 0.043 \text{ M}, d_d = 0.056 \text{ M}, L_{sp} = 0.225 \text{ M}, \zeta_n = 1.03$, составил $R_k = 3.5 \text{ M}$, максимальный угол искривления шпинделя ВЗД $\alpha_k = 8^{\circ}28'$.

При использовании перфорационных каналов в качестве волноводов можно существенно снизить [6, 12] в ПЗП, загрязненной технологическими отложениями, потери энергии волнового поля, создаваемого, например, устройством, в которое включен генератор волн давления роторно-пульсационного типа (рис. 6). Этот процесс будет происходить до тех пор, пока часть проходящей в пласт по скелету горной породы и ее порового пространства волновой энергии не вырастет до значений поступающей в перфорационный канал энергии вынужденных колебаний. Для этого необходимо соблюсти соотношение длины каналов к длине полуволны давления

$$l=n\frac{\lambda_n}{2}=n\frac{c_{zh}}{2f_n},$$

Рис. 4. Схема бурения глубоких перфорационных каналов перфобуром.

Рис. 5. Определение радиуса кривизны ствола и угла искривления ВЗД: *1* – ствол канала; *2* – долото; *3* – шпиндель; *4* – статор; *5* – гибкая труба.

где λ_n — длина волны наиболее низкочастотного колебания давления с наибольшей амплитудой; c_{zh} — скорость распространения волны в жидкости; f_n — наименьшая частота в спектре создаваемых генератором колебаний рабочих частот; n — ряд целых чисел (1, 2, 3, ...).

Отсюда, интенсивность волновой энергии I_g , передаваемой в канал-волновод от размещенного в скважине генератора колебаний давления, будет описываться зависимостью

$$I_g = I_n + I_{nc},\tag{1}$$

где I_n – интенсивность волновой энергии, прошедшей в скелет горной породы; I_{nc} – интенсивность волновой энергии, прошедшей в гидросреду порового пространства.

Рис. 6. Схема репрессионно-депрессионной волновой обработки: *1* – привод ротора генератора; *2* – струйный насос; *3* – пакер; *4* – генератор; *5* – его волновод; *6* – излучатель; *7* – автономный термоманометр; *8* – автономный регистратор волн давления.

После преобразования выражение (1) примет вид

$$\frac{p_{0v}^2 e^{-2\beta l}}{2\rho_{zh}c_{zh}} = p_{0p}^2 \left[\frac{2\rho_{zp}c_{zp}\left(1-m_n\right)}{\left(\rho_{zp}c_{zp}+\rho_{zh}c_{zh}\right)^2} + \frac{0.33m_n}{2\rho_{zh}c_{zh}} \right],$$

где p_{0v} – амплитуда давления на входе в канал-волновод; β – коэффициент затухания волны при рассеивании ее энергии в канале; ρ_{zh} – плотность пластовой жидкости; ρ_{zp} – плотность скелета горной породы; c_{zp} – скорость звука в ней; m_n – коэффициент эффективной пористости породы.

Отсюда, амплитуда колебания давления в волне с накопленной в перфорационном канале-волноводе энергией определится из соотношения

$$p_{0p} = \frac{p_{0v}e^{-\beta l}(\rho_{zp}c_{zp} + \rho_{zh}c_{zh})}{\sqrt{4\rho_{zh}c_{zh}\rho_{zp}c_{zp}(1-m_n) + (\rho_{zp}c_{zp} + \rho_{zh}c_{zh})^2 m_n}}.$$

Энергия волнового поля, переданная через перфорационные каналы-волноводы многоствольной многоярусной системы в скелет горной породы и ее поровые каналы продуктивной среде, например тяжелой высоковязкой нефти, будет частично расходоваться на работу по снижению ее вязкости и преодолению напряжения сдвига. Пе-

Рис. 7. Схема спуска фильтра-хвостовика в перфорационный канал: *1* – корпус устройства; *2* – клин-отклонитель; *3* – поворотно-соединительный узел; *4* – якорь; *5* – спусковой модуль; *6* – фильтр-хвостовик; *7* – техническая колонна; *8* – обсадная колонна.

риод релаксации такой нефти существенно снизится, сопротивление ее течению в проницаемой породе ПЗП уменьшится.

В нагнетательной скважине передаваемая через перфорационные каналы энергия вынужденных колебаний, будет способствовать созданию на границе контактов вытесняющей жидкости с нефтью оторочек из высоковязких водонефтяных эмульсий, которые будут препятствовать свободному "проскальзыванию" и прорывам вытесняющей жидкости по избыточно дренированной в процессе эксплуатации пласта горной породе к добывающим скважинам. В то же время волны, проходящие через перфорационные каналы-волноводы в застойные зоны пласта, будут содействовать полезному изменению реологических характеристик нефти, выравниванию профиля ее притока. В случае угрозы осыпания горной породы в перфорационных каналах в процессе эксплуатации скважины можно обеспечить обсаживание стволов каналов фильтрами-хвостовиками (рис. 7), техника и технология для их установки также разработана в Институте машиноведения РАН и запатентована.

Известно [13], что при движении высоковязкой нефти в неоднородной пористой среде увеличение вязкости вытесняющей жидкости за счет создания водонефтяной оторочки, более ощутимо сказывается на снижении скорости вытеснения в зонах повышенной проницаемости, где скорость течения нефти заметно выше, чем в низкопроницаемых участках пласта. Все это также приводит к выравниванию профиля притока и, в целом, к увеличению коэффициента вытеснения.

Объект бурения	Двигатель, долото	Промывочная жидкость	Осевая нагрузка, кН	Давление на насосе, МПа	Расход на ВЗД, л/с	Скорость бурения, м/ч
Блок ЦПГ	2Д-43.50, ДРС-56.01	"Укродиз"	1.2-1.6	3.0-3.5	0.6-0.7	5.5-6.0
Блок ЦПГ	1Д-43.98 ДРС-56.01	"Укродиз"	1.8–2.2	4.0-5.0	0.6-0.7	6.5-7.0
Блок ЦПГ	1Д-43.98 ДИ-56.02	"ОП-МТМ"	2.0-2.4	5.0-6.0	0.6-0.7	6.0-7.0
Блок ЦПГ	1Д-43.98 ДРС-56.03	"ОП-МТМ"	2.0-3.0	6.0-7.0	0.7-0.8	11.0-13.0
Труба в блоке	1Д-43.98 ДИ-56.02	"ОП-МТМ"	2.4-3.2	6.0-7.0	0.7 - 0.8	0.5
Труба в блоке	1Д-43.98 ДРС-56.03	"ОП-МТМ"	2.4-3.2	6.0-7.0	0.7-0.8	0.35
Блок ЦПГ*	1Д-43.98 ДРС-56.03	"ОП-МТМ"	2.4-3.2	6.0-7.0	0.7 - 0.8	10.0-11.0

Таблица 1. Основные параметры и результаты бурения каналов

*При бурении бокового ответвления от основного ствола канала.

Исследования процессов бурения каналов на стенде. Результаты экспериментов приведены в табл. 1.

Стенд состоял из приподнятой над полом платформы с блоком цементно-песчаногравийным (ЦПГ) и резервуаром для промывочной жидкости. В качестве промывочной жидкости хорошо зарекомендовал себя буровой раствор с условным названием "ОП-МТМ" на слабоминерализованной водной основе плотностью 1020 кг/м³ с добавками ПАВ ОП-10 и смазки для буровых растворов МТМ-1М с объемной концентрацией 0.3% каждая.

Области применения технологии глубокой перфорации: 1) реанимация скважин с низким дебитом; **2**) интенсификация процесса добычи аномально-высоковязких разновидностей нефти; **3**) увеличение приемистости нагнетательных скважин.

Развитие технологии и технических средств по глубокой перфорации ПЗП будет идти по следующим направлениям: 1) бурение пилотных стволов каналов-волноводов и ответвлений; 2) отбор образцов породы из глубинных участков ПЗП для проведения геофизических исследований ее состояния; 3) вызов притока пластового продукта из каждого канала-волновода по отдельности и исследование их гидродинамической связи с пластом.

Заключение. 1. Разработаны и в основном исследованы на экспериментальном стенде технология и техника бурения каналов-волноводов в продуктивном пласте. 2. Установлены зависимости объемной скорости фильтрации пластового продукта от его свойств, характеристик породы, а также от параметров, количества и размеров каналов. 3. Приведен расчет радиуса кривизны ствола перфорационного канала и угла искривления забойного двигателя от размеров его и долота. 4. Спрогнозировано повышение эффективности фильтрационных процессов после вскрытия пласта перфорационными каналами-волноводами в зависимости от их количества, и в меньшей степени от длины при равной общей суммарной протяженности каналов-волноводов. 5. Определена зависимость амплитуды давления в волне с накопленной в каналахволноводах энергией от характеристик горной породы и пластового продукта. 6. Ожидаемые преимущества предлагаемой технологии: 1) улучшение связи скважины с пластом и повышение ее дебита; 2) снижение риска возникновения межпластовых перетоков; 3) прохождение склонных к обвалам породы в ПЗП более устойчивыми нисхо-

дящими участками стволов дугообразных перфорационных каналов; 4) вскрытие нисходящими и восходящими участками каналов нескольких продуктивных пропластков.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- Бердин Т.Г. Проектирование разработки нефтегазовых месторождений системами горизонтальных скважин. М.: ООО "Недра-Бизнесцентр", 2001. 199 с.
- 2. *Близнюков В.Ю., Повалихин А.С.* Технологические схемы бурения систем горизонтальных стволов в пласте высоковязкой нефти // Строительство нефтяных и газовых скважин на суше и на море. 2011. № 10. С. 10.
- 3. *Распопов А.В., Кондратьев С.А., Новокрещенных Д.В.* Влияние геолого-физических условий на эффективность бурения радиальных каналов в около скважинную зону пласта // Нефтяное хозяйство. 2012. № 3. С. 78.
- 4. *Guo R., Li G., Huang Z.* Theoretical and experimental study of the pulling force of jet bits in radial drilling technology // Pet. Sci. 2009. № 6. P. 395.
- 5. Dickinson W., Dykstra H., Nees J.M. The Ultrashort Radius Radial System Applied to Thermal Recovery of Heavy Oil // SPE. 1992. № 24087. P. 583.
- 6. Ганиев Р.Ф., Украинский Л.Е. Нелинейная волновая механика и технология. Волновые и колебательные явления в основе высоких технологий. 2-е изд., дополн. М.: Институт компьютерных исследований; Научно-издательский центр "Регулярная и хаотическая динамика", 2011. 780 с.
- Lyagov I.A., Vasilev N.I., Reich M., Mezzetti M. Analytical research and experimental tests on the technology for drilling small diameter channels with small radius of curvature // Oil Gas European Magazine. 2014. V. 40. Iss. 3. P. 124.
- 8. *Reich M*. Auf krummen Touren durch den Untergrund ein Exkurs in die Welt der Richtbohrtechnik.Veröffentlichung in "Erdöl, Erdgas, Kohle", Januar 2011. 6 p.
- Lyagov I.A. Bottomhole Formation Zone Completion through Ultra Deep Multibranch hannels: Experimental Research of a New Technology // Mine planning and equipment selection: Proc. of the 22nd MPES Conf. Dresden, Germany. Oct. 14–19. Springer, 2014. P. 1221.
- Лягов И.А. Обоснование и разработка технологии вторичного вскрытия продуктивных пластов разветвленными скважинами сверхмалого диаметра: Автореф. дис. ... канд. техн. наук. СПб.: Нац. минерально-сырьевой ун-т "Горный", 2014. 20 с.
- 11. Лягов И.А., Лягов А.В., Шайдаков В.В. и др. Техническая система "Перфобур" для вторичного вскрытия продуктивного пласта // Строительство нефтяных и газовых скважин на суше и на море. 2022. № 2 (350). С. 47.
- 12. *Кузнецов О.В., Ефимова С.А., Жуйков Ю.Ф. и др.* Акустическое воздействие на призабойную зону пласта // Нефтяное хозяйство. 1987. № 3. С. 34.
- Аметов И.М., Байдаков Ю.Н., Рузин Л.М., Спиридонов Ю.А. Добыча тяжелых и высоковязких нефтей. М.: Недра, 1985. 205 с.