ЭКСПЕРИМЕНТАЛЬНАЯ МЕХАНИКА. ДИАГНОСТИКА ИСПЫТАНИЯ

УДК 620.19

ФРЕТТИНГ-ИЗНАШИВАНИЕ МЕТАЛЛ-МЕТАЛПОЛИМЕРНЫХ ПАР ТРЕНИЯ

© 2023 г. А. Ю. Албагачиев a,* , Б. М. Гантимиров a

^а Институт машиноведения им. А.А. Благонравова РАН, Москва, Россия
*e-mail: albagachiev@vandex.ru

Поступила в редакцию 02.07.2023 г. После доработки 10.08.2023 г. Принята к публикации 20.08.2023 г.

Приведены результаты испытания на фреттинг-изнашивание металлополимерных материалов в паре трения с конструкционными материалами чугун 20 и нержавеющей стали 12X18H10T по прямой и обратной схемам испытаний. В качестве металлополимерного материала был выбран двухкомпонентный пастообразный материал, основанный на смеси металлокерамического сплава с высокомолекулярными полимерами и олигомерами — BELZONA 1111.

Ключевые слова: фреттинг, износ, металл, металлополимер

DOI: 10.31857/S0235711923060020, EDN: YYCALL

Несмотря на то, что явление фреттинга находится в поле зрения исследователей более 100 лет, удовлетворительной теории этого процесса до сих пор нет, а прогнозирование сопротивления фреттинг-изнашиванию при проектировании деталей машин, за редким исключением, не делается.

Существуют способы снижения изнашивания при фреттинге. В частности, при проектировании машин для контактирующих пар рекомендуется выбирать разнородные материалы, не склонные к химическому взаимодействию при фреттинге. Однако во многих случаях эти рекомендации не применимы, т.к. выбор материалов обусловлен эксплуатационными или иными требованиями.

Методика проведения экспериментальных исследований. Методика проведения испытаний на фреттинг-изнашивание включает следующий алгоритм: 1) цилиндрический подвижный образец (контробразец), соприкасающийся торцом с неподвижным цилиндрическим образцом из исследуемого материала при заданном давлении, приводится в возвратно-вращательное движение с заданными амплитудой и частотой (рис. 1); 2) измеряется износ неподвижного образца за заданное количество циклов, по величине которого определяется износостойкость исследуемого материала.

Режимные параметры испытаний: нормальная нагрузка 500 H (9.8 МПа); амплитуда возвратно-вращательного движения образца 50 мкм; частота возвратно-вращательного движения образца 23 Γ ц; длительность испытаний 2 × 10⁶ циклов (24 часа).

Образцы изготавливались из стали 12X18H10T, чугуна 20 и металлополимерного материала BELZONA 1111. Предварительно была подготовлена испытуемая поверхность путем шлифования.

Рис. 1. Общий вид модельной установки: 1 — рычаг нагрузки; 2 — грузы.

Поверхности образцов перед испытанием тщательно промывались в бензине (ГОСТ 443-70) и ацетоне (ГОСТ 2603-79), высушивались на воздухе в соответствии с рекомендациями ГОСТ 23.211-80.

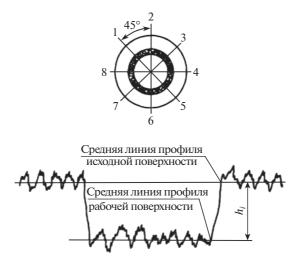
Последовательность проведения испытания: **1.** Образец и контробразец закрепляют в зажимах модели испытательной установки. **2.** Образец и контробразец прижимают друг к другу рабочими поверхностями с усилием не менее 500 H, обеспечивая их взаимное прилегание с помощью самоцентрирующейся цанги образца, после чего жестко фиксируют положение цанги образца. **3.** Образцы приводят в соприкосновение и прикладывают сжимающую нагрузку при испытаниях вида I 500 \pm 25 H. **4.** Включают привод установки. Во время испытаний поддерживают амплитуду 50 ± 5 мкм, частоту 23 Гц. **5.** После достижения заданного количества циклов испытаний, равного $2 \times 10^6 \pm 50$ циклов, выключают привод установки, снимают нагрузку, освобождают образцы из цанговых зажимов, промывают последовательно в бензине и ацетоне и высушивают на воздухе.

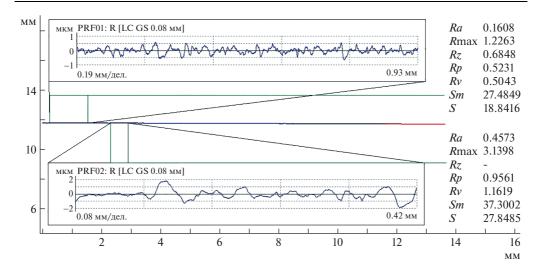
В зависимости от схемы испытания исследовались следующие пары трения: 1) *испытания по прямой схеме*: металлополимер (контробразец)—12X18H10T (образец); металлополимер (контробразец)—чугун 20 (образец); 2) *испытания по обратной схеме*: 12X18H10T (контробразец)—металлополимер (образец); чугун 20 (контробразец)—металлополимер (образец).

С поверхностей неподвижных образцов снимались профилограммы на профилографе-профилометре фирмы "Mahr" (Германия) (рис. 2), по результатам которых определяли износ. Профилограммы снимались по трассам в соответствии с рис. 3, и далее определялась величина линейной интенсивности изнашивания.

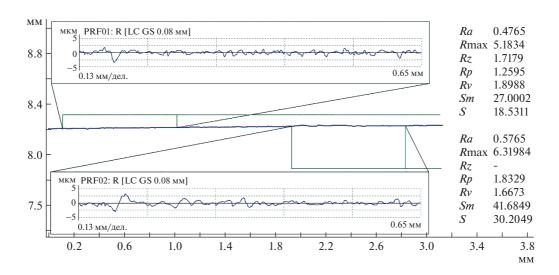
Для участков каждой из 8 профилограмм, соответствующих неизношенной поверхности и рабочей поверхности трения образца, проводят средние линии профиля согласно ГОСТ 2789-73 и определяют расстояние h_i между ними с погрешностью ± 0.5 мкм.

Рис. 2. Профилограф-профилометр фирмы "Mahr".




Рис. 3. Схема профилограммы с изношенной поверхности.

Основные результаты. По полученным профилограммам (представлены примеры на рис. 4—6), для каждого образца рассчитывался средний износ и интенсивность изнашивания. Данные расчетов представлены в табл. 1—5.


В таблице 6 приведены результаты, полученные методом взвешивания на аналитических весах с точностью измерения 0.0001 грамма.

Средний износ i-того образца h_i , мкм, вычисляют по формуле

$$h_i = \frac{\sum_{i=1}^{8} h_i}{8}.\tag{1}$$

Рис. 4. Профилограмма образца из стали 12X18H10T после 2×10^6 циклов испытаний.

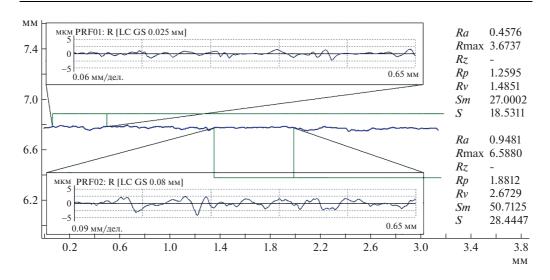


Рис. 5. Профилограмма образца из чугуна после 2×10^6 циклов испытаний.

Интенсивность изнашивания I_h испытываемого материала определяется по формуле

$$I_h = \frac{\sum_{1}^{k} h_j}{2ANk},\tag{2}$$

где A — амплитуда, мкм; N — количество циклов испытаний; k — количество испытанных образцов материала.

Рис. 6. Профилограмма образца из металлополимера после 2×10^6 циклов испытаний.

Рис. 7. Вид контробразца из чугуна и образца из металлополимера после 2×10^6 циклов испытаний.

Вычисления проводят с погрешностью не более 1×10^{-8} . Результаты расчетов заносят в протокол.

Пара трения металлополимер (контробразец) — 12Х18Н10Т (образец)

Средний износ j-го образца определяем по формуле (1) для пары трения металло-полимер—12X18H10T

$$\frac{\sum\limits_{1}^{8}h_{i}}{8} = \frac{-0.1483 - 0.0985 - 0.0768 + 0.0044 - 0.1294 - 0.2283 - 0.1196 - 0.0114}{8} = -0.1014 \text{ MKM}.$$

	Ra до	<i>Ra</i> после	h_i
1	0.1608	0.4573	-0.1483
2	0.1857	0.3827	-0.0985
3	0.1128	0.2663	-0.0768
4	0.1388	0.1301	0.0044
5	0.1885	0.4472	-0.1294
6	0.0809	0.5375	-0.2283
7	0.1078	0.3470	-0.1196
8	0.1025	0.1312	-0.0144
Средний износ $h_i = -0.1014$ мкм			

Таблица 1. Износ и шероховатость пары трения металлополимер—12Х18Н10Т

Таблица 2. Износ и шероховатость пары трения металлополимер—чугун 20

	<i>Ra</i> до	<i>Ra</i> после	h_i	
1	0.4765	0.5767	-0.0501	
2	0.3442	0.4145	-0.0352	
3	0.3523	0.2945	0.0289	
4	0.3758	0.3506	0.0126	
5	0.3661	0.3448	0.0107	
6	0.4110	0.3756	0.0177	
7	0.4136	0.4449	-0.0157	
8	0.5683	0.4193	0.0745	
Средний износ $h_i = 0.0054$ мкм				

В проведенном испытании средний износ имеет отрицательное значение, а это значит, что износа образца не было. Изнашивался только подвижный контробразец, и при этом происходил перенос металлополимера на поверхность стального образца.

Пара трения металлополимер (контробразец)—чугун 20 (образец)

Средний износ j-го образца определяем по формуле (1) для пары трения чугун—металлополимер

$$h_j = \frac{\sum_{i=1}^{8} h_i}{8} = \frac{-0.2453 + 0.5211 - 0.3589 + 0.3474 + 0.1502 - 0.1502 - 0.1717 - 0.1648}{8} = \frac{0.0322 \text{ MKM}}{8}$$

Интенсивность изнашивания для пары трения чугун—металлополимер находим по формуле (2)

$$I_h = \frac{\sum_{i=1}^{k} h_i}{2ANk} = \frac{0.0322}{2 \times 50 \times 2 \times 10^6 \times 1} = 1.61 \times 10^{-10}.$$

	<i>Ra</i> до	<i>Ra</i> после	h_i
1	1.1923	0.3682	0.4121
2	1.3004	0.7390	0.2807
3	1.3110	0.9183	0.1964
4	1.7150	1.0074	0.3538
5	1.4305	0.9898	0.2204
6	1.4430	1.1092	0.1669
7	1.3883	1.0640	0.1622
8	1.3533	1.1931	0.0801
Средний износ $h_i = 0.2341$ мкм			

Таблица 3. Шероховатость и средний износ пары трения 12Х18Н10Т—металлополимер

Таблица 4. Шероховатость и средний износ пары трения чугун-металлополимер

	Ra до	<i>Ra</i> после	h_i
1	0.4576	0.9481	-0.2453
2	1.6988	0.6567	0.5211
3	0.5763	1.2941	-0.3589
4	1.8607	1.1659	0.3474
5	1.6656	1.3652	0.1502
6	6 1.5226 1.8229	-0.1502	
7	1.5547	1.8981	-0.1717
8	1.9410	1.6114	0.1648
Средний износ $h_i = 0.0322$ мкм			

Средний износ j-го образца определяем по формуле (1) для пары трения металло-полимер—чугун

$$h_j = \frac{\sum\limits_{1}^{8} h_i}{8} = \frac{-0.0501 - 0.0352 + 0.0289 + 0.0126 + 0.0107 + 0.0177 - 0.0157 + 0.0745}{8} = 0.0054 \text{ MKM}.$$

Интенсивность изнашивания для пары терния металлополимер—чугун находим по формуле (2)

$$I_h = \frac{\sum_{i=1}^{k} h_i}{2ANk} = \frac{0.0054}{2 \times 50 \times 2 \times 10^6 \times 1} = 2.72 \times 10^{-11}.$$

	Прямая схема испытаний		
Материал образцов	Средний износ h_i , мкм	Интенсивность изнашивания I_h	
Металлополимер—сталь 12Х18Н10Т	_	_	
Металлополимер-чугун	0.0054	2.72×10^{-10}	
	Обратная схема испытаний		
Сталь 12Х18Н10Т-металлополимер	0.2341	1.17×10^{-9}	
Чугун-металлополимер	0.0322	1.61×10^{-10}	

Таблица 5. Обобщенные результаты испытаний

Таблица 6. Массовая оценка износа

	Пара трения (контробразец-образец)	Масса, г		
№ исп.		до	после	фактический износ
1	Металлополимер	10.0217	10.0199	0.0018
	12X18H10T	32.8536	32.8525	0.0011
2	Металлополимер	8.23540	8.23480	0.0006
	Чугун 20	36.6161	36.6156	0.0005
3	12X18H10T	38.4223	38.4221	0.0002
	Металлополимер	9.1739	9.1731	0.0008
4	Чугун 20	30.3470	30.3463	0.0007
	Металлополимер	4.8934	4.8920	0.0014

Средний износ j-го образца определяем по формуле (1) для пары трения 12X18H10T—металлополимер

$$h_j = \frac{\sum_{i=1}^{8} h_i}{8} = \frac{+0.4121 + 0.2807 + 0.1964 + 0.3538 + 0.2204 + 0.1669 + 0.1622 + 0.0801}{8} = 0.2341 \text{ MKM}$$

Интенсивность изнашивания для пары трения 12X18H10T—металлополимер находим по формуле (2).

Полученные результаты расчетов сведены в общую табл. 5.

Также была проведена массовая оценка износа образцов. Полученные данные приведены в табл. 6.

Выводы. Анализируя полученные данные, можно сделать следующие выводы: **1.** Металлополимерный материал BELZONA 1111 показал высокую износостойкость при фреттинг-изнашивании, при этом и образцы из стали и чугуна имели минимальный износ, а металлополимерный материал больше изнашивался чем металлические образцы. **2.** Полученные экспериментальные данные: износ $h_i = 0.0054$ мкм, интенсивность изнашивания $I_h = 2.72 \times 10^{-10}$ показали, что металлополимерный материал может использоваться в узлах трения, подверженных фреттингу и фреттинг-коррозии, как для восстановления изношенных поверхностей, так и для изготовления полноценных элементов конструкций.

Конфликт интересов. Конфликта интересов авторы не имеют.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гантимиров Б.М., Бурякин А.В., Колесникова Т.К. Фреттинг-изнашивание металлополимерных и металлических материалов // Сборник докладов III Региональной научно-технической конференции "Губкинский университет в решении вопросов нефтегазовой отрасли России", посвященной 110-летию А.И. Скобло и 105-летию Г.К. Шрейбера, 2019. С. 61.
- 2. Гантимиров Б.М., Почес Н.С., Колесникова Т.К. Влияние смазочного материала на фреттинг-изнашивание металлических материалов // Сборник докладов III Региональной научно-технической конференции "Губкинский университет в решении вопросов нефтегазовой отрасли России", посвященной 110-летию А.И. Скобло и 105-летию Г.К. Шрейбера, 2019. С. 60.
- 3. *Голего Н.Л.*, *Алябьев А.Я.*, *Шевеля В.В.* Фреттинг-коррозия металлов. Киев: Техника, 1974. 272 с.
- 4. *Безъязычный В.Ф., Драпкин Б.М., Любимов Р.В., Тимофеев М.В.* Экспериментальное подтверждение малоцикловой усталостной природы фреттинг-изнашивания поверхностных слоев металлов // Трение, износ, смазка (электр. ресурс). 2000. Т. 2. № 3. С. 9.
- 5. *Марченко Е.А.* О природе разрушения поверхности металлов при трении. М.: Наука, 1979. 118 с.
- 6. Гаркунов Д.Н. Триботехника. М.: Машиностроение, 1985. 424 с.
- 7. *Петухов А.Н.* Фреттинг и фреттинг-усталость конструкционных материалов и деталей // Авиационная промышленность. 2014. № 5. С. 45.
- 8. Conner B.P., Lindley T.C., Nicholas T., Suresh S. Application of afracture mechanics-based life prediction method for contact fatigue // Int. J. Fatigue. 2004. № 26. P. 511.
- 9. Farris T.N., Murthy H. High Temperature Fretting Fatigue of Single Crystal Nickel // Proc. 10th Nation. Turbine Engine, HCF Conference, New Orleans. LA, March 8–11, 2005. P. 123.
- 10. *Houghton D., Wavish P.M., Williams E.J., Leen S.B.* Multiaxial fretting fatigue testing and prediction for splined couplings // Int. J. Fatigue. 2009. № 31. P. 1805.
- 11. Jacob M.S.D., Arora P.R., Saleem M. et al. Fretting fatigue crack initiation: An experimental and theoretical study // Ibid. 2007. № 29. P. 1328.
- 12. Jacob M.S.D., Arora P.R., Sapuan S.N. et al. Experimental evaluation of fretting fatigue test apparatus // Ibid. 2007. № 29. P. 941.
- 13. Xin L., Yang B.B., Li J. et al. Wear damage of Alloy 690TT in partial and gross slip fretting regimes at high temperature // Wear. 2017. V. 390. P. 71.
- 14. Чжан Ч., Ван Д., Го Я. Fretting friction and wear behavior of spiral wound gasket (SWG) of the sealing surface // Tribol. Int. 2019. V. 133. P. 236.
- 15. Zabala A., Infante-Garcí D., Giner E. et al. On the use of the theory of critical distances with mesh control for fretting fatigue lifetime assessment // Tribol. Int. 2020. V. 142. 105985.
- 16. Jin X., Shipway P.H., Sun W. The role of frictional power dissipation (as a function of frequency) and test temperature on contact temperature and the subsequent wear behavior in a stainless-steel contact in fretting // Wear. 2015. V. 330–331. P. 103.
- 17. O'Halloran S.M., Connaire A.D., Harte A.M. A global-local fretting analysis methodology and design study for the pressure armour layer of dynamic flexible marine risers // Tribology International. 2020. V. 142. 105967.
- 18. Shouyi S., Lei L., Zhufeng Y. et al. Fretting fatigue failure behavior of Nickel-based single crystal uperalloy dovetail specimen in contact with powder metallurgy pads at high temperature // Tribol. Int. 2020. V. 142. 105986.