——— ХИМИЯ ПОЧВ ——

УДК 631.48

ОЦЕНКА КОМПЛЕКСООБРАЗОВАНИЯ ОРГАНИЧЕСКОГО ВЕЩЕСТВА ПОЧВ С МЕДЬЮ МЕТОДОМ АФФИННОЙ ХРОМАТОГРАФИИ

© 2020 г. А.А. Дымов^{а, *}, Е. Ю. Милановский^{b, c}

^аИнститут биологии Коми научного центра УрО РАН, ул. Коммунистическая, 28, Сыктывкар, 167982 Россия ^bМГУ им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991 Россия ^cПочвенный институт им. В.В. Докучаева, Пыжевский пер., 7, Москва, 119017 Россия

> **e-mail: aadymov@gmail.com* Поступила в редакцию 17.05.2019 г. После доработки 13.06.2019 г. Принята к публикации 20.09.2019 г.

Аффинная хроматография с иммобилизированными ионами металлов (ІМАС-хроматография) использована для фракционирования органических соединений шелочного экстракта из десных почв Республики Коми по критерию их способности образовывать комплексные соединения с ионами меди. На основе подбора условий разделения предложен алгоритм хроматографического фракционирования веществ на группы молекулярно гомогенных соединений, основанный на последовательном изменении рН и ионной силы элюента. Показано, что соединения щелочного экстракта содержат три фракции, компоненты которых различаются способностью образовывать комплексные соединения с медью. Установлено, что гумусовые вещества подзолов (Albic Podzol), подзолистых (Glossic Retisol) и торфянисто-подзолисто-глееватых почв (Histic Retisol) различаются по относительному содержанию лигандообразующих органических соединений. Максимальное содержание (по Сорг) комплексонов меди, характерно для органического вещества лесных подстилок рассматриваемых почв (14-21 г/кг). Соответствующие значения содержания органического вещества элювиальных горизонтах составляют 0.5–1.5 г/кг. Наиболее высокое содержание соединений углерода, способных связывать ионы меди, характерно для подзолистых почв, в то время как компоненты органического вещества из подзолов и торфянисто-подзолисто-глееватых почв характеризуются несколько меньшей аффинностью к меди. Представленный алгоритм может быть использован для оценки устойчивости почв к загрязнению тяжелыми металлами.

Ключевые слова: лесные почвы, почвенное органическое вещество, методы фракционирования **DOI:** 10.31857/S0032180X20020045

введение

Почвы являются мощнейшим геохимическим барьером для загрязняющих компонентов. Одними из приоритетных загрязнителей служат тяжелые металлы (ТМ). Поступление поллютантов в окружающую среду связано с различными типами антропогенной деятельности [13, 19]. От свойств почв зависит дальнейшая судьба загрязнителей – аккумуляция в почве, либо миграция в геохимически подчиненные ландшафты и водоемы. Лидирующую роль в закреплении ТМ играет почвенное органическое вещество [1, 3, 7, 16, 30]. В настоящее время механизмы аккумуляции и миграции тяжелых металлов в почвах и геохимически сопряженных ландшафтах в основном исследованы методами потенциометрического титрования (рН-эффект) и ионообменного равновесия [15]. Показано существенное влияние форм нахождения тяжелых металлов в почвах на их современное состояние [9, 14]. Разработка хроматографических

методов, позволяющих проводить фракционирование органических соединений по критерию их комплексообразующей способности, позволяет существенно расширить понимание механизмов природной химической дифференциации профиля, аккумуляции и миграции загрязняющих компонентов для дальнейшего регулирования и нормирования их содержания.

Развитие инструментальных возможностей аналитической химии определяет постепенное переосмысление роли и функций, индивидуальных органических соединений и групп, обладающих близкими функциональными свойствами. Одним из перспективных методов изучения функциональных свойств органического вещества является металл-аффинная хроматография [11, 25].

Термин "лиганоднообменная хроматография" был введен в 1961 г. в коротком сообщении Гельфериха [24]. Концепция металл-аффинной хроматографии (IMAX immobilized-metal affinity chroma-

Рис. 1. Структура геля агарозы быстрого потока (А) и схема взаимодействия (зарядки) колонки с ионами меди (Б).

tography) сформулирована и опубликована Поратом [31]. В данном подходе используется свойство биологических макромолекул связываться с иммобилизованными на хроматографической матрице ионами металлов, таких как Cu²⁺, Zn²⁺, Ni²⁺, Co²⁺, Fe²⁺. Специфическое связывание осуществляется за счет наличия на поверхности молекул свободных электронодонорных групп. В условиях IMAX (нейтральные значения pH и высокие концентрации соли) в качестве потенциальных лигандов в органической молекуле могут выступать имидазольная группа гистидина (рК ~ 6.7), тиольная группа цистеина (pK ~ 8.5) и индольная группа триптофана (pK ~ 9.41). В таких взаимодействиях могут принимать участие С-концевые аминокислоты (рК ~ 7.7), а также остатки аспарагиновой и глютаминовой кислот (pK ~ 3.9). По прочности образуемых комплексов аминокислоты располагаются в ряд: His, Cys > Asp, Glu \gg другие аминокислоты. Взаимодействие между сорбентом и аналитом pH-зависимое. В связи с этим связанные вещества можно элюировать, уменьшая ионную силу буфера, изменяя рН, или использовать другие хелатирующие агенты (ЭДТА и др.) [20, 21, 31].

В настоящее время IMAC-хроматографию используют при проведении предварительной обработки образцов для обнаружения наркотиков [10], для оценки комплексообразующих свойств органических соединений морских вод [27], фракционирования и очистки белков и аминокислот при биохимических исследованиях [2, 8, 18, 32]. В последние десятилетия в международных журналах появились первые публикации использования металл-аффинной хроматографии при оценке комплексообразующих свойств смесей органических соединений водных объектов, гумусовых веществ (**ГВ**) и экстрактов из почв [23, 25, 28, 29].

Цель работы — оценка возможностей аффинной хроматографии с иммобилизованными металлами для изучения комплексообразующих

ПОЧВОВЕДЕНИЕ № 2 2020

свойств органического вещества лесных почв Европейского Севера.

В задачи исследования входило: оценить возможности аффинной хроматографии с иммобилизованными ионами металлов для идентификации комплексообразующих органических соединений в составе лабильного почвенного органического вещества; охарактеризовать особенности молекулярно гомогенных фракций органического вещества с использованием индивидуальных органических соединений с различными ионогенными группами; выявить особенности комплексообразующих свойств ГВ преобладающих почв таежной зоны методом IMAC-хроматографии.

ОБЪЕКТЫ И МЕТОДЫ

Объектом исследования были верхние генетические горизонты типичных почв Республики Коми: І — подзол иллювиально-железистый развивающийся на песчаных отложениях под сосняком лишайниковым, средняя тайга [22]; II — подзолистая почва, развивающаяся на покровных суглинках под ельником кустарничковым, средняя тайга, Южный Тиман [5]; III — торфянисто-подзолистоглееватая почва, формирующаяся на моренных суглинках, под ельником чернично-сфагновым в северной тайге Приполярного Урала [4].

ГВ экстрагировали из почв 0.1 моль/дм³ NaOH при соотношении почва : раствор 1 : 10 в течение 20–24 ч. Экстракт ГВ очищали от минеральных примесей центрифугированием (10000 об./мин, 20 мин). К 0.5 см³ супернатанта добавляли 1.0 см³ стартового раствора (0.02 моль/дм³ фосфатный буфер с 0.5 моль/дм³ NaCl, pH 7.0).

Хроматографическое фракционирование ГВ проводили на геле агарозы (рис. 1) с ковалентносшитыми хелатными группами (IMAC Sepharose 6 FF, GE Healhtcare) на колонке 1 × 10 см (Bio-Rad). Динамическая связывающая емкость геля –

Рис. 2. Внешний вид колонки с IMAC-Sepharose 6FF до (А) и после (Б) "зарядки" катионами меди.

25 мг (Cu^{2+})/см³ геля [26]. Реакцию комплексообразования можно представить в виде схемы (рис. 1Б).

Для иммобилизации ионов меди на хроматографической матрице через колонку 1×10 см (Bio-Rad) с гелем IMAC Sepharose 6 FF прокачивали при помощи перистальтического насоса (Econopump) $10 \text{ см}^3 0.5 \text{ моль/дм}^3$ раствора CuSO₄. Равномерная голубая окраска геля позволяла визуально контролировать качественное состояние колонки (рис. 2).

Для удаления ионов меди, не прореагировавших с гелем, колонку промывали 40 см³ дистиллированной воды и 20 см³ стартового буфера (0.02 моль/дм³ фосфатный буфер с 0.5 моль/дм³ NaCl, pH 7.0). Повышение ионной силы буфера за счет NaCl минимизирует неспецифические ионные взаимодействия гумусовых веществ с аффинной матрицей. Разделение проводили на хроматографической системе BioLogic LP (USA). Детектирование оптической плотности при 280 нм. Скорость подачи элюэнтов – 2 см³/мин.

В колонку, уравновешенную стартовым раствором, вводили 440 мкл раствора ГВ. Компоненты пробы, не вступающие в реакцию взаимодействия с ионами меди, элюируются в составе первой хроматографической фракции. Ослабление аффинных взаимодействий органических соединений с матрицей геля осуществляли понижением pH элюента. Фракцию 2 слабосвязанных органических соединений элюировали раствором 0.05 моль/дм³ ацетатного буфера с 0.5 моль/дм³ NaCl (pH 4). Фракцию 3 (прочносвязанные органические соединения) элюировали раствором 0.2 моль/дм³ NaOH с 0.5 моль/дм³ NaCl (pH 12). После завершения фракционирования ионы меди Cu²⁺ удаляли с колонки 0.2 моль/дм³раствором ЭДТА.

Для регенерации гель переносили на воронку Бюхнера и промывали последовательно 15-20 мл: дистиллированная вода, 25% пропанол \rightarrow 50% пропанол $\rightarrow 100\%$ пропанол $\rightarrow 100\%$ бутанол $\rightarrow 50\%$ пропанол $\rightarrow 25\%$ пропанол \rightarrow дистиллированная вода. Регенерированный гель загружали в хроматографическую колонку и насыщали ионами меди. Все используемые растворы фильтровали через мембранные фильтры с размером пор 0.22 мкм, на установках Millipor, дегазировали и контролировали значения рН. В качестве стандартов использовали ряд индивидуальных соединений: глицин (0.5 моль/дм³), щавелевую кислоту (0.5 моль/дм³), гистидин солянокислый (0.1 моль/дм³), аспарагиновую кислоту (0.1 моль/дм³), фенилаланин (0.1 моль/дм³) и др. Интегрирование и вычисление площадей хроматографических фракций осуществляли в программе Мультихром 2.0.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Подробные описания морфологических и физико-химических свойств почв опубликованы ранее [4, 5, 22]. В табл. 1 приведены наиболее общие физико-химические свойства исследуемых почв. Для рассматриваемых почв характерны близкие физико-химические свойства. Почвы кислые – значения рН водных вытяжек изменяются от 3.3 в органогенном горизонте торфянисто-подзолисто-глееватой почвы до 4.3 в подстилке подзола. Для почв характерна низкая степень насыщенности основаниями. В органогенных горизонтах характерно накопление грубогумусированного органического вещества. При этом органическое вещество подзолистых и торфянисто-подзолисто-глееватых почв в большей степени обогащено азотом по сравнению с иллювиально-железистыми подзолами. Содержание соединений углерода, извлекаемых децинормальным раствором щелочи, изменяется от 67-102 г/кг почвы в органогенных горизонтах до 1.3-4.5 г/кг почвы в минеральных горизонтах. Доля щелочнорастворимых соединений от С $_{\rm obm}$ составляет 17—25% в подстилках и 18.4–32.5% в верхних минеральных горизонтах. Максимальная доля С_{шел} (относительно С_{обш}) характерна для горизонтов с морфологическими признаками миграции органического вещества в торфянисто-подзолисто-глееватой почве. Со-

Горизонт	Глубина, см	pН		Hr*	Обме кати Са ²⁺	нные юны Mg ²⁺	V**	С _{общ}	N _{общ}	C N	С _{щел} , %	$\frac{C_{\text{шел}}}{C_{\text{opr}}}, \%$
		H ₂ O	KCl	СМС	оль (экв)	/кг		%				
Подзол (I)												
O(H)	1-3	4.3	3.3	45.9	8.8	1.4	18	43.7	0.69	54	7.48	17.1
E	3-13	4.2	3.3	3.6	0.3	0.1	10	0.87	0.02	37	0.16	18.4
Подзолистая (II)												
O(H)	6-8	4.0	2.9	73.7	11.4	3.0	16	35.8	1.58	26	6.67	18.6
EL	8-11	3.9	2.9	14.9	0.6	0.3	6	2.2	0.15	17	0.45	20.4
Торфянисто-подзолисто-глееватая (III)												
O(H)	7-13	3.3	4.2	82.5	2.1	1.2	4	40.2	1.56	29	10.2	25.4
ELhi,g	13-30	3.8	5.0	7.8	0.3	0.1	5	0.4	0.03	15	0.13	32.5

Таблица 1. Физико-химические и химические свойства исследуемых почв

* Гидролитическая кислотность.

** Степень насыщенности основаниями.

гласно ранее проведенным исследованиям [6], запасы углерода в рассматриваемых почвах на глубину 1 м составляют, кг/м²: 2.9 для подзолов; 9.2 для подзолистых почв; 12.1 для торфянистоподзолисто-глееватых почв. Несмотря на принадлежность к бореальным лесам, рассматриваемые почвы имеют ряд различий по условиям формирования, аккумуляции и разложения органического вещества. В качестве опорных были выбраны по два горизонта (нижняя часть подстилки и верхний минеральный горизонт), поскольку в большинстве случаев именно они подвергаются наиболее интенсивному воздействию при химическом загрязнении.

Методическая работа по выбору алгоритма фракционирования носила поисковый характер. Использовали различные комбинации условий фракционирования ГВ щелочного экстракта на молекулярно гомогенные фракции, в основе которых лежали приемы, используемые в лиганднообменной хроматографии белков:

 – лигандный обмен при помощи гистидина, имидазола, хлорида аммония, или другими веществами, образующими более устойчивые комплексы с ионами металла (т.е. имеющими сродство к хелатированным ионам металла);

 – разрушение хелатных соединений сильным хелатирующим агентом (ЭДТА), приводящее к освобождению соединений и десорбции металла;

 – градиент pH элюента (линейный или ступенчатый), обеспечивающий протонирование донорных групп ГВ.

Для сложных смесей, которыми являются щелочные экстракты ГВ, в случае первых двух вариантах фракционирования наблюдалась низкая воспроизводимость и неоднозначность интерпретации

ПОЧВОВЕДЕНИЕ № 2 2020

результатов. Вероятно, подходы с лигандным обменом и разрушением хелатных соединений ЭТДА применимы к более однородным по молекулярному составу смесям и требуют предварительной очистки и удаления низкомолекулярных органических соединений.

Высокую воспроизводимость результатов показал вариант разделения ГВ с градиентом pH: 10 мин буфер 1 – 0.02 моль/дм³ фосфатный буфер с 0.5 моль/дм³ NaCl, pH 7; 15 мин буфер 2 – 0.05 моль/дм³ ацетатный буфер с 0.5 моль/дм³ NaCl, pH 4; 20 мин буфер 3 – 0.2 моль/дм³ NaOH с 0.5 моль/дм³ NaCl, pH 12. Примеры хроматограмм приведены на рис. 3 и 4.

Рис. 3. Условия IMAC фракционирования 0.1 моль/дм³ NaOH экстракта ГВ: 1 – оптическая плотность, 2 – pH элюента; A – 0.02 моль/дм³ фосфатный буфер с 0.5 моль/дм³ NaCl, pH 7; B – 0.05 моль/дм³ ацетатный буфер с 0.5 моль/дм³ NaCl, pH 4; C – 0.2 моль/дм³ NaOH с 0.5 моль/дм³ NaCl, pH 12.

Рис. 4. Зависимость сигнала детекторов от времени: оптическая плотность (1), электропроводность (2) элюата.

С помощью выбранного алгоритма проведено фракционирование щелочнорастворимого органического вещества исследуемых почв (рис. 5) и выполнена оценка относительной доли отдельных фракций (табл. 2). Предложенный алгоритм позволил разделить ГВ на три молекулярно гомогенные фракции по их способности вступать во взаимодействия с ионами меди. По содержанию относительной доли было установлено, что минимальной способностью связывать ионы меди в органогенном горизонте характеризовалась торфяно-подзолисто-глееватая почва, а максимальной — подзолистая почва. Для минеральных горизонтов, наибольшая доля органических соединений, вступающих в реакцию с ионами меди, выявлена для ГВ торфянисто-подзолисто-глееватой почвы, минимальная — для подзолистой почвы.

Оценка содержания отдельных фракций с учетом содержания углерода в шелочной вытяжке и относительного содержания хроматографических фракций приведена в табл. 3. Среди органогенных горизонтов минимальным содержанием второй и третьей фракций характеризовался подзол – 14.4 г/кг почвы, близкие значения получены для подстилки торфянисто-подзолисто-глееватой почвы. Содержание углерода связаных и прочносвязанных соединений в подзолистой почве составляет 21 г/кг почвы, при минимальном содержании углерода, извлекаемого щелочной вытяжкой. На первый взгляд комплексообразующая способность компонентов ГВ из минеральных горизонтов существенно меньше. Максимальное содержание соединений второй и третьей фракции выявлено для подзолистой почвы, в то время как для подзола и торфянисто-подзолисто-глееватой почвы оно в 2-3 раза меньше. Отчасти это связано с меньшим количеством органического углерода в

Рис. 5. Хроматограммы 0.1 моль/дм³ NaOH экстракта ГВ из I – подстилки, II – элювиального горизонта.

Тин нопр	Хром						
Типпочв	1	2	3	Cymma 2–3			
Подстилка							
Ι	81 ± 6	3.2 ± 0.4	16 ± 5	19.2			
II	68.7 ± 0.9	5.6 ± 0.6	25.8 ± 1.4	31.4			
III	86 ± 3	4.4 ± 0.9	10.0 ± 2.4	14.4			
Элювиальный горизонт							
Ι	60.8 ± 3.0	3.0 ± 0.9	36.3 ± 2.0	39.3			
II	65.9 ± 3.5	5.5 ± 0.5	27 ± 3	32.5			
III	60 ± 7	10 ± 4	30 ± 3	40			

Таблица 2. Относительное содержание фракций в составе 0.1 моль/дм³ NaOH экстракта органогенного и минерального горизонтов (среднее из трех измерений), %

Примечание. Здесь и в табл. 3: *1* – слабосвязанные органические соединения; *2* – связанные органические соединения; *3* – прочносвязанные с ионами меди органические соединения; почвы: І – подзол иллювиально-железистый; ІІ – подзолистая; ІІІ– торфянисто-подзолисто-глееватая.

Таблица 3. Содержание углерода в составе 0.1 моль/дм³ NaOH экстракта и хроматографических фракциях, г/кг

Типлонр	C	Хрома	Consult 2 2					
тип почв	€0.1NaOH	1	2	3	Cymma 2—3			
Подстилка								
Ι	75	60.8	2.4	12.0	14.4			
II	67	46.0	3.8	17.3	21.0			
III	102	87.7	4.5	10.2	14.7			
Элювиальный горизонт								
Ι	1.6	1.0	0.0	0.6	0.6			
II	4.5	3.0	0.2	1.2	1.5			
III	1.3	0.8	0.1	0.4	0.5			

Примечание. Допущения при расчете: все органические соединения щелочного экстракта элюируются с колонки, поглощают при $\lambda = 280$ нм, не различаются по коэффициентам экстинкции.

горизонте. С другой стороны, необходимо учитывать, что в составе щелочного экстракта из элювиальных горизонтов подзолов до 50% ГВ находится в составе устойчивых комплексных соединений с железом и алюминием [6, 12], не способных вступать во взаимодействия с иммобилизованной матрицей геля.

Для возможной аппроксимации результатов на свойства почв в табл. 4 представлены константы устойчивости (pKa) с ионами меди индивидуальных соединений с различными функциональными группами. Исходя из полученных хроматограмм и приведенных логарифмов констант устойчивости, можно предположить, что в первый хроматографический пик попадают вещества, которые либо не вступают во взаимодействие с ионами меди на поверхности геля, либо слабо взаимодействуют с иммобилизованным на матрице лигандом. Вследствие чего они элюируются во время прохождения через систему стартового буфера. Диапазон значений рКа индивидуальных соединений, которые элюировались со временем удерживания, попадающим в значения интервала первой фракции, составляет рКа 4.4-8.6 (табл. 3). При этом индивидуальные соединения, попадающие в первую фракцию, несколько отличаются по времени удерживания (рис. 6). Можно предположить, что в первый пик входят вещества со свойствами, схожими с щавелевой, аспарагиновой кислотами и глицином. В эту фракцию преимущественно входят низкомолекулярные соединения с амино- (-NH₂) и карбоксильными (-СООН) функциональными группами. Время элюирования фракций органических соединений, которые не вступали во взаимодействие с ионами меди, соответствовало времени элюирования модельных веществ.

Вторая хроматографическая фракция содержит органические соединения, связанные с медью, элюирование которых с колонки происходит в присутствии ацетатного буфера с низким pH. Диа-

ПОЧВОВЕДЕНИЕ № 2 2020

Рис. 6. ІМАС-хроматограммы индивидуальных органических соединений по используемому в работе алгоритму фракционирования.

пазон значений логарифмов констант устойчивости таких индивидуальных соединений можно оценить от 8.6 до 10.2 (рис. 7). Время элюирования второй фракции ГВ щелочного экстракта из почвы также совпадает со временем элюирования индивидуальных веществ: гистидина солянокислого и

Вещество	Структурная формула	pКа комплексных соединений с ионами меди	Время элюирования, мин
ЭДТА	HOOCCH ₂ N=CH ₂ -CH ₂ N NaOOCCH ₂ CH ₂ COONa CH ₂ COOH	18.8 15.5 16.5	_
8-Оксихинолин	OH N	12.2 23.4	19.0 32.5
Гистидин солянокислый	$N \xrightarrow{\text{C}} C \xrightarrow{\text{CH}} COOH \cdot HCI \cdot H_2O$ $HC \xrightarrow{\text{CH}} HH_2$ $HC \xrightarrow{\text{CH}} HH_2$	10.2 18.3	18.2 32.6
Аспарагиновая кислота	HOOC—CH ₂ —CH—COOH	8.6 15.4	5.3 32.4
Фенилаланин	CH ₂ -CH-COOH	8.3 14.7	6.0 32.5
Глицин	H ₂ N-CH ₂ -COOH	8.1 15.2	4.5 32.3
Щавелевая кислота	НООС—СООН	4.4	4.4

Таблица 4. Органические вещества, используемые в работе, и их константа устойчивости, при рН 7 и 25°С (по [17])

Рис. 7. IMAC-хроматограмма 0.1 моль/дм³ NaOH экстракта из подстилки подзолистой почвы: 1 – слабосвязанные органические соединения, 2 – связанные органические соединения, 3 – прочносвязанные с ионами меди органические соединения.

8-оксихинолина. Возможно, в этой фракции присутствуют соединения, содержащие N-гетероциклические ароматические структуры.

На основании времени элюирования пика 8оксихинолина, можно предположить, что диапазон значений рКа органических соединений прочносвязанных с ионами меди составляет более 12.2. Учитывая, что катионы меди полностью элюируются с колонки раствором 0.2 моль/дм³ ЭДТА, верхний предел их константы устойчивости, вероятно, ограничен 18. На основании исследования хроматографического поведения индивидуальных органических соединений можно предположить, что по комплексообразующим характеристикам (схожесть ионогенных групп) они аналогичны ГВ почв. Третий пик на хроматограммах модельных соединений связан со вторыми константами устойчивости, которые описаны для большинства исследуемых индивидуальных веществ. Вероятно, именно соединения, входящие в третью фракцию, играют наиболее существенную роль в длительной стабилизации катионов меди. Возможно, это наиболее сложные молекулярные структуры, содержащие в основе как ароматические структуры, так и карбоксильные группы. Можно предположить, что компоненты данной фракции представлены наиболее высокомолекулярными специфичными для почв биополимерами.

По сравнению с модельными органическими веществами хроматограммы образцов почвенного раствора демонстрировали более широкие пи-

ПОЧВОВЕДЕНИЕ Nº 2 2020 ки, что указывает на смешанный состав близкородственных лигандов с очень схожим сродством к мели.

Необходимо отметить, что градация соединений, входящих в отдельные фракции, с логарифмами констант устойчивости (рКа) является условной, поскольку в зависимости от значений рН и электропроводности числовые значения констант могут несколько изменяться. Ранее проведенные работы [28] показали, что рКа соединений металлов с индивидуальными веществами имеют незначительное влияние на удерживающую способность.

ЗАКЛЮЧЕНИЕ

Опробованы различные приемы разделения гумусовых веществ на молекулярно гомогенные фракции по сродству к взаимодействию с ионами меди. Наиболее эффективным приемом ІМАС признано последовательное изменение рН элюента, приводящее к протонированию донорных групп. Предложенный алгоритм разделения щелочного экстракта ГВ позволяет выделить три фракции ГВ, компоненты которых различаются по способности связывать ионы меди (слабосвязанные органические соединения; связанные органические соединения; прочносвязанные С ионами меди органические соединения). На основании использования индивидуальных веществ с известными функциональными группами и значениями pKa с ионами меди выявлено, что в первую фракцию ГВ попадают низкомолекулярные соединения не связывающие ионы меди, а также характеризуемые низкими показателями pKa (до 8.6), обусловленными низкомолекулярными соединениями с амино- и карбоксильными функциональными группами, во вторую фракцию — соединения, содержащие N-гетероциклические ароматические структуры. К третьей фракции прочносвязанных органических соединений отнесены наиболее высокомолекулярные соединения с pKa > 12.2.

По данному алгоритму фракционирования проанализированы ГВ подстилок и элювиальных горизонтов подзолов иллювиально-железистых, подзолистых почв и торфянисто-подзолисто-глееватых. Количественная оценка вклада углерода отдельных фракций показала, что наибольшей способностью связывать ионы меди, обладают ГВ подзолистой почвы. Опробованный вариант фракционирования может быть использован для оценки устойчивости почв к загрязнению тяжелыми металлами.

БЛАГОДАРНОСТЬ

Авторы благодарят А.С. Половникову за техническую помощь при выполнении анализов.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Безносиков В.А., Лодыеин Е.Д., Чуков С.Н. Ландшафтно-геохимическая оценка фонового содержания тяжелых металлов в почвах таежной зоны // Вестник Санкт-Петербургского университета. Сер. 3. Биология. 2010. № 2. С. 114-128.
- Даванков В.А., Навратил Дж., Уолтон Х. Лиганднообменная хроматография: пер. с англ. М.: Мир, 1990. 294 с.
- 3. Дымов А.А., Лаптева Е.М., Калашников А.В., Денева С.В. Фоновое содержание тяжелых металлов, мышьяка и углеводородов в почвах Большеземельской тундры // Теоретическая и прикладная экология. 2010. № 4. С. 43–48.
- 4. Дымов А.А., Жангуров Е.В., Старцев В.В. Почвы северной части Приполярного Урала: морфология, физико-химические свойства, запасы углерода и азота // Почвоведение. 2013. № 5. С. 507–516.
- Дымов А.А., Милановский Е.Ю. Изменение органического вещества таежных почв в процессе естественного лесовозобновления растительности после рубок (средняя тайга Республики Коми) // Почвоведение. 2014. № 1. С. 39–47.
- Дымов А.А. Почвы послерубочных, постпирогенных ипостагрогенных лесных экосистем северо-востока европейской части России. Автореф. дис. ... докт. биол. наук. М., 2018. 48 с.

- 7. *Кабата-Пендиас А., Пендиас Х.* Микроэлементы в почвах и растениях: пер. с англ. М.: Мир, 1989. 439 с.
- Кельциева О.А., Гладилович В.Д., Подольская Е.П. Металл-аффинная хроматография. Основы и применение // Научное приборостроение. 2013. Т. 23. № 1. С. 74–85.
- 9. Ладонин Д.В. Соединения тяжелых металлов в почвах — проблемы и методы изучения // Почвоведение. 2002. № 6. С. 682–692.
- Луговской А.А., Яковлева А.С., Щербаков А.В. Синтез сорбента для металл-хелатной аффинной хроматографии и его применение для выделения рекомбинантных белков // Труды федерального центра охраны здоровья животных. 2007. Т. 5. С. 248–255.
- Милановский Е.Ю. Амфифильные компоненты гумусовых веществ почв // Почвоведение. 2000. № 6. С. 706-7015.
- 12. *Милановский Е.Ю*. Гумусовые вещества почв как природные гидрофобно-гидрофильные соединения. М.: ГЕОС, 2009. 186 с.
- Минкина Т.М., Мотузова Г.В., Назаренко О.Г., Крыщенко В.С., Манджиева С.С. Формы соединений тяжелых металлов в почвах степной зоны // Почвоведение. 2008. № 7. С. 810–818.
- 14. Орлов Д.С., Минько О.И., Демин В.В., Сальников В.Г., Измайлова Н.Б. О природе и механизмах образования металл-гумусовых комплексов // Почвоведение. 1988. № 9. С. 43–52.
- Пинский Д.Л. Ионообменные процессы в почвах. Пущино: Ин-т почвоведения и фотосинтеза РАН, 1997. 166 с.
- 16. Семенов В.М., Когут Б.М. Почвенное органическое вещество. М.: ГЕОС, 2015. 233 с.
- Справочник биохимика: пер. с англ. М.: Мир, 1991. 544 с.
- Andersson L., Porath J. Isolation of phosphoproteins by immobilized metal (Fe³⁺) affinity chromatography // Analytical Biochemistry 1986. V. 154. P. 250–254.
- Bauer T., Pinskii D., Minkina T., Nevidomskaya D., Mandzhieva S., Chaplygin V., Popileshko Y. Time effect on the stabilization of technogenic copper compounds in solid phases of Haplic Chernozem // Sci. Total Environ. 2018. V. 626. P. 1100–1107. https://doi.org/10.1016/j.scitotenv.2018.01.134
- Block H., Maertens B., Spriestersbach A., Brinker N., Kubicek J., Fabis R., Labhan J, Schäfer F. Immobilizedmetal affinity chromatography (IMAC): a review // Methods Enzymol. 2009. V. 463. P. 439–473. https://doi.org/10.1016/j.pep.2007.09.019
- Cheung R.C.F., Wong J.H., Ng T.B. Immobilized metal ion affinity chromatography: a review on its applications // Appl. Microbiol. Biotechnol. 2012. V. 96. P. 1411–1420. https://doi.org/10.1007/s00253-012-4507-0
- 22. Dymov A.A., Gabov D.N. Pyrogenic alterations of Podzols at the North-East European part of Russia: morphology, carbon pools, PAH content // Geoderma. 2015. V. 241–242. P. 230–237. https://doi.org/10.1016/j.geoderma.2014.11.021
- 23. *Halko R., Neurocny T., Huttai M.* Utilization of immobilized aluminium(III) metall ion affinity chromatog-

raphy for analysis of humic acids // Polish J. Soil Sci. 2009. V. XLII/2. P. 149–157.

- Helfferich F.T. Ligand exchange: A novel separation technique // Nature. 1961. V. 189. P. 1001–1002. https://doi.org/10.1038/1891001a0
- Hutta M., Gora R., Halko R., Chalanyova M. Some theoretical and practical aspects in separation of humic substances by combined liquid chromatography methods // J. Chromatography A. 2011. V. 1218. P. 8946– 8957.

https://doi.org/10.1016/j.chroma.2011.06.107

- 26. Instruction 28-4046-21 AD affinity media IMAC Sepharose TM 6 Fast Flow. 22 p.
- Nixon R.L., Ross A.R. Evaluation of Immobilized Metal-Ion Affinity Chromatography and Electrospray Ionization Tandem Mass Spectrometry for Recovery and Identification of Copper(II)-Binding Ligands in Seawater Using the Model Ligand 8-Hydroxyquinoline // Frontiers in Marine Science. 2016. V. 3.246. https://doi.org/10.3389/fmars.2016.00246

- 28. *Paunovic I., Schulin R., Nowack B.* Fractionation of dissolved organic carbon from solution with immobilized metal ion affinity chromatography // European J. Soil Sci. 2008. № 4. V. 59. P. 198–207. https://doi.org/10.1111/j.1365-2389.2007.00975.x
- 29. *Paunovic I., Schulin R., Nowack B.* Evaluation of immobilized metal-ion affinity chromatography for the fractionation of natural Cu complexing ligands // J. Chromatography A. 2005. V. 1100. P. 176–184. https://doi.org/10.1016/j.chroma.2005.09.055
- Piccolo A. The Supramolecular Structure of Humic Substances: a Novel Understanding of Humus Chemistry and Implications in Soil Science // Adv. Agronomy. 2002. V. 75. P. 57–134. https://doi.org/10.1097/00010694-200111000-00007
- Porath J., Carlsson J., Olsson I., Belfrage G. Metal chelate affinity chromatography a new approach to protein fractionation // Nature. 1975. V. 258. P. 598–599. https://doi.org/10.1038/258598a0
- Protein purification: Principles, High Resolution Methods, and Application / Eds. Janson J.Ch., Ryden L. N.Y., 1998. 695 p.

IMAC-Chromatography Use to Asses the Complex-Forming Properties of Soil Organic Matter (with the Example of Copper Ions)

A. A. Dymov^{1, *} and E. Yu. Milanovskii^{2, 3}

¹Institute of Biology, Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, 167982 Russia ²Lomonosov Moscow State University, Moscow, 119991 Russia ³Dokuchaev Soil Science Institute, Moscow, 119017 Russia *e-mail: aadymov@gmail.com

Affinity chromatography with immobilized metal ions (IMAC chromatography) was used to fractionate organic compounds of an alkaline extract from forest soils of Komi Republic by their ability to form complex compounds with Cu^{2+} . Based on the selection of separation conditions, an algorithm for chromatographic fractionation of substances into groups of molecularly homogeneous compounds is proposed, based on a sequential change in pH and ionic strength of the eluent. The compounds of the alkaline extract are shown to contain three fractions, which components differ in their ability to form complex compounds with Cu^{2+} . It was established that humus substances of Albic Podzol, Glossic Retisol and Histic Retisol differ in the relative content of ligand-forming organic compounds. The maximum content (by Corg) of copper complexones is recorded in the organic matter of forest litters of soils studied (14–21 g/kg). The corresponding OM values of the eluvial horizons are 0.5–1.5 g/kg. The highest content of carbon compounds capable of binding copper ions is characteristic of Glossic Retisol, while the components of organic matter from Albic Podzol and Histic Retisol are characterized by somewhat lower affinity for copper. The presented algorithm can be used to assess soil vulnerability to heavy metal pollution.

Keywords: forest soils, soil organic matter, SOM fractionation methods