УДК 541.123:546.21

ИЗУЧЕНИЕ ПРОЦЕССОВ ЛОКАЛЬНОЙ АККУМУЛЯЦИИ ЗАРЯДА В ПЛЕНКАХ ZrO₂(Y) С НАНОЧАСТИЦАМИ Au МЕТОДОМ КЕЛЬВИН-ЗОНД-МИКРОСКОПИИ

© 2019 г. М. Н. Коряжкина^{1,} *, Д. О. Филатов¹, И. Н. Антонов¹, М. А. Рябова¹, М. С. Дунаевский²

¹Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия ²Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия *E-mail: mahavenok@mail.ru Поступила в редакцию 04.03.2018 г. После доработки 14.03.2018 г. Принята к публикации 22.03.2018 г.

Методом сканирующей кельвин-зонд-микроскопии исследована временная динамика пространственного распределения электронов, локально инжектированных из зонда атомно-силового микроскопа в тонкие (толщиной менее 10 нм) пленки ZrO₂(Y) с внедренными наночастицами Au на подложках Si. Получены и проанализированы профили потенциала поверхности пленок, наведенного инжекцией счетного числа (несколько десятков) электронов в наночастицы Au в зависимости от времени, прошедшего после инжекции.

Ключевые слова: металлические наночастицы, тонкие диэлектрические пленки, аккумуляция заряда, сканирующая кельвин-зонд-микроскопия.

DOI: 10.1134/S0207352819010104

введение

В последние годы внимание привлекают исследования процессов локальной аккумуляции электрического заряда в металлических или полупроводниковых наночастицах, встроенных в тонкие пленки диэлектриков [1, 2]. Это связано с перспективами использования таких пленок в качестве плавающих затворов в устройствах энергонезависимой компьютерной памяти (нанофлешпамяти) [3]. Традиционная флеш-память, основными элементами которой являются полевые транзисторы на основе структур металл-диэлектрик-полупроводник (МДП), в настоящее время приближается к пределам своего масштабирования [4]. Внедрение в диэлектрические пленки металлических наночастиц позволяет создать дискретные области аккумуляции электрического заряда. В настоящее время критические размеры элементов электронных интегральных схем приближаются к 10 нм. Если сформировать в подзатворном диэлектрике МДП-транзисторов с затворами таких размеров единичную наночастицу металла, то в силу ее малой емкости ($\sim 10^{-19} \, \Phi$) инжекция единичного электрона изменит потенциал наночастицы на величину ~1 В. При соответствующей конструкции МДП-транзистора это может быть достаточным для перекрытия канала. Таким образом, может быть реализована одноэлектронная нанофлеш-память, в которой каждый бит информации кодируется единичным электроном, локализованным в наночастице, встроенной в подзатворный диэлектрик МДПтранзистора [5, 6].

В настоящей работе методом сканирующей кельвин-зонд-микроскопии (СКЗМ) [7] исследованы процессы аккумуляции заряда, локально инжектированного при помощи зонда атомносилового микроскопа (АСМ) в тонкие (толщиной менее 10 нм) пленки ZrO₂(Y) с внедренными в них наночастицами Au на подложках Si. Диоксид циркония считается перспективным материалом (так называемым high-к-диэлектриком – диэлектриком с большой диэлектрической проницаемостью) для использования в качестве подзатворного изолирующего слоя в МДП-транзисторах следующего поколения [8]. Целью настоящей работы было исследование пространственного распределения и временной динамики электрического заряда, локально инжектированного в наночастицы Au в пленках ZrO₂(Y)/Si для выяснения пригодности использования данных пленок в качестве подзатворных диэлектриков в перспективных устройствах нанофлеш-памяти.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Пленки ZrO₂(Y) с однослойными массивами наночастиц Аи формировались на подложках *n*⁺-Si(100) марки КЭМ-0.005 методом послойного магнетронного осаждения с последующим отжигом. Сэндвич-структуры ZrO₂(Y)/Au/ZrO₂(Y) осаждали при помощи установки Torr Internatonal MagSputt-3G2 и 2G1-1G2-EB4-TH1. На поверхность подложек n^+ -Si методом высокочастотного магнетронного распыления композитных порошковых мишеней ZrO2-Y2O3 в атмосфере газовой смеси Ar-O₂ (50 : 50 мол. %) наносили подслои $ZrO_2(Y)$ толщиной $d_u \approx 2$ нм. Содержание стабилизирующего оксида Y2O3 в материалах мишеней составляло ~12 мол. %, давление газовой смеси в камере осаждения ~10⁻² Торр. Температура подложки во время осаждения слоев ZrO₂(Y) была ~300°С. На поверхность подслоя ZrO₂(Y) методом магнетронного распыления на постоянном токе в атмосфере Ar при температуре подложки ~200°С осаждали островковые пленки Аи номинальной толщиной ~1 нм. Поверх пленок Аи наносили покровные слои ZrO₂(Y) толщиной $d_{\rm c} = 2 - 8$ нм в тех же условиях, что и подслои ZrO₂(Y). Полученные таким образом сэндвичструктуры подвергались отжигу в атмосфере Ar при температуре 450°С в течение 1 ч. Кроме того, в качестве контрольных образцов были сформированы пленки ZrO₂(Y)/n⁺-Si(001) без наночастиц Аu. Толщина пленок ZrO₂(Y) в этих образцах (4-10 нм) была равна общей толщине нанокомпозитных пленок d_0 в образцах с наночастицами Аи.

Исследования методом просвечивающей электронной микроскопии (ПЭМ) высокого разрешения поперечных срезов [9] показали, что в процессе отжига пленки Аu трансформируются в сферические наночастицы диаметром 2–3 нм, сосредоточенные практически в одном слое в толще пленок $ZrO_2(Y)$ на строго определенном расстоянии от подложки и от поверхности диэлектрической пленки. Более детально методики формирования нанокомпозитных диэлектрических пленок методом послойного осаждения, а также результаты исследований структурных и оптических свойств пленок методами ПЭМ и спектроскопии оптического поглощения в зависимости от условий формирования образцов изложены в [9, 10]. Точечные омические контакты с подложкой n^+ -Si изготавливали путем вжигания фольги из сплава Sn_{0.9}Sb_{0.1} искровым разрядом. Процессы локальной аккумуляции заряда в наночастицах Au исследовали с помощью ACM Solver Pro производства компании NT-MDT (Россия) в атмосферных условиях при комнатной температуре. Использовали зонды NT-MDT NSG-11 с Pt покрытием. Радиус кривизны острия ACM-зонда R_p , согласно паспортным данным, составлял ~35 нм.

Точечную инжекцию заряда в наночастицы Аи осуществляли в контактном режиме путем приложения импульса напряжения между АСМ-зондом и подложкой n^+ -Si $V_g = 1-3$ В длительностью ~1 с. Одновременно анализировали осциллограммы силы тока через АСМ-зонд, для того чтобы убедиться в отсутствии пробоя нанокомпозитной диэлектрической пленки. Пространственное распределение электрического потенциала по поверхности пленки ZrO₂(Y) с наночастицами Аи, индуцированного зарядом электронов, инжектированных в наночастицы Au, изучали методом СКЗМ путем сканирования области поверхности пленки вокруг точки инжекции заряда в двухпроходном режиме. Высота подъема зонда на втором проходе z₀ составляла 10 нм. Временную динамику потенциала, индуцированного инжектированным зарядом, изучали путем многократного сканирования области поверхности пленки вокруг точки инжекции заряда через определенные промежутки времени с момента инжекции.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1а представлено СКЗМ-изображение поверхности нанокомпозитной пленки $ZrO_2(Y)/n^+$ -Si толщиной $d_c = 8$ нм после точечной инжекции электронов из подложки в наночастицы Au при $V_g = 3$ В. После инжекции на СКЗМ-изображении наблюдается особенность, связанная с электростатическим взаимодействием ACM-зонда с электронами, локализованными в наночастицах Au (зарядовое пятно).

Если на поверхности исследуемого образца имеется точечный заряд Q, то выражение для амплитуды первой гармоники силы электростатического взаимодействия между АСМ-зондом и образцом на частоте ω в приближении точечного зонда может быть записано в виде [11]:

$$F_{\omega} = \left[\left(\Phi_k - V_{dc} \right) \frac{\partial C}{\partial z} - \frac{QC}{4\pi\epsilon\epsilon_0 r^2} \right] V_{ac}.$$
 (1)

Здесь Φ_k — контактная разность потенциалов между поверхностью образца и материалом по-

 $0.2 \quad 0.4 \quad 0.6 \quad 0.8$ 1.0 1.2 мкм 0

Рис. 1. СКЗМ-изображения зарядового пятна на поверхности пленки ZrO₂(Y) с наночастицами Au, полученные в различные моменты времени после инжекции заряда: a - 0; 6 - 1; b - 2; r - 3; d - 4; e - 5 сут.

крытия ACM-зонда, V_{dc} – компенсирующее напряжение, вырабатываемое системой обратной связи АСМ при измерении контактной разности

потенциалов методом СКЗМ, С – взаимная емкость АСМ-зонда и поверхности образца, є – диэлектрическая проницаемость среды, заполняю-

Рис. 2. Профили потенциала $\Delta \Phi$, индуцированного зарядом, инжектированным в наночастицы Au в пленке ZrO₂(Y)/Si, в различные моменты времени после инжекции заряда: 0 (*1*); 1 (*2*); 2 (*3*); 3 (*4*); 4 сут (*5*).

Рис. 3. Зависимости максимального значения потенциала $\Delta \Phi_m$, индуцированного зарядом электронов, локализованных в наночастице Au в пленке $ZrO_2(Y)/Si$, и заряда Q от времени t, прошедшего после инжекции заряда.

щей промежуток между острием ACM-зонда и поверхностью образца, ε_0 – электрическая постоянная, r – расстояние между ACM-зондом и точечным зарядом, V_{ac} – амплитуда модулирующего напряжения, приложенного между ACM-зондом и образцом. Полное напряжение между ACM-зондом и образцом имеет вид: $V_g = V_{dc} + V_{ac} \sin(\omega t)$, где t – время. Частота модуляции ω равна частоте собственных колебаний ACM-кантилевера $\omega_{mech} \approx 160 \ \kappa\Gamma$ ц.

Как следует из (1), при наличии на поверхности образца дополнительного заряда $F_{\omega} = 0$ при $V_{dc} = \Phi_k - \Delta \Phi$, где добавочный потенциал имеет вид:

$$\Delta \Phi = \frac{QC}{4\pi\varepsilon\varepsilon_0 r^2} \left(\frac{\partial C}{\partial z}\right)^{-1}.$$
 (2)

На рис. 16–1е приведены СКЗМ-изображения зарядового пятна на поверхности пленки $ZrO_2(Y)$ с наночастицами Au, полученные через равные промежутки времени (сутки) после инжекции заряда, а на рис. 2 – профили $\Delta \Phi(x)$, где x – координата в плоскости поверхности образца по диаметру зарядового пятна. Уменьшение максимумов профилей $\Delta \Phi_m$ с течением времени связано с уходом электронов из наночастиц Au в подложку n^+ -Si путем туннелирования через дефекты в слое ZrO₂(Y), предположительно, через вакансии кислорода.

На рис. 3 приведена зависимость $\Delta \Phi_m$ от времени, прошедшего после инжекции заряда для серии профилей $\Delta \Phi(x)$, представленных на рис. 2. Как следует из рис. 3, $\Delta \Phi_m$ уменьшается со временем экспоненциально, время удержания заряда τ для данной серии измерений составляло ~3 сут.

Исходя из величины $\Delta \Phi_m$ был оценен заряд Q, локализованный в наночастицах Au, по формуле (2) с учетом того, что в исследуемых образцах наночастицы Аи находились на конечной глубине в толще слоя диэлектрика с высокой диэлектрической проницаемостью. Взаимная емкость С АСМ-зонда и поверхности образца может быть представлена суммой парциальных емкостей балки кантилевера, конической части зонда и острия зонда, форму которого можно аппроксимировать сферическим сегментом радиуса R_p (рис. 4а). Оценки, сделанные ранее в [12], показывают, что при $z_0 = 10$ нм именно емкость острия ACM-зонда вносит наибольший вклад в С. Вкладом от балки кантилевера и конической части АСМ-зонда можно пренебречь. Поэтому при дальнейшем рассмотрении форму АСМ-зонда аппроксимировали сферой радиуса R_p . Подложку n^+ -Si считали идеально проводящим полупространством, потенциал границы $ZrO_2(Y)/n^+$ -Si (при z = 0) полагали равным нулю (рис. 4б). Пусть на металлической сфере, аппроксимирующей АСМ-зонд, имеется заряд *q*. Потенциал АСМ-зонда относительно подложки определяется как:

$$\varphi = \int_{0}^{d_{0}+z_{0}} E(z) dz = \int_{0}^{d_{0}} E_{d}(z) dz + \int_{d_{0}}^{d_{0}+z_{0}} E_{e}(z) dz, \quad (3)$$

где E_d и E_e — значения модуля напряженности электрического поля, создаваемого зарядом q в пленке $ZrO_2(Y)$ и в промежутке между поверхностью пленки и острием ACM-зонда соответственно, а взаимная емкость ACM-зонда относительно подложки n^+ -Si $C = q/\varphi$.

Значения E_d и E_e в точке *z* на пути интегрирования в (3) вычисляли методом сил изображения для плоской границы раздела двух диэлектриков [13]. Считали, что заряд *q* сосредоточен в центре сферы в точке с координатой $z = d_0 + h$, где $h = z_0 + R_p$. В области $d_0 < z < d_0 + z_0$ величина E_e

Рис. 4. Схема взаимного расположения наночастиц Аи в пленке $ZrO_2(Y)/n^+$ -Si и ACM-зонда при исследовании потенциала, наведенного электрическим зарядом, локализованным в наночаситцах Au, методом СКЗМ по двухпроходной методике (а). К расчету взаимной емкости ACM-зонда и подложки n^+ -Si, покрытой слоем $ZrO_2(Y)$ толщиной d (б).

определяется суперпозицией электрических полей, создаваемых зарядом q и фиктивным зарядом q', расположенными на оси z в точках $z = d_0 + h$ и $z = d_0 - h$ соответственно, а также их зеркальными отражениями в плоскости z = 0, -q и -q', расположенными в точках $z = -d_0 - h$ и $z = h - d_0$ соответственно (рис. 4б):

$$E_{e} = \frac{1}{4\pi\varepsilon_{0}} \left\{ q \left[\frac{1}{(d_{0} + h - z)^{2}} - \frac{1}{(d_{0} + h + z)^{2}} \right] + q' \left[\frac{1}{(z - d_{0} + h)^{2}} - \frac{1}{(z + d_{0} - h)^{2}} \right] \right\}, \quad (4)$$
$$q' = \frac{1 - \varepsilon_{d}}{\varepsilon_{d} + 1} q,$$

где $\varepsilon_d = 20$ — диэлектрическая проницаемость ZrO₂(Y). В толще пленки ZrO₂(Y) ($0 < z < d_0$) напряженность электрического поля E_d вычисляли как суперпозицию электрических полей двух фиктивных точечных зарядов q'' и -q'', расположенных в точках $z = d_0 + h$ и $z = -d_0 - h$ соответственно:

$$E_{d}(z) = \frac{q''}{4\pi\varepsilon_{0}\varepsilon_{d}} \left[\frac{1}{\left(d_{0}+h-z\right)^{2}} - \frac{1}{\left(d_{0}+h+z\right)^{2}} \right],$$

$$q'' = \frac{2\varepsilon_{d}}{\varepsilon_{d}+1}q.$$
(5)

Подставляя (4) и (5) в (3), получаем интеграл, который может быть вычислен аналитически. Однако результирующее выражение оказывается слишком громоздким и поэтому здесь не приводится.

При вычислении силы кулоновского взаимодействия точечного АСМ-зонда с зарядом Q, локализованным в наночастице Au, с учетом того, что наночастица находится в пленке ZrO₂(Y) на конечном расстоянии d_c от поверхности (рис. 4a), считали, что диаметр наночастицы $D \ll d_c$. Амплитуда первой гармоники силы кулоновского взаимодействия АСМ-зонда и наночастицы Аи на частоте модуляции ω может быть записана как $F_{Q\omega} = q_p E_Q$, где $q_p = CV_{dc}$ – амплитуда заряда ACM-зонда, наведенного переменным напряжением модуляции $V(t) = V_{dc} \sin(\omega t)$ (заряд ACM-зонда изменяется со временем по закону $q_p(t) = CV_{dc}\sin(\omega t)),$ а напряженность электрического поля Е₀, создаваемого зарядом наночастицы Q в точке $z = d_0 + h$, может быть также найдена методом сил изображения аналогично описанному выше способу:

$$E_{Q} = \frac{Q''}{4\pi\varepsilon_{0}} \left[\frac{1}{(h+d_{c})^{2}} - \frac{1}{(2d_{0}+h-d_{c})^{2}} \right],$$

$$Q'' = \frac{2}{\varepsilon_{d}+1}Q.$$
(6)

В результате (2) преобразуется к виду:

$$\Delta \Phi_m \sim \frac{QC}{2\pi\varepsilon_0 (\varepsilon_d + 1)} \left[\frac{1}{(z_0 + R_p + d_c)^2} - \frac{1}{(2d_0 + z_0 + R_p - d_c)^2} \right] \left(\frac{\partial C}{\partial z} \right)^{-1},$$
(7)

откуда

$$Q \sim \frac{2\pi\varepsilon_0 \left(\varepsilon_d + 1\right) \Delta \Phi_m}{C \left[\frac{1}{\left(z_0 + R_p + d_c\right)^2} - \frac{1}{\left(2d_0 + z_0 + R_p - d_c\right)^2}\right]} \left(\frac{\partial C}{\partial z}\right)}.$$
(8)

Результаты оценки *Q* приведены на рис. 3. Из полученных оценок следует, что наблюдаемые на СКЗМ-изображениях (рис. 1а-е) зарядовые пятна обусловлены счетным количеством электронов (10-40), локализованных в наночастице Аu. Следует подчеркнуть, что формулы (4)-(6) являются приближенными. Во-первых, аппроксимация сферы, заряженной точечным зарядом, расположенным в ее центре, приемлема лишь при $R_p \ll z_0$, в то время как в условиях эксперимента в настоящей работе $R_p > z_0$. То же справедливо и в отношении аппроксимации заряженной наночастицы Аи точечным зарядом *O*, поскольку размеры наночастиц в исследуемых образцах сравнимы с расстояниями от наночастицы до подложки и до поверхности пленки. Кроме того, аппроксимация подложки n^+ -Si идеально проводящим полупространством является идеализированной. В частности, не учитывалось наличие области пространственного заряда на границе ZrO₂(Y) n^+ -Si. Поэтому значения Q, приведенные на рис. 3, носят оценочный характер с точностью до порядка величины.

Заметим, что ширина профиля потенциала зарядового пятна $\Delta \Phi(x)$ (на уровне половины высоты максимума) практически не зависит от времени, т.е. латеральное растекание заряда в слое наночастиц практически отсутствует, в отличие от однородных диэлектрических пленок [14, 15], а также пленок SiO₂/Si с наночастицами Ge, сформированными методом ионной имплантации [16]. Латеральное растекание заряда в слое наночастиц возможно либо путем туннелирования между соседними наночастицами, либо путем туннелирования через локализованные электронные состояния, связанные со структурными дефектами в диэлектрической матрице [15]. В исследуемых образцах средняя толщина L диэлектрических прослоек между соседними наночастицами по данным ПЭМ [9, 10], составляет 2–3 нм. Характерное время туннельного перескока электрона в соседнюю наночастицу может быть оценено как $\tau_t \sim \tau_0/T$, где $\tau_0 \sim 2D/v_F$ – среднее время пробега электрона на уровне Ферми по диаметру наночастицы, $v_{\rm F} \sim 10^8$ см/с — скорость электронов на уровне Ферми в Au, T — туннельная прозрачность потенциального барьера между наночастицами, которая может быть оценена в квазиклассическом приближении как:

$$T \sim \exp\left(-\frac{2L\sqrt{2mE_b}}{\hbar}\right),\tag{9}$$

где $m \sim m_0$ — эффективная масса электрона в ZrO₂(Y), m_0 — масса свободного электрона, E_b — высота потенциального барьера между уровнем Ферми в наночастице Au и зоной проводимости ZrO₂(Y) [17], \hbar — постоянная Планка. Оценка τ_i по (9) для L = 3 нм составляет ~60 дней, что на порядок величины больше максимального времени наблюдения в настоящей работе.

ЗАКЛЮЧЕНИЕ

Результаты настоящей работы экспериментально демонстрируют принципиальную возможность создания в перспективе одноэлектронной нанофлеш-памяти, в которой индивидуальные металлические наночастицы встроены в подзатворные диэлектрические слои МДП-транзисторов. При размерах канала транзистора ~10 × × 10 нм возможно кодирование битов информации путем инжекции в наночастицы единичных электронов. Однако для практической реализации подобных приборов требуется дальнейшая оптимизация структур с целью увеличения времени удержания заряда в наночастице до ~10 лет (параметр, характерный для современной флешпамяти).

БЛАГОДАРНОСТИ

Работа поддержана Правительством РФ (грант № 14.Ү26.31.0021). Исследования методом сканирующей кельвин-зонд-микроскопии выполнены с использованием оборудования центра коллективного пользования Научно-образовательного центра "Физика твердотельных наноструктур" Нижегородского государственного университета им. Н.И. Лобачевского.

СПИСОК ЛИТЕРАТУРЫ

- 1. Semiconductor Nanocrystals and Metal Nanoparticles: Physical Properties and Device Applications / Eds. Chen T., Liu Y. Boca Raton: CRC Press, 2016. 526 p.
- Lee J.-S. // Gold Bulletin. 2010. V. 43. P. 189. doi 10.1007/BF03214986
- 3. Emerging Non-Volatile Memories / Eds. Hong S. et al. Berlin-Heidelberg: Springer, 2014. 273 p.
- 4. In Search of the Next Memory: Inside the Circuitry from the Oldest to the Emerging Non-Volatile Memo-

ries / Eds. Gastaldi R. Campardo G. Berlin-Heidelberg: Springer, 2017. 247 p.

- Guo L., Leobandung E., Chou S.Y. // Science. 1997.
 V. 275. № 5300. P. 649. doi 10.1126/science.275.5300.649
- 6. *Zhuang L., Guo L., Chou S.Y.* // Appl. Phys. Lett. 1998. V. 72. № 10. P. 1205. doi 10.1063/1.121014
- Nonnenmacher M., O'Boyle M.P., Wickramasinghe H.K. // Appl. Phys. Lett. 1991. V. 58. № 25. P. 2921. doi 10.1063/1.105227
- 8. High Permittivity Gate Dielectric Materials / Ed. Kar S. Berlin-Heidelberg: Springer, 2013. 489 p.
- 9. Горшков О.Н., Антонов И.Н., Филатов Д.О. и др. // Письма в журн. техн. физики. 2016. Т. 42. № 1. С. 72. doi 10.1134/S1063785016010089
- Gorshkov O., Antonov I., Filatov D. et al. // Adv. Mat. Sci. Engin. 2017. V. 2017. P. 1759469. doi 10.1155/2017/1759469

- Girard P. // Nanotechnology. 2001. V. 12. P. 485. doi 10.1088/0957-4484/12/4/321
- 12. Antonov D.A., Filatov D.O., Kiselev A.N. et al. // Phys. Low-Dimension Structures. 2003. № 3–4. P. 183.
- 13. *Сивухин Д.В.* Общий курс физики. Т. 3. Электричество. М.: Высшая школа, 1977. 704 с.
- 14. *Dunaevskiy M.S., Alekseev P.A., Girard P. et al.* // J. Appl. Phys. 2011. V. 110. P. 084304. doi 10.1063/1.3651396
- 15. Гущина Е.В., Дунаевский М.С., Алексеев П.А. и др. // Журн. техн. физики. 2014. Т. 84. № 10. С. 122. doi 10.1134/S106378421410017X
- Дунаевский М.С., Алексеев П.А., Дементьев П.А. и др. // Журн. тех. физики. 2015. Т. 85. № 5. С. 50. doi 10.1134/S1063784215050047
- Filatov D., Guseinov D., Antonov I. et al. // RSC Adv. 2014. V. 4. P. 57337. doi 10.1039/C4RA10236C

Study of Local Charge Accumulation in ZrO₂(Y) Films with Au Nanoparticles by Kelvin Probe Force Microscopy

M. N. Koryazhkina, D. O. Filatov, I. N. Antonov, M. A. Ryabova, M. S. Dunaevskii

The time dynamics of the spatial distribution of the electrons locally injected from the probe of an atomic force microscope into thin (less than 10 nm) $ZrO_2(Y)$ films with embedded Au nanoparticles on Si substrates has been studied by Kelvin probe force microscopy. The profiles of the film surface potential induced by the injection of a countable number (several tens) of electrons into the Au nanoparticles, as a function of the time elapsed after injection, have been measured and analyzed.

Keywords: metal nanoparticles, thin dielectric films, charge accumulation, Kelvin probe force microscopy.