УДК 541.123:546.21

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ НА РЕЗИСТИВНОЕ ПЕРЕКЛЮЧЕНИЕ В ПЛЕНКАХ ZrO₂(Y) С НАНОЧАСТИЦАМИ Au МЕТОДОМ ТУННЕЛЬНОЙ АТОМНО-СИЛОВОЙ МИКРОСКОПИИ

© 2019 г. А. С. Новиков^{1, *}, Д. О. Филатов¹, Д. А. Антонов¹, И. Н. Антонов¹, М. Е. Шенина¹, О. Н. Горшков¹

¹Нижегородский государственный университет им. Н.И. Лобачевского, 603950 Нижний Новгород, Россия *E-mail: nsv3333@yandex.ru Поступила в редакцию 12.04.2018 г. После доработки 18.04.2018 г. Принята к публикации 22.04.2018 г.

Приводятся результаты исследования методом туннельной атомно-силовой микроскопии влияния оптического излучения на резистивное переключение в ультратонких (толщиной ~4 нм) пленках $ZrO_2(Y)$ со встроенными однослойными массивами наночастиц Au размером 2–3 нм. Пленки $ZrO_2(Y)$, содержащие наночастицы Au, формировали путем послойного магнетронного осаждения на стеклянной подложке с проводящим подслоем оксида индия-олова с последующим отжигом при 450°С. Обнаружено увеличение гистерезиса, обусловленного биполярным резистивным переключением в пленках $ZrO_2(Y)$, на циклических вольт-амперных характеристиках контакта зонда с образцом. Эффект проявляется при фотовозбуждении области контакта через прозрачную подложку излучением полупроводникового лазера на длине волны плазмонного резонанса в плотном массиве наночастиц Au (~660 нм). Обнаруженный эффект связан с автоэлектронной эмиссией электронов из наночастиц Au в зону проводимости $ZrO_2(Y)$ в сильном электрическом поле между зондом микроскопа и подслоем оксида индия-олова в условиях плазмонного резонанса.

Ключевые слова: атомно-силовая микроскопия, металлические наночастицы, плазмонный резонанс, стабилизированный диоксид циркония, резистивное переключение.

DOI: 10.1134/S0207352819010177

введение

В последнее время эффект резистивного переключения является предметом интенсивных исследований [1]. Данный эффект заключается в обратимом бистабильном (или мультистабильном) изменении сопротивления тонкого (толщиной 10-50 нм) диэлектрического слоя, заключенного между двумя проводящими электродами, под действием внешнего электрического напряжения. Эффект резистивного переключения перспективен для создания запоминающих и логических устройств нового поколения, называемых мемристорами [2], а также нейроморфных вычислительных систем. по своим возможностям приближающихся к человеческому мозгу [3]. Интерес к энергонезависимой резистивной памяти (Resistive Random Access Memory – RRAM) вызван рядом ее преимуществ, таких как масштабируемость и простота технологии изготовления, достижимость быстрого, энергоэффективного и стабильного функционирования [4]. Перспективными материалами для устройств резистивной памяти считаются оксиды металлов, отличающиеся хорошей совместимостью с технологией структур металл-оксид-полупроводник (МОП) [5]. Механизм резистивного переключения в оксидах металлов заключается в окислении и восстановлении участков проводящих каналов (филаментов) из вакансий кислорода в оксидной пленке при приложении напряжения разной полярности [6]. Рост филамента приводит к замыканию проводящих электродов, что обеспечивает переход мемристивной структуры из высокоомного в низкоомное состояние (так называемый процесс SET), а обратный переход в низкоомное состояние (процесс RESET), связанный с частичным окислением филамента реализуется под действием напряжения обратной полярности.

В последние годы повышенное внимание привлекает идея использовать электромагнитное излучение в качестве одного из методов управления эффектом резистивного переключения [7, 8]. Оп-

Рис. 1. Схема эксперимента по исследованию влияния оптического излучения на резистивное переключение в пленках $ZrO_2(Y)$.

тически управляемые мемристоры перспективны для различного применения в новых интегрированных фотонных приборах, и, более того, ожидается, что они составят основу для новой области науки и технологии — мемристивной оптоэлектроники.

В настоящей работе методом туннельной атомно-силовой микроскопии (АСМ) исследовано резистивное переключение в тонких пленках ZrO₂(Y), содержащих наночастицы Au. Метод туннельной АСМ в последнее время все шире применяется для исследования резистивного переключения в сверхтонких диэлектрических пленках [9, 10]. Как правило, размер области контакта АСМ-зонда с поверхностью исследуемого образца менее 10 нм [11], что по порядку величины соответствует ожидаемым размерам перспективных устройств резистивной памяти [12]. Таким образом, контакт АСМ-зонда с поверхностью пленки диэлектрика на проводящей подложке является хорошей модельной системой для изучения процессов резистивного переключения в наномасштабных областях.

Ранее сообщалось о наблюдении влияния оптического возбуждения на резистивное переключение в МОП-структурах Au/ZrO₂(Y)/Si [13]. Эффект был связан с возникновением фотоэдс на границе раздела $ZrO_2(Y)$ —Si, которая накладывается на внешнее напряжение, приложенное между Au электродом и подложкой n^+ -Si, тем самым стимулируется резистивное переключение в пленке $ZrO_2(Y)$. Целью настоящей работы было исследование механизма влияния оптического излучения на резистивное переключение в пленках $ZrO_2(Y)$, с наночастицами Au, связанное с оптическим возбуждением плазмонных резонансов в массивах наночастиц Au.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Тонкие пленки ZrO₂(Y) с наночастицами Au изготавливали методом послойного магнетронного осаждения на подложку из стекла, покрытую проводящим слоем оксида олова и индия (indium tin oxide – ITO) толщиной ~1 мкм. Слои ZrO₂(Y) формировали в процессе высокочастотного магнетронного распыления прессованной порошковой мишени из смеси ZrO₂–Y₂O₃ в среде газовой смеси Ar–O₂ при давлении 10⁻² Торр при помощи вакуумной системы для осаждения тонких пленок Torr International MSS-3GS. Молярная доля стабилизированного оксида Y₂O₃ в материале мишени составляла ~0.12. Температура подложки $T_s - 300^{\circ}$ С.

Нанокомпозитные пленки ZrO₂(Y) с однослойными массивами наночастиц Аи формировали методом послойного осаждения сэндвичструктур ZrO₂(Y)(2 нм)/Au(1 нм)/ZrO₂(Y)(2 нм) с последующим отжигом, в результатет которого слой Аи коагулировал в массив отдельных наночастиц Ац [14]. Сначала на подложку с подслоем ITO наносили слой ZrO₂(Y) толщиной 2 нм. Далее наносили островковые пленки Аи при помощи магнетронного распыления на постоянном токе при $T_{\rm s} \approx 200^{\circ}$ C в среде Ar. На заключительном этапе наносили покровный слой ZrO₂(Y) в тех же условиях, что и первый слой. Общая толщина слоев ZrO₂(Y) d составляла ~4 нм. Сэндвичструктуры отжигали при 450°С в среде Ar в течение 1 ч. Ранее методом просвечивающей электронной микроскопии высокого разрешения на поперечных срезах [15, 16] было установлено, что островковые пленки Аи в структурах $ZrO_2(Y)/Au/ZrO_2(Y)$ после отжига в указанных выше условиях коагулировали в массивы наночастиц, форма которых была близка к сферической, с диаметром D = 2-3 нм и средним расстоянием между центрами соседних наночастиц $l \approx 4$ нм (т.е. параметр плотности массива наночастиц a = $= D/l \approx 0.5$). Схема нанокомпозитной структуры показана на рис. 1. Кроме того, были сформированы пленки $ZrO_2(Y)$ толщиной $d \approx 4$ нм на стеклянных подложках с подслоем ІТО в качестве образцов для сравнения.

Оптические свойства нанокомпозитных пленок исследовали методом спектроскопии оптического поглощения при 300 К при помощи спектрофотометра Varian Cary 6000i. Исследования резистивного переключения проводили в свехвысоком вакууме при помощи ACM Omicron UHV AFM/STM LF1 в составе системы Omicron Multi-Probe RM. Давление остаточных газов в камере микроскопа составляло ~10⁻¹⁰ Торр.

Поверхность пленок $ZrO_2(Y)$ с наночастицами Au сканировали в контактном режиме. Использовали ACM-зонды NT MDT NSG-11 DCP с алмазоподобным проводящим покрытием. Циклические вольт-амперные характеристики (BAX) контакта зонд-образец $I_t(V_g)$, где V_g – напряжение между проводящим подслоем ITO и ACM-зондом, I_t – сила электрического тока через ACM-зонд, измеряли в каждой точке ACM-изображения. Циклическую разверткку V_g осуществляли от $V_{min} =$ = -6 В до $V_{max} = +6$ В и обратно. Пределы развертки превышали пороговые значения напряжения резистивного переключения из состояния с высоким сопротивлением ("OFF") в состояние с низким сопротивлением ("OFF") и обратно, из состояния "ON" в стостояние "OFF" V_{RESET} , чтобы гарантировать резистивное переключение в ходе развертки V_g .

С целью изучения влияния оптического возбуждения на процесс резистивного переключения область контакта между АСМ-зондом и образцом освещали через прозрачную подложку с проводящим слоем ITO сфокусированным лучом полупроводникового лазера с максимальной мощностью 1 Вт. Интенсивность фотовозбуждения регулировали с помощью нейтральных светофильтров. Длина волны излучения лазера $\lambda \approx 660$ нм соответствовала длине волны плазмонного резонанса в плотном массиве наночастиц Au, определенной из спектров оптического поглощения пленок ZrO₂(Y), содержащих наночастицы Au. Следует отметить, что из теории Ми [17] следует, что длина волны плазмонного резонанса в отдельных наночастицах Au с $D \approx 2$ нм составляет ~600 нм, что также подтверждается предыдущими исследованиями спектров оптического поглощения массивов наночастиц Аи с достаточно низкой плотностью ($a \ll 1$) в матрице ZrO₂(Y), сформированных методом ионной имплантации [18]. Красное смещение плазмонного резонанса в образцах, исследованных настоящей работе, связано с коллективизацией плазмонных колебаний ввиду малости расстояния между наночастицами Аи.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 приведены ВАХ контакта ACM-зонда с пленкой $ZrO_2(Y)$, содержащих наночастицы

Рис. 2. ВАХ контакта АСМ-зонда с поверхностью пленки $ZrO_2(Y)/ITO$, содержащей наночастицы Au: l – темновая; 2 – при фотовозбуждении. На вставке – зонная диаграмма контакта зонда с поверхностью (качественно) и схема автоэмиссии электронов с уровня Ферми в наночастицах Au с участием фото-нов, hv – энергия фотона.

Au, на стеклянной подложке с подслоем ITO – темновая и при фотовозбуждении. На ВАХ, измеренной в отсутствие фотовозбуждения, наблюдается гистерезис, обусловленный биполярным резистивным переключением в ZrO₂(Y). Фотовозбуждение приводит к увеличению площади петли гистерезиса, что может быть связано с возбуждением плазмонных колебаний в массиве наночастиц Au.

В [19] была исследована планарная фотопроводимость пленок ZrO₂(Y), содержащих однослойные массивы наночастии Аи. В спектре фотопроводимости наблюдался пик на длине волны $\lambda \approx 660$ нм, соответствующей длине волны коллективного плазмонного резонанса в плотных массивах наночастиц Аи в спектрах оптического поглощения образцов [20]. Исследования кинетики фотопроводимости выявили два механизма, по-разному проявляющиеся при различных температурах. При 300 К доминирующий вклад в фотопроводимость вносит нагрев матрицы ZrO₂(Y) вследствие плазмонного оптического поглощения наночастицами Аи (болометрический эффект). Нагрев приводит к изменению проводимости $ZrO_2(Y)$ по вакансионной α -зоне, которая происходит по прыжковому (моттовскому) механизму. При 77 К фотопроводимость обусловлена фотовозбуждением электронов с уровня Ферми в наночастицах Au в α-зону в ZrO₂(Y) с последующим туннельным транспортом между наночастицами через вакансии О2 во внешнем электрическом поле.

Можно предположить, что фотовозбуждение может влиять на резистивное переключение в пленках $ZrO_2(Y)$ с наночастицами Au по двум механизмам: 1) вследствие нагрева матрицы $ZrO_2(Y)$ вблизи наночастиц Au; 2) и усиленная плазмонным резонансом внутренней фотоэмиссии электронов с уровня Ферми в наночастицах Au в зону проводимости $ZrO_2(Y)$, связанной с туннелированием электронов через треугольный потенциальный барьер в электрическом поле между ACM-зондом и подложкой ITO.

Оба эффекта потенциально могут стимулировать локальное резистивное переключение в ZrO₂(Y). Нагрев наночастиц Au в результате плазмонного оптического поглощения в них может приводить к разогреву матрицы ZrO₂(Y) в области, окружающей наночастицы, что, в свою очередь, увеличивает подвижность вакансий кислорода. Следует отметить, что в данном случае наночастицы Аи выступают также в качестве концентраторов электрического поля между АСМ-зондом и подложкой ІТО [21], что дополнительно стимулирует выстраивание вакансий в проводящий филамент. Второй механизм состоит во внутренней фотоэмиссии электрона с уровня Ферми в наночастицах Аи в вакансионную α-зону в матрице ZrO₂(Y) [20] или непосредственно в зону проводимости ZrO₂(Y). Свободные электроны в зоне проводимости ускоряются сильным электрическим полем между АСМ-зондом и подложкой ITO (при $V_g = 5$ В напряженность электрического поля между АСМ-зондом и подложкой ITO $F \sim V_g/d \sim 10^7$ В/см) и отдают избыточную энергию решетке при взаимодействии с ней, что приводит к локальному нагреву матрицы вследствие генерации фононов.

С целью проверки гипотезы о нагреве матрицы ZrO₂(Y) вследствие плазмонного оптического поглощения в наночастицах Au было оценено увеличение температуры слоя наночастиц Au под действием излучения лазера. Оценку проводили на основе решения стационарного одномерного уравнения теплопроводности:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2} = 0, \tag{1}$$

где T – абсолютная температура, t – время, z – координата в направлении, перпендикулярном подложке, κ – коэффициент теплопроводности.

Граничные условия на границах раздела слоев структуры в стационарном режиме записывали стандартным образом, исходя из непрерывности потока тепла и температуры:

$$\kappa_{1} \frac{\partial T}{\partial z}\Big|_{z=z_{12}+0} = \kappa_{2} \frac{\partial T}{\partial z}\Big|_{z=z_{12}-0}, \qquad (2)$$
$$T(z_{12}+0) = T(z_{12}-0),$$

где κ_1 и κ_2 — коэффициенты теплопроводности материалов слоев 1 и 2, z_{12} — координата границы раздела между слоями. Считалось, что теплообмен на границе обратной стороны стеклянной

подложки и вакуума отсутствует, поэтому граничное условие для потока тепла на границе стекло-вакуум записывается в виде:

$$\kappa \frac{\partial T}{\partial z}\Big|_{z=z_b} = 0, \tag{3}$$

$$Q(z) = \frac{\beta P_{\rm ex}}{\pi D_{\rm s}^2} \delta(z), \qquad (4)$$

где $D_s \approx 100$ мкм — диаметр пятна, сфокусированного излучения лазера на плоскости наночастиц Au (при z = 0),

$$\beta = \frac{\Delta I}{I_0} \tag{5}$$

— безразмерный коэффициент оптического поглощения слоя наночастиц Au в максимуме плазмонного резонанса, I_0 и ΔI — интенсивности падающего на образец и поглощенного слоем наночастиц Au излучения лазера соответственно.

Следовательно, граничное условие на слое наночастиц Au (при z = 0) можно записать в виде:

$$\kappa_{Z} \left. \frac{\partial T}{\partial z} \right|_{z=+0} - \kappa_{Z} \left. \frac{\partial T}{\partial z} \right|_{z=-0} = Q.$$
(6)

С другой стороны, из граничных условий на границе обратной стороны подложки с вакуумом (равенство потока тепла нулю) следует, что при z < 0 $T = \text{const} = T_0$, где T_0 – температура слоя наночастиц. Отсюда стационарное значение температуры нагрева слоя наночастиц Аu оптическим излучением, поглощенным наночастицами, отно-сительно комнатной температуры $\Delta T = T_0 - 300$ K:

$$\Delta T = Q \frac{z_{\rm C} \kappa_{\rm Si} \left(\kappa_{\rm C} - \kappa_{\rm Z}\right) + z_{\rm Si} \kappa_{\rm Z} \left(\kappa_{\rm Si} - \kappa_{\rm C}\right) + \kappa_{\rm Z} \kappa_{\rm Si} z_{\rm Si}}{\kappa_{\rm Z} \kappa_{\rm C} \kappa_{\rm Si}},$$
(7)

ΔT _

где κ_Z , κ_C и κ_{Si} — коэффициенты теплопроводности ZrO₂(Y), алмазоподобного покрытия ACMзонда и материла ACM-зонда (Si) соответственно, а z_C и z_{Si} — координаты контакта ACM-зонда с поверхностью пленки ZrO₂(Y) и границы раздела материала ACM-зонда (Si) и алмазоподобного покрытия соответственно. Значения коэффициентов теплопроводности и толщин указанных слоев приведены в табл. 1. За толщину слоя Si принимали сумму паспортных значений длины конусообразной части (~10 мкм) и толщины балки кантилевера (~5 мкм) для ACM-зонда марки CSG-11 производства компании NT-MDT.

На рис. За приведен профиль распределения температуры в контакте Si ACM-зонда с алмазоподобным покрытием с пленкой $ZrO_2(Y)$, содержащей наночастицы Au, на поверхности подслоя ITO T(z) при нагреве излучением лазера мощностью P_{ex} , а на рис. Зб — расчетная зависимость температуры нагрева слоя наночастиц Au ΔT от мощности излучения лазера $P_{\rm ex}$. Как следует из рис. 36, при максимальной мощности используемого лазера $P_{\rm ex} = 1$ Вт изменение температуры слоя наночастиц Au ΔT составляет ~7.5°C. Такого нагрева недостаточно для существенного изменения подвижности ионов кислорода в ZrO₂(Y). Как известно, температурная зависимость коэффициента диффузии ионов кислорода в оксидах подчиняется зависимости Аррениуса:

$$D(T) = D_0 \exp\left(-\frac{E_a}{k_{\rm B}T}\right),\tag{8}$$

где k_B — постоянная Больцмана, а энергия активации диффузии ионов кислорода в ZrO₂(Y) составляет ~0.5 эВ. Согласно (8) при изменении температуры слоя наночастиц на 7.5°С изменение *D* составляет всего 1.6 раза.

Таким образом, вышеприведенные оценки показывают, что нагрев слоя наночастиц под действием возбуждающего излучения недостаточен для стимулирования резистивного переключения в исследуемой структуре (хотя и достаточен для наблюдения фотоотклика, вызванного болометрическим эффектом [19]).

Что касается автоэмиссионного механизма влияния оптического излучения на резистивное переключение, заметим, что энергия фотона hvдля $\lambda = 660$ нм составляет ~1.9 эВ, что недостаточно для непосредственной внутренней фотоэмиссии электронов с уровня Ферми в наночастицах Au в зону проводимости ZrO₂(Y), поскольку высота потенциального барьера на границе Au-ZrO₂(Y) между уровнем Ферми в Au и дном зоны проводимости в ZrO₂(Y) составляет ~2.5 эВ [23]. Однако ввиду значительной напряженности электрического поля между ACM-зондом и под-

Таблица 1. Параметры слоев модельной структуры, аппроксимирующей контакт Si ACM-зонда с алмазоподобным покрытием (DCP) с пленкой ZrO₂(Y), содержащей наночастицы Au

Материал	<i>d</i> , нм	к, Вт/м · К [22]
$ZrO_2(Y)$	20	2.5
DCP	25	1800
Si	1.5×10^{4}	150

слоем ITO $F \sim 10^7$ B/см возможно туннелирование электронов с уровня Ферми через треугольный барьер по механизму Фаулера-Нордхейма с поглощением фотона, как показано на вставке к рис. 2. На рис. 4 представлен участок ВАХ контакта ACM-зонда с поверхностью пленки ZrO₂(Y), содержащей наночастицы Au, измеренный при развертке V_g в прямом направлении (состояние "OFF") в условиях фотовозбуждения, в координатах $I_t/(V_g)^2 - 1/V_g$. Как видно из рис. 4, участок ВАХ в области напряжений $V_g = 1.5 - 6$ В спрямляется, что указывает на туннелирование через треугольный потенциальный барьер (в режиме автоэлектронной эмиссии). Высота потенциального барьера для туннелирования ϕ , полученная в ходе аппроксимации прямого участка ВАХ на рис. 4 формулой Фаулера, имеет вид:

$$I = AF^2 \exp\left[-\frac{4\sqrt{2m}\varphi^{3/2}}{3\pi eF}\right],\tag{9}$$

где A — константа, e — элементарный заряд, $m \approx 0.6m_0$ — эффективная масса электрона в ZrO₂(Y) [24], m_0 — масса свободного электрона, составляет ~0.5 эВ. В совокупности с энергией фотона $hv \approx 1.9$ эВ данное значение близко к высоте потен-

Рис. 3. Модельный профиль (a) распределения температуры в поперечном сечении контакта ACM-зонда с алмазоподобным покрытием (DLC – diamond-like coating) с поверхностью пленки $ZrO_2(Y)$, содержащей наночастицы (HЧ) Au, на подложке из стекла с подслоем ITO, $P_{ex} = 1$ Bt. Расчетная зависимость (б) температуры нагрева слоя наночастиц Au оптическим излучением, поглощенным наночастицами, от мощности излучения P_{ex} .

Рис. 4. Участок ВАХ контакта АСМ-зонда с поверхностью пленки ZrO₂(Y), содержащей наночастицы Au, измеренной в условиях фотовозбуждения, в координатах Фаулера–Нордгейма.

циального барьера на границе Au/ZrO₂(Y) (~2.5 эВ). Это подтверждает сделанное выше предположение, что наблюдаемое увеличение I_t в условиях фотовозбуждения в области $V_g = 5-6$ В обусловлено автоэмиссией электронов с уровня Ферми в наночастицах Au в зону проводимости ZrO₂(Y) с участием фотонов в условиях плазмонного резонанса.

ЗАКЛЮЧЕНИЕ

В настоящей работе с применением метода туннельной АСМ исследовано влияние оптического излучения на локальное резистивное переключение в пленках $ZrO_2(Y)$ с наночастицами Au. Было обнаружено усиление гистерезиса на ВАХ контакта АСМ-зонда с исследуемой нанокомпозитной пленкой, обусловленного биполярным резистивным переключением в ZrO₂(Y) под действием оптического излучения на длине волны плазмонного резонанса в плотном массиве наночастиц Аи. Обнаруженный эффект связан с внутренней автоэмиссией электронов из наночастиц Аи в зону проводимости матрицы ZrO₂(Y) с поглощением фотонов в условиях плазмонного резонанса. Эмитированные электроны разгоняются в сильном электрическом поле между АСМ-зондом и проводящим подслоем ITO и отдают накопленную энергию при взаимодействии с кристаллическими решетками ZrO₂(Y) материала покрытия АСМ-зонда или подслоя ІТО, что приводит к локальному разогреву слоя ZrO₂(Y), стимулирующему зарождение и рост проводящих филаментов вблизи наночастиц Аи.

БЛАГОДАРНОСТИ

Работа выполнена при поддержке Минобрнауки РФ (№ 16.7864.2017/БЧ) с использованием оборудования Центра коллективного пользования — Научно-образовательного центра "Физика твердотельных наноструктур" Нижегородского государственного университета им. Н.И. Лобачевского.

СПИСОК ЛИТЕРАТУРЫ

- Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. / Eds. Ielmini D., Waser R. Stuttgart: Wiley-VCH, 2016. 784 p.
- Strukov D.B., Snider G.S., Stewart D.R., Williams R.S. // Nature. 2008. V. 453. P. 80. doi 10.1038/nature06932
- 3. Memristor Networks. / Eds. Adamatzky A., Chua L. London: Springer, 2014. 720 p.
- 4. *Ouyang J.* Emerging Resistive Switching Memories. Berlin-Heidelberg: Springer, 2016. 93 p.
- Waser R., Dittmann R., Staikov G. et al. // Adv. Mater. 2009. V. 21. P. 2632. doi 10.1002/adma.200900375
- 6. *Waser R.* // Microel. Engin. 2009. V. 86. № 7–9. P. 1925. doi 10.1016/j.mee.2009.03.132
- Wang W., Panin G.N., Fu X. et al. // Nature Sci. Rep. 2016. V. 6. P. 31224. doi 10.1038/srep31224
- 8. Sun B., Wu J., Jia X. et al. // J. Sol-Gel Sci. Technol. 2017. V. 75. № 3. P. 664. doi 10.1007/s10971-015-3736-y
- Conductive Atomic Force Microscopy: Applications in Nanomaterials. / Ed. Lanza M. Stuttgart: Wiley-VCH, 2017. 384 p.
- 10. *Lanza M.* // Mater. 2014. V. 7. № 3. P. 2155. doi 10.3390/ma7032155
- Filatov D.O., Antonov D.A., Gorshkov O.N. et al. // Atomic Force Microscopy (AFM): Principles, Modes of Operation and Limitations. / Ed. Yang H. New York: Nova Science, 2014. P. 335.
- Jeong D.S., Thomas R., Katiyar R.S. et al. // Rep. Prog. Phys. 2012. V. 75. № 7. P. 076502. doi 10.1088/0034-4885/75/7/076502
- 13. *Тихов С.В., Горшков О.Н., Коряжкина М.Н. и др. //* Письма в ЖТФ. 2016. Т. 42. № 10. С. 78.
- Cho S.H., Lee S., Ku D.Y. et al. // Thin Solid Films. 2004. V. 447–448. P. 68. doi 10.1016/j.tsf.2003.09.024
- Gorshkov O., Antonov I., Filatov D. et al. // Adv. Mat. Sci. Engin. 2017. V. 2017. P. 1759469. doi 10.1155/ 2017/1759469
- 16. Горшков О.Н., Антонов И.Н., Филатов Д.О. и др. // Письма в ЖТФ. 2016. Т. 42. № 1. С. 72.
- 17. Mie G. // Ann. Phys. 1908. B. 25. S. 377.
- 18. Горшков О.Н., Павлов Д.А., Трушин В.Н. и др. // Письма в ЖТФ. 2012. Т. 38. № 4. С. 60.
- Liskin D.A., Filatov D.O., Gorshkov O.N. et al. // J. Phys.: Conf. Ser. 2017. V. 816. P. 012010. doi 10.1088/1742-6596/816/1/0120.10
- Filatov D.O., Antonov I.N., Sinutkin D.Yu. et al. // Semicond. 2018. V. 52. № 4. P. 465. doi 10.1134/ S1063782618040140
- Guan W., Long S., Jia R. et al. // Appl. Phys. Lett. 2007. V. 91. № 6. P. 062111. doi 10.1063/1.2760156

- 22. Таблицы физических величин. Справочник. / Ред. Кикоин И.К. и др. М.: Атомиздат, 1976. 1008 с.
- 23. *Filatov D., Guseinov D., Antonov D. et al.* // RSC Adv. 2014. V. 4. P. 57337. doi 10.1039/C4RA10236C
- Perevalov T.E., Shaposhnikov A.V., Nasyrov K.A. et al. // Defects in HIgh-κ Gate Dielectric Stacks: Nano-Electronic Semiconductor Devices. / Ed. Gusev E.V. Berlin-Heidelberg: Springer, 2006. P. 423.

Study of the Effect of Optical Illumination on Resistive Switching in ZrO₂(Y) Films with Au Nanoparticles by Tunneling Atomic Force Microscopy

A. S. Novikov, D. O. Filatov, D. A. Antonov, I. N. Antonov, M. E. Shenina, O. N. Gorshkov

The effect of the optical illumination on the resistive switching in the ultrathin (~4 nm in thickness) $ZrO_2(Y)$ films with embedded Au nanoparticle arrays of 2–3 nm in size were studied by tunneling atomic force microscopy. The $ZrO_2(Y)$ films with Au nanoparticles were formed by layerwise magnetron deposition onto the glass substrates with conductive indium tin oxide sublayer, followed by annealing at 450°C. An increase in the hysteresis due to bipolar resistive switching in $ZrO_2(Y)$ films was observed on the cyclic current–voltage curves of the microscope probe-to-sample contact. The effect appeared when the contact area was photoexcitated through a transparent substrate by radiation of a semiconductor laser at the plasmon resonance wavelength in a dense nanoparticles Au array (~660 nm). The effect was attributed to the photon-assisted field emission of electrons from Au nanoparticles to the conduction band of $ZrO_2(Y)$ in a strong electric field between the microscope probe and indium tin oxide substrate under plasmon resonance conditions.

Keywords: atomic force microscopy, metal nanoparticles, plasmon resonance, yttrium-stabilized zirconium dioxide, resistive switching.