УДК 539.16.07,539.1.03

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК НЕЙТРОННОГО ПУЧКА ПЕРВОГО КАНАЛА РЕАКТОРА ИБР-2

© 2019 г. В. Л. Кузнецов^{1, 2}, Е. В. Кузнецова^{1, *}, П. В. Седышев¹, А. П. Сиротин¹

¹Институт ядерных исследований РАН, 117312 Москва, Россия ²Объединенный институт ядерных исследований, 141980 Московская область, Дубна, Россия

> **E-mail: evgenia@inr.ru* Поступила в редакцию 25.12.2018 г. После доработки 23.01.2019 г. Принята к публикации 12.02.2019 г.

Выполнены исследования временных характеристик времяпролетного спектрометра, установленного на первом канале реактора ИБР-2. Обнаружено изменение времени вспышки реактора относительно импульса старта в зависимости от времени измерения с начала цикла работы реактора. Измерено время замедления нейтронов в зависимости от длины волны нейтрона. Установлена зависимость полуширины рефлексов от длины волны нейтрона. Измерения велись в широком диапазоне углов Брэгга от 0.0567232 до 0.34180977 рад (от ~3° до ~19°). Сделана оценка мозаичности монокристалла.

Ключевые слова: времяпролетный спектрометр, двухосный дифрактометр, ширина нейтронного импульса, импульсный реактор.

DOI: 10.1134/S0207352819100135

введение

В работах [1, 2] были представлены результаты измерений времени вылета нейтронов из водородных замедлителей и ширины нейтронного импульса в зависимости от энергии нейтронов. Время вылета нейтронов меняется от 6 до 102 мкс в зависимости от конструкции замедлителя и от энергии вылетающих нейтронов. В области эпитепловых нейтронов время вылета нейтронов равносильно увеличению пролетной базы на 28 мм [3].

Для того чтобы получить точные измерения параметров низко лежащих ядерных резонансов [4], нами были проведены исследования временных характеристик пучка нейтронов первого канала импульсного реактора ИБР-2.

МЕТОДИКА ЭКСПЕРИМЕНТА

Эксперименты проводились на двухосном дифрактометре, установленном на 30-метровой базе первого канала импульсного реактора ИБР-2 [5]. Монокристалл бромида калия размером 60 × × 60 × 14 мм был установлен узкой гранью на столик гониометрической головки ГСК-100. Повороты столика гониометрической головки осуществлялись с помощью шаговых двигателей с точностью 100 шагов на градус. Консоль длиной 2200 мм, на которой располагалась установка θ –2 θ (вторая ось дифрактометра), передвигалась с помощью отдельного шагового двигателя. Поворот консоли осуществлялся с точностью 628 шагов на градус.

С помощью системы коллиматоров был сформирован пучок нейтронов с поперечным сечением 24×24 мм и угловой расходимостью 3.3×10^{-3} рад, который падал на монокристалл KBr, установленный под углом θ в геометрии Лауэ. Пучок нейтронов дифракции, отраженный плоскостями {200}, регистрировался детектором нейтронов, установленным под углом 20. В качестве детектора нейтронов использовались счетчики СНМ-18, работающие в пропорциональном режиме. Сигнал с детектора поступал в быстрый предусилитель, потом дополнительно усиливался и формировался быстрым усилителем. Сигнал с быстрого усилителя поступал на дискриминатор, который, в свою очередь, формировал импульс в стандарте NIM. Для регистрации времяпролетных спектров использовалась система сбора и накопления спектров "TIMECODER", разработанная в ЛНФ ОИЯИ [6]. Сигнал с дискриминатора подавался на один из детекторных входов многостопового восьми канального время-цифрового преобразователя (ВЦП) системы накопления. Старт системы ВЦП осуществлялся штатным стартовым импульсом реактора ИБР-2, который поступал за 3 мс до максимума импульса мощности реактора.

Рис. 1. Параметры нейтронной вспышки, аппроксимированной функцией Гаусса. Время центра тяжести вспышки относительно импульса старта равно 3124.7 мкс, длительность – 212 мкс.

Рис. 2. Время вспышки в зависимости от времени начала работы реактора.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ ВСПЫШКИ ВО ВРЕМЯПРОЛЕТНОМ СПЕКТРЕ

Вспышка быстрых нейтронов и γ-квантов отчетливо видна во времяпролетном спектре нейтронов дифракции. На рис. 1 представлен фрагмент времяпролетного спектра со вспышкой быстрых нейтронов, γ-квантов и результаты его аппроксимации с помощью распределения Гаусса. Первые пять каналов по 500 мкс, остальные по 2 мкс.

Аппроксимация фрагмента вспышки импульсного реактора распределением Гаусса хорошо описывает положение ее максимума и полуширину (как было показано в работах [7, 8]). При обработке результатов измерений было обнаружено изменение времени вспышки и рефлексов относительно старта. Результаты обработки представлены на рис. 2, на котором видно, что время вспышки относительно старта реактора меняется по закону:

$$flash = t_0 + D_t \exp(-t_{meas}/t), \qquad (1)$$

где t_{flash} — время вспышки, t_0 — асимптотическое значение времени вспышки, D_t — параметр, t_{meas} — время измерения от начала цикла, t — параметр спада.

ОПРЕДЕЛЕНИЕ ВРЕМЕНИ ВСПЫШКИ ПО РЕФЛЕКСАМ РАЗЛИЧНЫХ ПОРЯДКОВ

Длина волны нейтронов дифракции, согласно закону Брэгга, равна:

$$n\lambda = 2d_{hkl}\sin\theta,\tag{2}$$

где n – порядок отражения, λ – длина волны нейтрона, d_{hkl} – расстояние меду плоскостями {*hkl*}, θ – угол Брэгга.

С другой стороны, длина волны нейтрона при дифракции во времяпролетном спектре пропорциональна времени пролета:

$$\lambda = 3.956t/L,\tag{3}$$

здесь t — время пролета нейтронов дифракции в мкс, L — пролетная база в мм. Наблюдаемые времена рефлексов разных порядков имеют вид:

$$t_n = t_1/n + t_0,$$
 (4)

где t_n — наблюдаемое время рефлекса *n*-го порядка, t_1 — время пролета нейтронов дифракции первого порядка, *n* — порядок дифракции, t_0 — время вспышки нейтронов. Все времена считаются от импульса старта.

Используя результаты измерений времяпролетных спектров нейтронов дифракции для рефлексов первого, второго и третьего порядков, имеем:

$$t_0 = 2t_2 - t_1, \tag{5.1}$$

$$t_0 = (3t_3 - t_1)/2, \qquad (5.2)$$

$$t_0 = (3t_3 - 2t_2). \tag{5.3}$$

На рис. 3 представлено время нейтронной вспышки, определенной по формулам (5), в зависимости от длин волн нейтронов дифракции для рефлексов первого порядка — черные квадраты (5.1), второго порядка — светло серые кружки (5.2) и третьего порядка — серые треугольники (5.3).

Таким образом, как следует из рис. 3, время вспышки зависит от длины волны нейтронов (чего не должно быть). Это связано с тем, что не было учтено время замедления и вылета нейтронов из замедлителя. Эффективно задержка вспышки нейтронов определяется временем замедления и временем вылета нейтронов определенной длины волны [9], поэтому ко времени вспышки быстрых нейтронов надо прибавить время замедления и время вылета нейтронов конкретной длины волны.

Рис. 3. Время вспышки нейтронов, определенное по формулам (5), в зависимости от длин волн нейтронов при дифракции для рефлексов первого порядка (в геометрии Брэгга) – черные квадраты (5.3), второго порядка – светло серые кружки (5.2) и третьего порядка – серые треугольники (5.3).

Была построена зависимость времени пролета от длины волны нейтрона в виде $(t_i - t_0) = \lambda_i \times L/3.956$ непосредственно после измерений времяпролетных спектров нейтронов дифракции в монокристалле бромида калия. Измерения велись в широком диапазоне углов Брэгга от 0.0567232 до 0.34180977 рад (от ~3° до ~19°). Время вспышки t_0 было определено по результатам аппроксимации времяпролетного спектра вспышки, а время регистрации рефлекса t_i определялось по результатам аппроксимации фрагмента времяпролетного спектра самого рефлекса.

Определение времени задержки вылета нейтронов из замедлителя проводилось с использованием монокристалла, с помощью которого формировался пучок нейтронов дифракции с определенной длиной волны, и вычислялось время пролета этих нейтронов *t*_{cul}. Время замедления и вылета нейтронов из замедлителя при этом равнялось:

$$\Delta t = (t_i - t_0) - t_{\rm cul}.\tag{6}$$

Здесь t_i — время регистрации рефлекса *i*-го порядка, t_0 — время вспышки, полученное аппроксимацией функцией Гаусса фрагмента времяпролетного спектра вспышки (как показано выше), t_{cul} — время пролета нейтронов, вычисленное из измеренного угла Брэгга, оцененной длины пролетной базы L = 28040 мм и известного $2d_{200} = 6.59$ Å по формулам (2) и (3).

На рис. 4 представлена зависимость времени замедления и вылета нейтронов из замедлителя Δt от длины волны регистрируемых нейтронов дифракции.

Рис. 4. Зависимость времени замедления и вылета нейтронов из замедлителя от длины волны нейтронов. Черные квадраты – время пролета нейтронов, соответствующих рефлексу первого порядка, серые кружки – время пролета нейтронов, соответствующих рефлексу второго порядка, светло серые треугольники – время пролета нейтронов, соответствующих рефлексу третьего порядка.

Время замедления и вылета нейтронов сравнительно быстро увеличивается в области длин волн нейтронов 0.3–1.0 Å, а, начиная с длины волны нейтрона примерно 1 Å, остается практически постоянным вплоть до 2.2 Å. Нейтроны замедляются до этой области длин волн и вылетают из замедлителя одновременно. Такая зависимость может быть связана с зависимостью сечения рассеяния нейтронов на водороде [10, 11].

На рис. 5 приведена измеренная ширина рефлексов первого и второго порядков в зависимости от их длины волны, полученных аппроксимацией рефлексов функцией Гаусса. Черные квадраты и черная линия — рефлексы первого порядка

Рис. 5. Зависимость полуширины рефлекса, аппроксимированного Гауссом, от длины волны нейтрона. Черные квадраты соответствуют рефлексам первого порядка, серые кружки – рефлексам второго порядка.

отражения, серые кружки и линия — рефлексы второго порядка отражения. Различие ширины для рефлексов первого и второго порядков отражения связано с различием дифракционного уширения.

Ширина рефлексов имеет вид:

$$\Delta t = ((\Delta t_{f1})^2 + (\Delta t_i)^2)^{0.5}, \tag{7}$$

здесь Δt_{f1} — ширина, обусловленная вспышкой реактора, Δt_i — дифракционное уширение *i*-го порядка. Дифракционное уширение, обусловленное расходимостью нейтронного пучка $\Delta \theta_n$ и мозаичностью монокристалла $\Delta \theta_m$, имеет вид [10]:

$$\Delta t_i = g\lambda \operatorname{ctg}(\theta)((\Delta \theta_n)^2 + (\Delta \theta_m)^2)^{0.5}, \qquad (8)$$

где g = L/3.956 — коэффициент, связывающий согласно (3) время пролета и длину волны нейтрона.

Произведение $g\lambda$ ctg(θ) — медленно убывающая функция в области углов (0.04–0.18) рад, поэтому резкое увеличение полуширины рефлекса в области длин волн нейтронов (0.3–1.0) Å связано с процессом замедления нейтронов. В этой же области длин волн нейтронов происходит увеличение времени замедления нейтронов. Разность квадратов ширины рефлексов первого и второго порядков дифракции позволяет исключить ($\Delta t_{\rm fl}$)² и получить оценку мозаичности монокристалла равную (4.4–6.5) × 10⁻³.

ЗАКЛЮЧЕНИЕ

Выполнены исследования временных характеристик времяпролетного спектрометра, установленного на 30-метровой времяпролетной базе первого канала реактора ИБР-2.

Обнаружено изменение времени импульса мощности реактора относительно импульса старта, в зависимости от времени измерения с начала цикла работы реактора. Время вспышки меняется относительно начала работы реактора по закону распада с постоянной времени, равной ≈140–160 мин.

Измерено время замедления нейтронов в зависимости от длины волны нейтронов.

Установлена зависимость полуширины рефлексов от длины волны нейтрона.

Сделана оценка мозаичности монокристалла.

БЛАГОДАРНОСТИ

Авторы выражают глубокую благодарность В.Н. Швецову, Е.В. Лычагину, Ю.Н. Копачу, М.И. Цулая, В.В. Новицкому, Э.А. Коптелову за полезные обсуждения и поддержку работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Graham K.F., Carpenter J.M. // Nuclear Science and Engineering. 1972. V. 49. P. 416.
- Tetsuya Kai, Makoto Teshigavara, Hoboru Watanabe et al. // J. Nucl. Science and Technology. 2002. V. 39. № 2. P. 120.
- 3. *Уинздор К.* Рассеяние нейтронов от импульсных источников. М.: Изд-во Энергоатомиздат, 1985. С. 352.
- Kagan Yu., Afanas'ev A.M. // Soviet Phys. JETP. 1966.
 V. 23. № 1. P. 178.
- 5. Alexandrov Yu.A., Chalupa B., Eichhorn F. et al. // Physica B.1988. V. 151. P. 108.
- 6. Shvetsov V.N., Alpatov S.V., Astakhova N.V. et al. // Instruments and Experimental Techniques. 2012. V. 55. № 5. P. 561.
- 7. Бондаренко И.И., Стависский Ю.Я. // АЭ. 1959. Т. 7. Вып. 5. С. 417.
- 8. Бондарченко Е.А., Пепелышев Ю.Н., Попов А.К. // ЭЧАЯ. 2004. Т. 35. Вып. 4. С. 927.
- 9. Александров Ю.А., Шарапов Э.И., Чер Л. Дифракционные методы в нейтронной физике. М.: Энергоиздат, 1981. С. 216.
- 10. Балагуров А.М. // ЭЧАЯ. 1992. Т. 23. Вып. 4. С. 1088.
- 11. http://www.nndc.bnl.gov/ENDF

Investigation of the Characteristics of the Neutron Beam of the First Channel of the IBR-2 Reactor

V. L. Kuznetsov, E. V. Kuznetsova, P. V. Sedyshev, A. P. Sirotin

The temporal characteristics of the time-of-flight spectrometer installed on the fist channel of the IBR-2 reactor are investigated. A change in the flare time of the reactor relative to the start was detected. The neutron deceleration time is measured as a function of the neutron wavelength. The dependence of the half-width of the reflections on the neutron wavelength is established. Measurements were carried out in a wide range of Bragg angles from 0.0567232 to 0.34180977 radians (from $\sim 3^{\circ}$ to $\sim 19^{\circ}$). An estimate is made for the mosaic pattern of a single crystal.

Keywords: time-of-flight spectrometer, biaxial diffractometer, neutron pulse width, pulsed reactor.