УДК 538.9

ПРИМЕНЕНИЕ ИОННО-ЛУЧЕВОЙ ОБРАБОТКИ В ПРОЦЕССЕ МАГНЕТРОННОГО НАПЫЛЕНИЯ ТОНКИХ ПЛЕНОК SnO₂

© 2019 г. А. С. Алалыкин^{1,} *, П. Н. Крылов^{1,} **, Р. М. Закирова¹, И. В. Федотова¹, Н. В. Костенков^{1,} *, Е. А. Дурман¹

¹Удмуртский государственный университет, Ижевск, 423034 Россия *E-mail: alalykin@udsu.ru

***E-mail: ftt@udsu.ru* Поступила в редакцию 11.12.2018 г. После доработки 22.02.2019 г. Принята к публикации 12.03.2019 г.

Исследовано влияние сопутствующей ионно-лучевой обработки на структуру и свойства пленок SnO₂, синтезированных методом ВЧ-магнетронного напыления при комнатной температуре, а также при 200°С. Установлено, что ионно-лучевая обработка не влияет на прозрачность, ширину запрещенной зоны полученных пленок оксида олова. Показано, что происходит изменение показателя преломления и удельного сопротивления. При комнатной температуре пленки являются рентгеноаморфными, а при 200°С – поликристаллическими. Рентгенодифракционные и электронографические исследования показали наличие одной фазы SnO₂. Ионно-лучевая обработка приводит к изменению преимущественной ориентации кристаллитов. С увеличением тока ионно-лучевой обработки размеры зерен уменьшаются.

Ключевые слова: ВЧ-магнетронное напыление, прозрачно-проводящие пленки, SnO₂, ионно-лучевая обработка.

DOI: 10.1134/S1028096019110050

введение

Диоксид олова, являясь широкозонным полупроводником, обладает достойным внимания сочетанием свойств: прозрачностью в видимом диапазоне электромагнитного излучения, большим электрическим сопротивлением и высокой газовой чувствительностью [1]. Пленки диоксида олова используются в качестве прозрачных нагревательных элементов, для производства транзисторов, прозрачных антистатических покрытий и других частей в электрическом оборудовании, где требуется прозрачность [2]. Для их формирования применяют различные методы: пиролиз аэрозоля [3], осаждение путем химических реакций в газовой фазе [4] (в том числе в сильных электрических полях [5]), ионно-лучевое напыление [6], реактивное магнетронное распыление металлической [7] и оксидной мишени [8]. осаждение в плазме дугового разряда [9]. золь-гель метод [10], импульсное лазерное распыление [11], испарение электронным пучком [12] и лазерным излучением [13]. Для различных применений требуются пленки с определенными свойствами. Свойства пленок определяются их составом, структурой и состоянием поверхности. Состоянием поверхности пленок, например, диоксида олова можно управлять ионной бомбардировкой из плазмы, бомбардировкой высокоэнергетичными ионами, высокотемпературной обработкой в вакууме [14]. Исследование возможностей управления структурой и свойствами пленок SnO_2 в процессе реактивного магнетронного распыления имеет научный и практический интерес.

Целью работы является исследование влияния температуры конденсации и сопутствующей ионно-лучевой обработки на структуру и свойства пленок SnO₂, синтезированных методом ВЧ-магнетронного напыления.

МЕТОДИКА ЭКСПЕРИМЕНТА

Пленки SnO₂ были получены методом BЧмагнетронного распыления мишени олова на модернизированной установке типа УРМ [15] в среде смеси аргона (90 об. %) и кислорода (10 об. %). Рабочее давление газовой смеси при напылении составляло 0.36 Па. Напуск рабочего газа осуществляли через ионный источник Радикал М-100. В процессе осаждения подложки поочередно проходили область распыления мишени и область воздействия ионного источника. Падаю-

Рис. 1. Топография поверхности пленок SnO₂, полученных с сопутствующей ионно-лучевой обработкой и температуре подложки 200°С при различных токах: a - 10, 6 - 20, B - 30, r - 40, d - 50, e - 60 мА.

щая ВЧ-мощность на магнетроне соответствовала 300 Вт, отраженная — 42 Вт; ток ионного источника — 0, 10, 20—60 мА. Температуру конденсации в первой партии поддерживали 200°С, во второй нагрев образцов не проводили. В качестве подложек использовали стекло и свежие сколы монокристалла поваренной соли.

Толщину пленок измеряли с помощью микроинтерферометра МИИ-4. Спектры пропускания получали на спектрофотометре СФ-56. Рентгеноструктурные исследования проводили на модернизированном дифрактометре ДРОН-3.0 [16], использовали монохроматическое FeK_{α} -излучение. Для исследования микроструктуры использовали просвечивающий электронный микроскоп ЭМ-125, ускоряющее напряжение составляло 100 кВ. Морфологию поверхности исследовали при помощи растрового электронного микроскопа FEI Inspect S50. Анализ поверхности проводили в режиме детектирования вторичных электронов при ускоряющем напряжении 30 кВ. Для обработки топографии поверхности использовали программное обеспечение Image J. Измерение удельного сопротивления выполняли по стандартной четырехзондовой методике.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Толщина пленок SnO₂, полученных при комнатной температуре конденсации, составила ~1000 \pm \pm 100 нм, на нагретых подложках — 835 \pm 35 нм.

Увеличение температуры подложки приводит к уменьшению толщины пленки. Ток ионно-лучевой обработки практически не оказывает влияния на толщину пленок при температуре подложки 200°С.

Пленки диоксида олова, полученные без сопутствующей ионно-лучевой обработки, были гладкими и без особенностей. Введение сопутствующей ионно-лучевой обработки в процесс получения пленок без нагрева подложек не вызвало заметных изменений, а при температуре конденсации 200°С привело к изменению топологии поверхности пленок (рис. 1). Поверхность стала рельефной, различимы отдельные зерна.

В табл. 1 представлены результаты обработки топографии поверхности с помощью программного обеспечения Image J (погрешность 10%). Максимальными размерами зерен обладают пленки SnO₂, полученные при токе обработки 20 мA, с увеличением тока ионно-лучевой обработки размеры зерен уменьшаются.

Согласно результатам рентгенофазового анализа все пленки SnO₂, полученные без нагрева подложек, являются рентгеноаморфными (рис. 2, вставка). Пленки, полученные при температуре 200°С, имеют поликристаллическую структуру (рис. 2). Фазовый состав пленок представлен одной тетрагональной фазой SnO₂ (карточка JCPDS № 41-1445).

Ток ионно-лучевой обработки, мА	Средний диаметр, нм	Минимальный измеренный диаметр, нм	Максимальный измеренный диаметр, нм
10	68	56	85
20	91	74	113
30	80	61	96
40	78	64	98
50	73	52	97
60	74	59	93

Таблица 1. Результаты обработки топографии с помощью программного обеспечения Image J поверхности пленок SnO₂, полученных при температуре конденсации 200°C

Сопутствующая ионно-лучевая обработка пленок SnO₂, полученных при температуре конденсации 200°С, приводит к изменению преимущественной ориентации кристаллитов. Пленки, полученные без ионно-лучевой обработки, имеют максимальное интерференционное отражение от плоскости (211). Введение ионно-лучевой обработки и увеличение тока ионного источника приводят к росту интенсивности интерференционного отражения от плоскости (110), отношение интенсивностей $J_{(110)}/J_{(211)}$ изменяется от 0.47 (0 мА) до 1.76 (40 мА) и далее уменьшается до 0.84 (50, 60 мА). Обработка вызывает смешение положения интерференционных максимумов в сторону меньших углов 20, т.е. вызывает увеличение параметров решетки диоксида олова. Можно предположить, что рост тока ионного источника приводит к изменению макронапряжений в системе пленка-подложка из-за роста числа дефектов, возникающих в ходе ионно-лучевой обработки.

Данные просвечивающей электронной микроскопии подтвердили результаты рентгенофазового анализа (рис. 3).

Пропускание пленок SnO_2 , полученных без нагрева подложек, составило ~70-80% (рис. 4а). Ионно-лучевая обработка, чередующаяся с напылением, сначала увеличивает прозрачность пленок SnO_2 , затем уменьшает их. Пленки SnO_2 , полученные при температуре 200°С, являются прозрачными (~90%) (рис. 46). Образцы, полученные при температуре конденсации 200°С, имеют более резкий край поглощения по сравнению с образцами, полученными при комнатной температуре конденсации (рис. 4а). Пологий край поглощения обусловлен "хвостами" Урбаха в аморфных пленках.

Спектры пропускания носят осциллирующий характер, что позволило рассчитать показатель преломления [17]. Ширину запрещенной зоны оксида олова определяли в области сильного поглощения [18].

Показатель преломления пленок SnO₂, полученных без ионно-лучевой обработки при температуре конденсации 200°С, составил 2.07 (погрешность \pm 0.02). При ионно-лучевой обработке (10, 20 мА) показатель преломления сначала увеличивается до 2.18, при 30-50 мА становится 2.06, а при 70 мА - 2.03. Показатель преломления связан с коэффициентом упаковки или относительной плотностью. Таким образом, введение ионно-лучевой обработки в процесс получения пленок при температуре конденсации 200°С приводит к изменению относительной плотности пленок. Введение ионно-лучевой обработки в случае получения пленок без нагрева подложек приводит к незначительному уменьшению значения показателя преломления от 2.14 до 2.10.

Ионно-лучевая обработка, чередующаяся с напылением, не влияет на значение ширины запрещенной зоны $E_{\rm g}$ пленок SnO₂, полученных при температуре конденсации 200°С, при этом

Рис. 2. Дифрактограммы пленок SnO₂, полученных при температуре конденсации 200°С: I – без ионнолучевой обработки, 2 – ток 10 мА, 3 – ток 20 мА, 4 – ток 30 мА, 5 – ток 40 мА, 6 – ток 50 мА, 7 – ток 60 мА. Вставка: типичная дифрактограмма пленок SnO₂, полученных при комнатной температуре.

Рис. 3. Микроизображения и электронограммы пленок SnO₂, полученных при 200°С: а – без ионно-лучевой обработки, б – ток 20 мА, в – ток 40 мА, г – ток 60 мА.

Рис. 4. Спектры пропускания пленок SnO₂, напыленных на подложки: а – без нагрева (1 – без ионно-лучевой обработки, 2 – ток 10 мА, 3 – ток 20 мА, 4 – ток 30 мА, 5 – ток 40 мА, 6 – ток 50 мА, 7 – ток 60 мА); б – на подложки при температуре 200°С.

значение $E_{\rm g}$ составляет 3.68 ± 0.05 эВ. Ширина запрещенной зоны пленок SnO₂, полученных при комнатной температуре, более чувствительна к введению ионно-лучевой обработки: с ростом то-ка ионно-лучевой обработки $E_{\rm g}$ сначала увеличивается от 3.43 до 3.83 эВ, затем уменьшается до 3.40 эВ. Значение $E_{\rm g}$ по литературным данным ~3.6 эВ [19].

Пленки SnO_2 , полученные при комнатной температуре без ионно-лучевой обработки, имеют удельное сопротивление меньшее, чем при температуре конденсации 200°С. Ионно-лучевая обработка увеличивает удельное сопротивление пленок SnO_2 (рис. 5а). У пленок, полученных при температуре конденсации 200°С, с увеличением тока ионно-лучевой обработки удельное сопротивление спрение сначала растет, достигает максимального значения при токе ионной обработки 40 мА, затем уменьшается. Такое поведение удельного со-

противления поликристаллических пленок SnO_2 коррелирует с изменением отношения интенсивностей J_{110}/J_{211} (рис. 56).

Результаты исследований по изменению удельного сопротивления пленок SnO₂, полученных при комнатной температуре конденсации, можно сопоставить с результатами работы [1], в которой исследована взаимосвязь структурных превращений с процессами электропереноса в пленках на основе оксида олова. Авторы предположили, что протекание процессов структурной релаксации аморфной структуры вызывает изменения в ближнем порядке атомов. Вследствие этих изменений происходит увеличение электрического сопротивления.

Проводимость поликристаллических пленок оксида олова обусловлена переносом электронов между микрокристаллитами оксида и определяется концентрацией электронов проводимости на

Рис. 5. Влияние тока ионно-лучевой обработки на: а – удельное сопротивление пленок SnO_2 (1 – без нагрева подложки, $2 - 200^{\circ}$ C), б – отношение интенсивностей J_{110}/J_{211} .

их поверхности и высотой потенциальных барьеров между ними. У металлооксидных полупроводников проводимость может варьироваться в широких пределах в зависимости от стехиометрического состава. Перенос носителей заряда в оксиде олова определяется наличием как свободных электронов в зоне проводимости, так и наличием уровней в запрещенной зоне, связанных, в частности, с кислородными вакансиями (поверхностными и объемными), а также активным хемосорбированным кислородом [20]. Термодинамический анализ равновесия собственных точечных дефектов в оксиде олова показал [21], что преобладающим типом дефектов в пределах области гомогенности SnO₂, являются дважды ионизированные вакансии кислорода. Между двухзарядными и однозарядными вакансиями кислорода в SnO₂ имеется определенное равновесие. Сопутствующая ионно-лучевая обработка приводит к изменению дефектного состояния кристаллитов и их размеров. к изменению относительной плотности пленок, и, соответственно, к изменению удельного сопротивления пленок.

ЗАКЛЮЧЕНИЕ

В работе исследовано влияние температуры конденсации и сопутствующей ионно-лучевой обработки в процессе реактивного магнетронного распыления на структуру и свойства пленок оксида олова.

Пленки SnO₂, полученные при комнатной температуре, являются рентгеноаморфными, поверхность их гладкая, без особенностей. Введение сопутствующей ионно-лучевой обработки в процесс получения пленок без нагрева подложек не вызвало заметных изменений их структуры и топологии. Пленки, полученные при температуре конденсации 200°С, являются поликристаллическими. Введение ионно-лучевой обработки и увеличение тока ионного источника приводят к изменению преимущественной ориентации кристаллитов и топологии поверхности пленок.

Пропускание пленок SnO₂, полученных при комнатной температуре, составило ~70–80%. Пленки SnO₂, полученные при температуре 200°С, являются прозрачными (~90%), имеют более резкий край поглощения по сравнению с образцами, полученными при комнатной температуре конденсации.

Пленки SnO_2 , полученные при комнатной температуре без ионно-лучевой обработки, имеют удельное сопротивление меньшее, чем при температуре конденсации 200°С. Ионно-лучевая обработка вызывает изменение удельного сопротивления пленок SnO_2 .

Таким образом, свойствами растущих пленок можно управлять посредством изменения температуры конденсации и тока сопутствующей ионно-лучевой обработки.

БЛАГОДАРНОСТИ

Исследование выполнено в рамках базовой части государственного задания № 16.7592.2017/БЧ.

СПИСОК ЛИТЕРАТУРЫ

- Ситников А.В., Жилова О.В., Бабкина И.В. и др. // ФТП. 2018. Т. 52. № 9. С. 995.
- Igwe H.U., Ugwu E.I. // Adv. Appl. Sci. Res. 2010. V. 1. № 3. P. 240.
- 3. Акимов Б.А., Гаськов А.М., Лабо М. и др. // ФТП. 1999. Т. 33. № 2. С. 205.
- 4. Грачева И.Е., Мошников В.А., Осипов Ю.В. // Известия СПбГЭТУ "ЛЭТИ". Серия Физика твердого тела и электроника. 2008. № 6. С. 19.

- Shaw G. et al. // J. Materials Chemistry. 2005. V. 15. № 1. P. 149.
- Рембеза С.И., Кошелева Н.Н., Рембеза Е.С. и др. // ФТП. 2011. Т. 45. № 5. С. 612.
- Рембеза С.И., Свистова Т.В., Рембеза Е.С. и др. // ФТП. 2001. Т. 35. № 7. С. 796.
- 8. *Симаков В.В., Синев И.В., Смирнов А.В. и др.* // Нанотехника. 2011. № 3. С. 45.
- Pan J., Shen H., Mathur S. // J. Nanotechnology. 2012. V. 2012. P. 1–12.
- Moshnikov V.A., Gracheva I.E., Kuznezov V.V. et al. // J. Non-Crystalline Solids. 2010. V. 356. № 37. P. 2020.
- 11. Dominguez J.E., Fu L., Pan X.Q. // Appl. Phys. Lett. 2002. V. 81. № 27. P. 5168.
- Sohn J.C., Kim S.E., Kim Z.W. et al. // Transactions on Electrical and Electronic Materials. 2009. V. 10. № 4. P. 135.
- 13. Lančok J., Santoni A., Penza M. et al. // Surf. Coat. Tech. 2005. V. 200. № 1. P. 1057.

- Rani S., Roy S.C., Puri N.K. et al. // J. Nanomaterials. 2008. V. 2008. P. 1.
- 15. Ветошкин В.М., Закирова Р.М., Крылов П.Н. и др. // ВТТ. 2011. Т. 21. № 1. С. 57.
- 16. Алалыкин С.С., Крылов П.Н. // ПТЭ. 2005. № 2. С. 149.
- 17. Брус В.В., Ковалюк З.Д., Марьянчук П.Д. // ЖТФ. 2012. Т. 82. № 8. С. 110.
- Tauc J., Grigorovici R., Vancu A. // Phys. Status Solidi. 1966. V. 15. № 2. P. 627.
- Das S., Jayaraman V. // Progress in Materials Science. 2014. № 66. P. 112.
- Гаман В.И. Физика полупроводниковых газовых сенсоров: монография. Томск: Изд-во НТЛ, 2012. 112 с.
- 21. *Рябцев С.В., Чувенкова О.А., Попов А.Е. и др. //* Конденсированные среды и межфазные границы. 2012. Т. 14. № 3. С. 328.

Application of Ion-Beam Processing in the Process of Magnetron Deposition of Thin SnO₂ Films

A. S. Alalykin, P. N. Krylov, R. M. Zakirova, I. V. Fedotova, N. V. Kostenkov, E. A. Durman

The effect of accompanying ion-beam processing on the structure and properties of SnO_2 films synthesized by the method of high-frequency magnetron sputtering at room temperature and at 200°C was investigated. It has been established that ion-beam processing does not affect the transparency, the band gap of the obtained tin oxide films, the refractive index and resistivity are change. At room temperature, the films are X-ray amorphous, and at 200°C they are polycrystalline. X-ray diffraction and electron diffraction studies showed the presence of a single phase of SnO_2 . Ion-beam treatment leads to a change in the preferred orientation of the crystallites. With an increase in the current of ion-beam processing, the grain sizes decrease.

Keywords: RF-magnetron sputtering, transparent conductive films, SnO₂, ion-beam processing.

104