УДК 537.533.35;621.382

ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ КАРБОНАТНО-КРЕМНИСТЫХ ПОРОД-ДОМАНИКОИДОВ

© 2019 г. В. А. Кузьмин^{1, *}, Н. А. Скибицкая¹

¹Институт проблем нефти и газа РАН, 119333 Москва, Россия *E-mail: kuzminva@mail.ru Поступила в редакцию 05.04.2018 г. После доработки 05.04.2018 г. Принята к публикации 05.04.2018 г.

Показаны методы и результаты электронно-микроскопических исследований микроструктуры карбонатно-кремнистых пород—доманикоидов. Для этого были применены как стандартные методы изучения поверхности сколов образцов и пришлифованной поверхности для микрозондовых исследований, так и специально разработанная методика катодолюминесцентного изучения порового пространства. С помощью электронно-микроскопических исследований на микроуровне были изучены закономерности катагенетического преобразования доманикоидов. Проведенные исследования показали, что субкапиллярная пористость в них формируется только во фрактально-кластерных очагах зарождения вторичной (аутигенной, сингенетичной) карбонатности. Проведенные исследования обосновывают очагово-кластерный подход для вероятностного прогноза очагов формирования вторичной карбонатности и нефтенасыщенных поровых объемов.

Ключевые слова: растровый электронный микроскоп, микростроение, карбонатно-кремнистая порода, доманикоиды, нефть, катодолюминесценция, поровое пространство.

DOI: 10.1134/S0207352819020094

введение

Исследованиям микроструктурных характеристик и особенностям формирования порового пространства в нефтяной геологии уделяется большое внимание. Опыт работ по изучению микростроения пород показал, что одним из наиболее эффективных методов является применение электронно-микроскопических [1-3] и томографических методов [3–10], которые используются достаточно широко как за рубежом, так и в России. Современная электронная микроскопия дает возможность на микроуровне изучать вещественный состав пород, особенности строения породы-коллектора и проводить цифровой анализ параметров структуры порового пространства. В настоящей работе показаны возможности и методические приемы исследования в растровом электронном микроскопе (РЭМ) закономерностей катагенетических процессов, приводящих к изменениям микростроения и порового пространства сложных карбонатных и карбонатноглинисто-кремнистых разновидностей пород продуктивных фаменских отложений верхнего девона одной из площадей Восточно-Предкавказской НГО.

МЕТОДИКА ЭКСПЕРИМЕНТА

Изучение микроструктурных параметров и характеристик пород проводилось в РЭМ SUPRA 50 VP (фирма Карл Цейс) с разрешением 1.0 нм, оборудованном энергодисперсионным спектрометром INCA Enerdgy (фирма Oxford Instruments) для проведения рентгеноспектрального микроанализа элементного состава. Для получения информации о топографии микроструктурных элементов в образцах пород использовался режим вторичных электронов, при этом применялся классический детектор Эверхарта-Торнли (SE2), позволяющий в режиме вторичных электронов наблюдать детали размером в 1 нм. Исследование порового пространства проводилось по специально разработанной методике в режиме катодолюминесценции на пропитанных люминофором образцах [11, 12]. Катодолюминесцентная методика имеет ряд преимуществ, так как является прямым методом измерения размеров пор и каналов пустотного пространства пород. Она позволяет изучать микроструктурные детали, недоступные современной томографии, которая из-за недостаточного разрешения не обеспечивает не-

Рис. 1. Пример преимущественно канального строения порового пространства в образце песчаника. Катодолюминесцентное изображение (белые области – сечения пор и поровых каналов, микротрещины).

Рис. 2. Пример результатов катодолюминесцентной порометрии известняка в РЭМ. а – гистограмма долевого объема пор и каналов (лог), б – гистограмма распределения пор и каналов по размерам (лог).

обходимую детализацию нижнего и среднего диапазона фильтрующих каналов в породах.

Основа применяемой методики заключается в исследовании в режиме катодолюминесценции пришлифованных образов пород, поровое пространство которых предварительно насыщено люминесцирующим под электронным пучком органическим люминофором. Получаемые при этом бинарные изображения сечений пустот в образце породы, где поры высвечиваются белыми участками на черном фоне, легко распознаются анализатором изображения и обсчитываются с помощью специальных программ [13].

На рис. 1, 2 показан пример обработки результатов катодолюминесцентной порометрии песчаника в РЭМ.

Анализ полученных катодолюминесцентных РЭМ-изображений осуществлялся программными методами. Полученный массив данных обсчета использовался для оценки распределения размеров пор, расчета координационного числа поровой системы и определения усредненных размерных параметров ячейки пора-канал, на основе сеточного модельного представления [14, 15]. В качестве основных параметров рассчитывался средний диаметр пор $d_{\text{пор}}$ и каналов $d_{\text{кан}}$, количество каналов $N_{\text{кан}}$ и количество пор $N_{\text{пор}}$ на единицу объема породы, координационное число $n_k =$ $= N_{\text{кан}}/N_{\text{пор}}$ и другие размерные характеристики. Координационное число дает пространственную характеристику строения порового пространства, с точки зрения строения порового узла каналыпора. Этот параметр существенно влияет на относительную фазовую проницаемость породы, т.е. на добывные возможности, в отличие от закона распределения пор по размерам, который принципиально не изменяет характер двухфазной фильтрации [16]. На рис. 3 показан пример анализа координационного числа (двумерная сетка) порового узла в известняке в растровом электронном микроскопе. Как видно на электронно-микроскопическом изображении от поры (в центре) отходят пять каналов ($n_k = 5$).

Для изучения органических и углеводородных микрокомпонентов использовался режим обратно-отраженных электронов, которые детектируются высокочувствительным полупроводниковым детектором обратно-отраженных электронов высоких энергий QBSD (5-20 кэВ). С помощью этого детектора определялся химический (минеральный) контраст (*z*-контраст) на сколах изучаемых пород. Опыт работы в этом режиме показал высокую эффективность при изучении различных форм органического вещества в образцах пород, а также при выделении литологического типа участков пород [17]. Например, известняк $(CaCO_3)$ в сравнении с кремнеземом (SiO_2) отличался более светлым серым оттенком. А доломит $(CaMg[CO_3]_2)$ по сравнению с кальцитом имеет более темный оттенок. Микрочастицы органического вещества, содержащего (в сравнении с породой) наиболее легкие элементы, при исследовании в РЭМ имеют наиболее темный оттенок на

Рис. 3. РЭМ-изображение скола пористого известняка (аутигенный скаленоидрический и таблитчатый кальцит): а – морфология в режиме вторичных электронов, б – поровое пространство, в – конфигурация поры с координационным числом $n_k = 5$.

фоне различных литологических типов породообразующих минералов (рис. 4). Это позволяет предварительно идентифицировать микроскопления органического вещества (ОВ) в образце породы при исследовании, а затем детально изучать текстуру ОВ при больших увеличениях.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Изучалась микроструктура и структура порового пространства карбонатно-кремнистых по-

Рис. 4. Идентификация детектором QBSD микроагрегатов органического вещества: образец 1/6.

род доманикоидных разностей из отложений фаменского яруса верхнего девона ($D_3 fm$) одной из площадей Восточно-Предкавказской НГО в интервале отбора керна 6731.34—6732.83 м. Методом растровой электронной микроскопии исследовали коллекцию из десяти образцов.

Отобранные образцы породы представляют собой плотные, прочные разновидности темносерого цвета. Открытая пористость колеблется в пределах от 0.04 до 0.84%, среднее значение пористости составляет 0.62%. Проницаемость образцов изменяется в пределах 0.062–2.08 мД. Без учета образца 1Д-Э/2ф с проницаемостью 2.08 мД, средняя проницаемость коллекции составляет всего 0.1 мД. Петрофизические свойства изученных образцов пород и их краткая характеристика на основе литолого-петрографических исследований приведены в табл. 1.

Из табл. 1 видно, что изученный интервал (6731.34-6732.83 м) сложен часто переслаивающимися карбонатными и карбонатно-кремнистыми разностями пород. Для уточнения состава пород и соотношения в них породообразующих минералов образцы были исследованы методом рентгеноспектрального микроанализа в электронном микроскопе с помощью энергодисперсионного рентгеновского спектрометра. На рис. 5, 6 представлены результаты определения химического состава пород образцов 1/3, 1/4, 1/5, 1/6, из которых следует, что породы содержат элементы, характерные для карбонатных и кремнисто-карбонатных разностей пород. Элементный состав приведен в мас. %. Рентгеноспектральный микроанализ показал высокое содержание кальция, магния и углерода в известняках, а также наличие кальция и кремния в кремнисто-карбонатной породе. В пределах небольших объемов наблюдается, как изменение химического состава пород от

ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКИЕ ИССЛЕДОВАНИЯ

Таблица 1. Фильтрационно-емкостная и литологическая характеристика пород отложений фаменского яруса верхнего девона (D₃fm) в интервале отбора керна 6731.34–6732.83 м из скважины одной из площадей Восточно-Предкавказской НГО

№ образца	Литология	Коэффициент пористости К %	Коэф(проницаем	фициент юсти, <i>К</i> _{пр} , мД	Коэффициент структурно-защемленной нефтегазонасыщенности (<i>K</i> _{го} , <i>K</i> _{но}), %	
			1			
1/1	Порода карбонатно-кремнистая	0.04	0.062	0.074	1.4	
1/2	Порода карбонатно-кремнистая	0.31	_	2.08	2.3	
1/3	Известняк органогенно- детритовый (пакстоун)	0.8	_	0.102	34.7	
1/4	Порода карбонатно-кремнистая	0.81	_	0.097	47.8	
1/5	Известняк водорослевый (полифитный) с органогенным детритом	0.57	_	0.093	24	
1/6	Порода карбонатно- кремнистая и известняк	0.80	_	0.104	46.8	
1/7	Доломит тонко-мелкозер- нистый известковистый	0.52	0.076	0.082	6.1	
1/8	Известняк органогенно- детритовый (пакстоун)	0.82	-	0.115	28.7	
1/9	Известняк органогенно- детритовый (пакстоун)	0.65	0.142	0.164	2.2	
1/10	Известняк органогенно- детритовый (пакстоун)	0.84	_	0.071	17.4	

известняка к известняку доломитизированному или к известняку с высокой концентрацией OB (рис. 5а), так и замещения кремнистой породы карбонатной (известняком) (рис. 5б). Это означает сильную неоднородность пород даже на уровне микрообъемов как по литологии, так и по структуре порового пространства, пористости и по строению фильтрационной системы. Для анализа морфологических особенностей порового пространства и количественного определения размеров пор отобранные образцы пород были изучены в РЭМ в режиме катодолюминесценции. Полученные количественные порометрические, микроструктурные характеристики для верхнедевонских отложений приведены в табл. 2, где также даны петрофизические свойства пород.

Рис. 5. Результаты исследования элементного состава в образцах фаменских отложений верхнего девона D₃fm из скважины одной из площадей Восточно-Предкавказской НГО: а – образец 1/3, б – образец 1/4.

Из табл. 2 следует, что средний диаметр каналов изменяется от 0.54 до 3 мкм. Средняя величина диаметров пор в образцах колеблется от 2.17 до 10.91 мкм и соответственно, отношение d_{nop}/d_{kah} — от 3.3 до 6.4. Координационное число изменяется в пределах 2—8.61. Следовательно, основные микроструктурные параметры порового пространства испытывают значительные колебания. Это связано, как уже отмечалось, со значительной объемной неоднородностью микростроения и очень низкой пористостью пород (0.04 до 0.84%), которая в среднем по образцам составляет 0.62%.

По отобранным образцам, также были проведены определения коэффициента структурно защемленной газонасыщенности (нефтенасыщенности) K_{ro} методом прямоточной капиллярной пропитки и по полученным данным построена корреляционная связь с параметром $d_{nop}/d_{кан}$ (график на рис. 7). На графике видно, что имеется дифференциация в величинах структурно-защемленной газонасыщенности (нефтенасыщенности) для разных групп пород, которая определяется не только структурным параметром $d_{\text{пор}}/d_{\text{кан}}$ емкостного пространства пород, но и их литологическим типом. Так более выраженная корреляционная связь (на графике обозначена *I*) определяет закономерность $K_{\text{го}} = f(d_{\text{пор}}/d_{\text{кан}})$ для карбонатизированных разностей. Значительно более слабая связь (с тенденцией вплоть до ее отсутствия) приурочена к кремнистым разностям (на графике обозначена *2*).

Пределы изменения и средние значения структурных параметров поровой системы в образцах пород фаменских отложений верхнего девона (D₃fm) изученной коллекции приведены в табл. 3, из которой видно, что система пор и каналов в исследованных образцах имеет порово-канальное и канальное строение.

Для выявления процессов формирования пористости, образцы были изучены в катодолюминесцентном режиме электронного микроскопа. Одновременно проводили исследования методом

Рис. 6. Результаты исследования элементного состава; в образцах фаменских отложений верхнего девона D_3 fm в скважины одной из площадей Восточно-Предкавказской НГО: а – образец 1/5, б – образец 1/6.

Рис. 7. Сопоставление коэффициента структурно защемленной газонасыщенности (нефтенасыщенности) $K_{\rm ro}$ ($K_{\rm Ho}$) с соотношением диаметров пор и каналов ($d_{\rm пор}/d_{\rm кан}$) для пород фаменского яруса верхнего девона.

рентгеноспектрального микроанализа. Это позволило проследить центры фрактального развития очагов пористости.

Исследования показали, что в низкопористых (рассматривается кремнистая часть) породах доманикоидных фаменских верхнедевонских отложений емкостное пространство представляет собой систему преимущественно очень тонких, близких субкапиллярным, каналов. Более крупные поры расположены в виде очагов, которые преимущественно формируются в карбонатизированных объемах пород и связаны с катагенетическими процессами преобразования кремнистой матрицы в карбонатизированных объемах хорошо прослеживается для образца 1/6 на катодолюминесцентных изображениях в РЭМ (рис. 8).

КУЗЬМИН, СКИБИЦКАЯ

Петрофизические свойства (№ образца)	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9	1/10
Коэффициент открытой пористости, $K_{\text{п.o}}, \%$	0.04	0.31	0.80	0.81	0.57	0.80	0.52	0.82	0.65	0.84
Коэффициент абсолютной проницаемости по газу, <i>К</i> _{пр} , мД (параллельно)	0.074	2.08	0.102	0.097	0.093	0.104	0.082	0.115	0.164	0.071
Коэффициент эффективной проницае- мости по газу, <i>К</i> _{пр эфф} , мД, II (парал- лельно)	0.069	1.532	0.092	0.092	0.087	0.092	0.074	0.102	0.142	0.067
Коэффициент остаточной водонасыщенности, <i>К</i> _{во} , %	68.57	9.81	28.74	24.68	33.4	27.57	73.37	42.78	72.40	41.57
Коэффициент структурно-защемленной нефтегазонасыщенности, <i>К</i> _{го} ,%	1.40	2.27	34.69	47.80	24.00	46.82	6.07	28.75	2.17	17.40

Таблица 2.	етрофизические и микроструктурные параметры порового пространства для верхнедевонских
отложений	₃fm в интервале отбора керна 6731.34—6732.83 м в скв. № 1 одной из площадей Восточно-Пред-
кавказской	ГО

Структурные параметры порового пространства

Средний эквивалентный диаметр пор и каналов, мкм	7.21	2.5	0.99	1.06	1.68	3.34	9.96	9.49	6.1	5.18
Координационное число		8.61	6.97	6.56	2.49	3.12	2.01	2.01	2.64	4.65
Средний диаметр каналов, мкм		1.31	0.54	0.56	0.68	0.67	2.01	3.00	1.7	1.65
Средний диаметр пор, мкм	10.12	5.32	2.17	2.32	2.73	2.74	10.91	9.96	9.63	10.46
Среднее отношение $d_{\text{пор}}/d_{\text{кан}}$		4.1	4.0	4.1	4.0	4.1	5.4	3.3	5.7	6.30

Таблица 3.	Пределы изменения	и средние :	значения	структурных	параметров	поровой	системы	исследова	нных
пород									

Возраст	Преобладающие породы	КПО, %	Координа- ционное число	Координа- циоиное число, среднее	$d_{ m nop}/d_{ m kah}$	Среднее значение d _{пор} /d _{кан}	Преобладающий тип порового пространства
Верхнеде- вонские отложения (D ₃ fm)	Известняки- доломиты. Карбонатно- кремнистые породы	<1	2-8	4.1	3.3-6.4	4.7	Порово- канальный и канальный

Рис. 8. Элементный состав (микрозондовый анализ) и распределение пор (катодолюминесценция в РЭМ) в образце карбонатно-кремнистой породы – образец 1/6.

На рис. 9 приведены катодолюминесцентные РЭМ-изображения порового пространства в породах фаменского яруса верхнего девона (D_3 fm), отобранные в интервале 6731.34—6732.83 м в скважине одной из площадей Восточно-Предкавказской НГО (образцы 1/1, 1/7, 1/9, 1/3, 1/5, 1/10). Видно, что породы в этом интервале характеризуются относительной неоднородностью порового пространства.

ЗАКЛЮЧЕНИЕ

Таким образом, методом растровой электронной микроскопии в комплексе с методом рентгеноспектрального микроанализа было показано, что отложения фаменского яруса верхнего девона (D_3 fm) одной из площадей в системе Восточно-Предкавказской НГО представляют собой плотные преимущественно карбонатно-кремнистые и кремнисто-карбонатные породы (доманикоиды). Открытая пористость образцов исследованной коллекции составляет менее 1%, а проницаемость не превышает в основном десятых долей мД. Координационное число поровой системы изменяется в интервале от 2 до 8 с преобладанием 2-4 и средней величиной 4.1, характерной для малосвязанного порово-канального и канального типа капиллярной системы. Средний диаметр каналов близок к границе субкапиллярных размеров. Отношение $d_{\text{пор}}/d_{\text{кан}}$ изменяется от 3.3 до 6.4 при средней величине 4.7. Из приведенных данных видно, что в фаменских отложениях верхнего девона (D₃fm) в границах изучаемого интервала поровое пространство характерно для плотных карбонатно-кремнистых и кремнисто-карбонатных пород. В образцах преобладает плотная матрица с единичными фильтрующими каналами, близкими к субкапиллярным, которые присутствуют в относительно небольшом количестве. Субкапиллярная пористость формируется только во фрактально-кластерных очагах зарождения

Рис. 9. Характеристика неоднородности структуры порового пространства для образцов, выбранных из коллекции: а – образец 1/1, б – образец 1/7, в – образец 1/9, г – образец 1/3, д – образец 1/5, е – образец 1/10 (белые области – сечения пор и поровых каналов, микротрещины).

вторичной (аутигенной, сингенетичной) карбонатности.

Исследованиями на микроуровне установлены закономерности катагенетического формирования очагов сингенетичной карбонатности в кремнистых разновидностях фаменских доманикоидов и закономерности формирования в карбонатах очаговой пористости. Это позволяет применять очагово-кластерный подход для вероятностного прогноза очагов формирования вторичной карбонатности и нефтенасыщенных поровых объемов в фаменских кремнистых нефтегазоматеринских отложениях в процессе катагенетического преобразования органического вещества.

БЛАГОДАРНОСТИ

Статья написана в рамках выполнения государственного задания по теме "Системный подход к совершенствованию теории и практики нефтегазогеологического районирования, прогнозирования нефтегазоносности и формирования ресурсной базы нефтегазового комплекса России", № АААА-АЈ 7-117082360031-8.

СПИСОК ЛИТЕРАТУРЫ

- 1. Осипов В.И., Соколов В.Н., Румянцева Н.А. Микроструктура глинистых пород. М.: Недра, 1989. 211 с.
- 2. Кузьмин В.А, Михайлов Н.Н., Скибицкая Н.А., Моторова К.А. // Геология нефти и газа. 2015. № 3. С. 35.
- 3. *Корост Д.В., Надежкин Д.В., Ахманов Г.Г. //* Вестн. Моск. ун-та. Сер. 4. Геология. 2012. № 4. С. 32.
- 4. Хозяинов М.С., Вайнберг Э.И. // Геоинформатика. М.: ВНИИгеосистем, 1992. № 1. С. 42.
- 5. *TippkOtter R., Eickhorst T., Taubner H., Giedner B., Rademaker G. //* Soil and Tillage Res. 2009. V. 105. Iss. 1. P. 12.
- Desrues J. Viggiani G. B&uelle P. Advances in X-ray Tomography for Geomaterials. Korolev: John Wiley & Sons, 2010. P. 80.
- Зинченко С.В., Хозяинов М.С., Якушина О.А. Компьютерная автоматическая система анализа рентгенотомографических и оптических изображений // Труды кафедры общей и прикладной геофизики. М.: РАЕН, 2007. С. 217.
- Жуковская Е.А., Лопушняк Ю.М. // Геология и геофизика. 2008. № 1. С. 24.
- 9. *Еременко Н.М., Муравьева Ю.А.* // Нефтегазовая геология. Теория и практика. 2012. Т. 7. № 3. URL: http://www.ngtp.ru/rub/2/35 2012.pdf.
- 10. Arns C.H., Bauget F., Limaye A., Sakellariou A., Senden T.J., Sheppard A.P., Sok R.M., inczewski W.V.,

Bakke S., Berge L.I., Oren P.-E., Knackstedt M.A. // Societyof Petroleum Engineers Jurnal. V. 10. № 4. 2005. P. 475.

- 11. Кузьмин В.А. Методика и основные результаты изучения пород – коллекторов сложного строения на растровом электронном микроскопе: Автореф. Дис. ... канд. геол.-мин. наук. Москва: МИНХ и ГП им. И.М. Губкина, 1984. 25 с.
- 12. *Kuzmin V.A.* // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2007. V. 1. № 6. P. 687.
- Кузьмин В.А., Соколов В.Н. // VII Симпозиум по растровой электронной микроскопии и аналитическим методам исследования твердых тел (РЭМ-93). Труды симпозиума. Черноголовка: Изд-во Богородский печатник, 1993. С. 45.
- Большаков М.Н., Скибицкая Н.А., Кузьмин В.А. // Поверхность. Рентген, синхротр. и нейтрон. исслед. 2007. № 8. С. 108.
- 15. *Kuzmin V.A., Skibitskaya N.A.* // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2017. V. 11. №. 1. P. 160.
- Fatt I. // Bull. Am. Ass. Petrol. Geol., 1958. V. 42. № 8. P. 1914.
- 17. Скибицкая Н.А, Кузьмин В.А., Судьин В.В. // Материалы XXVI Российской конференции по электронной микроскопии и 4-ой школы молодых ученых "Современные методы электронной и зондовой микроскопии в исследовании наноструктур и наноматериалов" ИПТМ РАН. 2016. С. 636.
- Зайдельсон М.И., Вайнбаум С.Я., Копрова Н.А. и др. // Формирование и нефтегазоносность доманикоидных формаций. М.: Наука, 1990. С. 79.

Electron Microscopic Studies of Carbonate-Siliceous Rocks-Domanikoidy

V. A. Kuzmin, N. A. Skibitskaya

Shows the methods and results of electron-microscopic investigations of the microstructure of carbonate-siliceous rocks-Domanikoidy. For this purpose, both standard methods of studying the surface of the sample chips and the ground surface for microprobe studies and a specially developed method of cathodoluminescent study of the pore space were used. The way of Domanic deposits' catagenetic transformation was studied using electron-microscopic investigation on microlevel. Performed investigations show that subcapillary porosity forms in fractal-cluster fireplaces of secondary (authigenic, idiogenous) carbonateness only. This study proves a fractal-cluster way for probabilistic forecast of fireplaces of secondary carbonateness and oil-saturated pore volumes forming.

Keywords: raster electron microscope, microstructure, carbonate-silicious rocks, Domanic deposit, oil, cathodoluminescence, pore space.