УДК 539.23

ИССЛЕДОВАНИЕ ПРОЦЕССОВ КАРБИДИЗАЦИИ МЕЗОПОРИСТОГО КРЕМНИЯ

© 2019 г. А. С. Гусев¹, Н. И. Каргин¹, С. М. Рындя¹, Г. К. Сафаралиев¹, Н. В. Сигловая¹, А. О. Султанов^{1, *}, А. А. Тимофеев¹

¹Национальный исследовательский ядерный университет "МИФИ", 115409 Москва, Россия

**E-mail: AOSultanov@mephi.ru* Поступила в редакцию 20.01.2018 г. После доработки 25.05.2018 г. Принята к публикации 25.05.2018 г.

Проведено экспериментальное и теоретическое исследование процессов карбидизации мезопористого кремния при формировании буферных слоев для последующей эпитаксии пленок 3*C*-SiC и родственных широкозонных полупроводниковых материалов. Получены аналитические выражения для эффективного коэффициента диффузии и диффузионной длины атомов углерода в пористой системе. Предложенная модель учитывает процессы кнудсеновской диффузии, коагуляцию и зарастание пор в процессе формирования слоя карбида кремния.

Ключевые слова: пористый кремний, электрохимическое травление, диффузия, карбидизация, карбид кремния, эпитаксия из газовой фазы.

DOI: 10.1134/S0207352819030089

введение

Карбид кремния (SiC) занимает особое место в ряду широкозонных полупроводниковых материалов в технологии компонентной базы силовой, СВЧ-электроники и оптоэлектроники нового поколения. Одним из важнейших способов реализации потенциала карбида кремния является применение темплетов SiC/Si в качестве подложечного материала в технологии нитридов III группы [1–4].

Эпитаксия слоев карбида кремния высокого кристаллического совершенства на кремниевых подложках лимитируется высоким уровнем рассогласования параметров решеток (~19.72%) и величин температурных коэффициентов расширения (~8%), что предопределяет возникновение высокой плотности дислокаций (до 10¹⁰ см⁻²). С целью устранения дефектов несоответствия при эпитаксиальном наращивании SiC на кремнии могут применяться буферные слои, к которым предъявляются, на первый взгляд, противоречивые требования. С одной стороны, буферный слой должен обладать высоким кристаллическим совершенством, так как структура растущей пленки во многом определяется состоянием поверхности подложечного материала. С другой стороны, он должен быть достаточно пластичным для эффективной релаксации упругих напряжений, возникающих на гетерогранице [5].

Возможность релаксации упругих напряжений, вызванных несоответствием параметров кристаллических решеток и температурных коэффициентов расширения, позволяет рассматривать пористый кремний как чрезвычайно привлекательный материал для изготовления буферного слоя при гетероэпитаксии SiC на Si [1]. В этой связи исследование карбидизации пористого кремния как начальной стадии процесса выращивания 3С-SiC из газовой фазы является актуальной научнотехнической задачей. Подавляющее большинство работ, посвященных карбидизации пористого кремния, связаны с компьютерным моделированием, в основе которых лежит разделение процесса на простейшие единичные акты атомарных процессов: поверхностную диффузию, адсорбцию и десорбцию [6, 7]. Вместе с тем исследования кинетики диффузионных процессов при карбидизации пористого кремния практически не проводились. Поэтому целью настоящей работы было экспериментальное и теоретическое исследование процессов карбидизации мезопористого кремния как детерминированных диффузионных процессов с учетом полученных экспериментальных и литературных данных.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Слои пористого кремния толщиной 2 мкм получили электрохимическим травлением пластин

Рис. 1. Диаграмма процесса формирования структур SiC/Si и SiC/por-Si.

Рис. 2. РЭМ-изображение поперечного скола структуры SiC/Si (а); профиль интенсивности линии CK_{α} вдоль представленного скола (б); РЭМ-изображение свободной пленки SiC после удаления пористой подложки (в).

Si(100) диаметром 76 мм в системе HF : H_2O : : СН₃СН(ОН)СН₃. Пластины кремния располагались в электрохимической ячейке на керамическом столике (аноде), покрытом медной сеткой. Катод изготавливали в форме спирали из свинцовой проволоки. Для формирования пористого кремния использовали гальваностатический режим анодирования, при котором плотность анодного тока через образец поддерживали постоянной. Структура полученных пористых слоев и кинетика их формирования описаны в [8].

Карбидизацию экспериментальных образцов проводили в CVD-реакторе душевого типа с холодными стенками в системе Н₂-С₂Н₄. Процесс осуществляли в две стадии (рис. 1). На первом этапе происходил нагрев подложки в потоке Н₂. Скорость полъема температуры составляла 30 град/мин. Краткий период (5 мин) поддержания температуры 900°С необходим для стабилизации температуры подложки. На втором этапе в поток H₂ (1000 см³/мин) добавляли этилен (15 см³/мин). Карбилизация проводилась при температуре подложки 1100°С и давлении процесса 5 Торр. Время карбидизации варьировалось в диапазоне 3-15 мин.

Для исследования морфологии и состава экспериментальных образцов использовали растровый электронный микроскоп (РЭМ) высокого разрешения LYRA 3 (Tescan) с рентгеновским микроанализатором. Толшину слоя SiC на монокристаллическом кремнии определяли путем анализа РЭМ-изображений поперечного скола структуры (рис. 2а). Измеренные таким образом толщины соответствуют данным энергодисперсионной рентгеновской спектроскопии. Профиль интенсивности линии СК_а вдоль скола (рис. 26) дает представление о распределении углерода в объеме образца. Как видно из рисунка, углерод сосредоточен в тонком приповерхностном слое пластины, глубина которого практически соответствует толщине пленки (рис. 2а).

Поскольку прямое наблюдение карбидизированного слоя на пористом кремнии было затруднено, для определения его толщины экспериментальные образцы SiC/por-Si подвергли травлению в водном растворе КОН (30%) при температуре 70°C (травление кремния). После полного отделения от подложки и промывки в деионизированной воде свободные пленки карбида кремния располагали на специальных медных сетках (рис. 2в). Толщины пленок SiC, определенные по РЭМ-изображениям, приведены в табл. 1.

Рентгенофазовый анализ экспериментальных образцов проводили на дифрактометре Ultima IV (Rigaku) с использованием Cu K_{α} -излучения ($\lambda =$ = 0.15406 нм) по двухкристальной схеме. Съемку осуществляли в геометрии 20/ю, шаг съемки 0.05° с экспозицией 10 с в каждой точке. Типичные дифрактограммы экспериментальных образцов, по-

Время карбидизации, мин	Толщина выращенной пленки SiC/por-Si, (±6 нм)	Толщина выращенной пленки SiC/Si, (±6 нм)
3	92	23
5	150	35
7	221	-
10	200	40
12	311	32

Таблица 1. Толщины пленок SiC

18

лученных на монокристаллической и пористой подложках, представлены на рис. 3 (кривые *1* и *2* соответственно). На приведенных дифрактограммах индицируются линии при $2\theta = 41.40^{\circ}$, соответствующие отражению от плоскостей (200) 3*C*-SiC [9], и их второй порядок при $2\theta = 89.98^{\circ}$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Слой пористого кремния представляет собой монокристаллический остов. в котором в результате электрохимической обработки образована система пор (рис. 4а, 4б). Такие поры при использовании кремния с кристаллографической ориентацией (100) могут быть сведены к массиву каналов цилиндрической формы, направленных перпендикулярно поверхности пластины (рис. 4в). Иными словами, пористый кремний можно представить в виде протяженных элементов объема, ориентированных параллельно направлению потока углерода [10, 11], и, опираясь на экспериментальные данные, рассчитать эффективный коэффициент диффузии в виде:

$$AD_{9\Phi} = \sum A_i D_i, \qquad (1)$$

где A — площадь поверхности материала, A_i — площадь поперечного сечения *i*-го элемента объема, D_i — коэффициент диффузии в *i*-м элементе объема. Таким образом, диффузия углерода в пористом кремнии может идти как через поры, так и через "сплошной" материал. Эффективный коэффициент диффузии в этом случае описывается уравнением:

$$D_{\rm adb} = aD_{\rm nop} + (1-a)D_C, \tag{2}$$

где коэффициент *а* – доля площади открытых пор на планарной поверхности образца; $D_{\text{пор}}$ – коэффициент диффузии в порах, $D_{\text{C}} = (2.9 \pm 0.5) \times 10^{-18} \text{ м}^2/\text{с} -$ коэффициент диффузии углерода в SiC. Анализ экспериментальных данных (рис. 5) приводит к линейной зависимости параметра *a* от времени карбидизации:

$$a = a_0 - \alpha t, \tag{3}$$

где $a_0 = 0.045 -$ доля площади открытых пор на поверхности при t = 0, $\alpha = 0.0000427$ с⁻¹.

Критерием, определяющим механизм диффузии в порах, является число Кнудсена:

$$K_n = \frac{\lambda}{d},\tag{4}$$

где λ — средняя длина свободного пробега молекулы [м]; *d* — диаметр поры [м]. При *d* = 13 нм и $K_n = 2.15 \times 10^5 \ge 1$ (рис. 4г) диффузия через поры идет по механизму Кнудсена [13, 14]:

$$D_{\rm KH} = \frac{2}{3} \overline{r}_{\rm m} \sqrt{\frac{8RT}{\pi M}} = V \overline{r}_{\rm m} \left(t \right), \tag{5}$$

Рис. 3. Рентгеновские дифракционные спектры образцов, полученных на монокристаллической кремниевой подложке (*1*) и на подложке с пористым слоем (*2*), время карбидизации 15 мин.

Рис. 4. РЭМ-изображение слоя por-Si: а – планарной поверхности; б – профиля. Схематическое изображение: в – пористой структуры с идеальной цилиндрической формой пор; г – механизмов диффузии в микропорах: $K_n \ll 1$ – молекулярного (*I*); $K_n \gg 1$ – пре-имущественно диффузии Кнудсена (*2*).

Рис. 5. Экспериментальная зависимость доли площади открытых пор *a* от времени карбидизации *t* и ее аппроксимация. Значения параметра *a* получены с помощью программы обработки и анализа РЭМ-изображений планарной поверхности [12].

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 4 2019

Рис. 6. Экспериментальная зависимость среднеарифметического радиуса пор $\overline{r_{\Pi}}$ от времени карбидизации (точки) и их аппроксимация (кривая). Значения $\overline{r_{\Pi}}$ получены с помощью программы обработки и анализа РЭМ-изображений планарной поверхности, $r_0 = 6.5$ нм.

где $D_{\rm KH}$ — коэффициент кнудсеновской диффузии; $\overline{r}_{\rm n}$ — среднеарифметический радиус пор; R — универсальная газовая постоянная; T — температура процесса [K]; M — молярная масса вещества. Параметр V [нм/с] — средняя скорость атомов углерода в порах цилиндрической формы. При кнудсеновской диффузии атомы углерода, достигая стенок пор, адсорбируются на них и после десорбции движутся в произвольном направлении. Время задержки на стенках пор снижает плотность диффузионного потока. В этом случае роль межатомных соударений незначительна, и атомы углерода движутся независимо друг от друга, что стирает различия между течением газа как целого и диффузией.

Выражение (5) справедливо при диффузии через поры с идеально цилиндрической геометрией стенок. Однако необходимо учесть, что в пористом кремнии перенос частиц осложнен рядом факторов – извилистостью пор, пересечением и их разветвлением, переменным сечением. Для учета сложной морфологии пор вводится эмпирический коэффициент проницаемости П:

$$D_{\text{nop}} = \prod D_{\text{KH}}.$$
 (6)

Кроме того, в процессе карбидизации на пористую систему одновременно воздействуют такие факторы, как коагуляция и зарастание пор [15]. Экспериментальная зависимость среднеарифметического радиуса пор от времени (рис. 6) может быть аппроксимирована выражением вида:

$$\overline{r_{\Pi}}(t) = -\omega t^2 + \upsilon t + r_0, \qquad (7)$$

где $\omega = 0.00029855$ нм/с² (фактор зарастания пор) и $\upsilon = 0.31$ нм/с (фактор коагуляции пор). Параметр $r_0 = 6.5$ нм — среднеарифметический радиус пор при t = 0.

Рис. 7. Зависимости $D_{\ni \Phi}(t)$ (а) и $d_{C}^{2}(t)$ (б) с учетом процессов коагуляции пор.

Учитывая выражения (3)–(7), получим эффективный коэффициент диффузии:

$$D_{9\phi} = D_{9\phi0} + [a_0 R \upsilon - \alpha (Rr_0 - D_C)]t - - R(a_0 \omega + \alpha \upsilon)t^2 + \alpha R \omega t^3,$$
(8)

где $R = \Pi V$ – средняя скорость атомов углерода в порах сложной морфологии; $D_{3\phi0} = a_0 R r_0 + (1 - a_0) D_{\rm C} - эффективный коэффициент диффузии атомов углерода в момент времени <math>t = 0$ при отсутствии эффектов перекрытия и коагуляции пор.

Зависимости $D_{3\phi}(t)$ и $d_{C}^{2}(t)$ представлены на рис. 7. Увеличение коэффициента диффузии в ходе первой стадии карбидизации, очевидно, связано с преобладанием процесса коагуляциии пор (увеличение среднего радиуса пор усиливает вклад кнудсеновской диффузии в общий процесс массопереноса). При переходе через максимум начинает преобладать фактор зарастания пор формирующимся слоем карбида кремния. Областью определения функции $D_{3\phi}(t)$ является интервал времени [0; a_0/α] (рис. 7а). При выходе из указанного интервала начинает действовать модель Дила–Гроува [16].

Интегрирование уравнения (8) по времени дает выражение для квадрата диффузионной длины атомов углерода (толщины карбидизированного слоя) – d_c^2 :

$$d_{\rm C}^{2} = D_{\rm sp0}t + \frac{1}{2} [Ra_{\rm 0}\upsilon - \alpha (Rr_{\rm 0} - D_{\rm C})]t^{2} - \frac{1}{3}R(a_{\rm 0}\omega + \alpha\upsilon)t^{3} + \frac{1}{4}\alpha R\omega t^{4}.$$
(9)

выводы

В работе проведено экспериментальное и теоретическое исследование процессов карбидизации мезопористого кремния при формировании буферных слоев для последующей эпитаксии пленок 3*C*-SiC и родственных широкозонных полупроводниковых материалов. Предлагаемый подход к описанию кинетики карбидизации учитывает кнудсеновскую диффузию, а также коагуляцию и зарастание пор в процессе роста слоя SiC.

Получено аналитическое выражение для эффективного коэффициента диффузии в системе 3*C*-SiC/por-Si. Установлено взаимодействие факторов коагуляции и перекрытия пор при карбидизации пористого кремния и их влияние на процесс диффузии атомов углерода в пористой системе.

Показано, что предложенная модель карбидизации пористого кремния удовлетворительно описывает рассматриваемые процессы и может быть использована для решения широкого класса аналогичных задач.

БЛАГОДАРНОСТИ

Работа выполнена с использованием оборудования Центра коллективного пользования НИЯУ МИФИ "Гетероструктурная СВЧ-электроника и физика широкозонных полупроводников".

СПИСОК ЛИТЕРАТУРЫ

- Zielinski M., Portail M., Roy S. et al. // Mater. Sci. Engin. 2009. V. 165. P. 9. doi 10.1016/j.mseb.2009.02.019
- Cordier Y., Portail M., Chenot S., Tottereau O. et al. // J. Crystal Growth. 2008. V. 310. P. 4417. doi 10.1016/j.jcrysgro.2008.07.063
- Zhu Y.H., Zhang J.C., Chen Z.T., Egawa T. // J. Appl. Phys. 2009. V. 106. P. 124506. doi 10.1063/1.3273311
- 4. *Davis R.F., Gehrke T., Linthicum K.J. et al.* // J. Crystal Growth. 2001. V. 225. P. 134.
- Cimalla V., Pezoldt J., Ambacher O. // J. Phys. D. 2007. V. 40. P. 6386.
- Kersulis S., Mitin V. // Semicond. Sci. Technol. 1995.
 V. 10. P. 653. doi 10.1088/0268-1242/10/5/014
- 7. *Maksym P.A.* // Semicond. Sci. Technol. 1998. № 3. P. 594.
- Kargin N.I., Sultanov A.O., Bondarenko A.V. et al. // Russ. Microelectronics. 2014. V. 43. № 8. P. 531. doi 10.1134/S106373971408006X
- 9. *Suzie H*. Growth of 3*C*-SiC via a Hot-Wall CVD Reactor. Graduate Theses and Dissertations. 2006.
- 10. *Galinsky M., Senechal U. //* Modelling and Simulation in Engineering. 2014. V. 2014. P. 109036.
- 11. Crank J. // The Mathematics of Diffusion. Oxford University Press, 1975. P. 266.
- 12. Elia P., Nativ-Roth E., Zeiri Y., Porat Z. // Micropor. Mesopor. Mater. 2016. V. 225. P. 465.
- Albo S.E., Broadbelt L.J., Snurr R.Q. // AIChE J. 2006.
 V. 52. № 11. P. 3679. doi 10.1002/aic.10998
- Roque-Malherbe R.M.A. Adsorption and Diffusion in Nanoporous Materials. Boca Raton: CRC Press, 2007. 288 p.
- Nagornov Y.S. // J. Exp. Theor. Phys. 2015. V. 121. № 6. P. 1042.
- Deal B.E., Grove A.S. // J. Appl. Phys. 1965. V. 36. № 12. P. 3770.

Study of Mesoporous Silicon Carbonization Processes

A. S. Gusev, N. I. Kargin, S. M. Ryndya, G. K. Safaraliev, N. V. Siglovaya, A. O. Sultanov, A. A. Timofeev

Experimental and theoretical studies of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and those of related wide-band-gap semiconductors are performed. Analytic expressions for the effective diffusion factor and diffusion length of carbon atoms in a porous system are obtained. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.

Keywords: porous silicon, electrochemical etching, diffusion, carbidization, silicon carbide, vapor-phase epitaxy.