УЛК 573.2.539.1.87

МЕССБАУЭРОВСКИЕ И МАГНИТНЫЕ ИССЛЕДОВАНИЯ ЛЕГИРОВАННОГО МАНГАНИТА ЛАНТАНА $\text{La}_{1-x}\text{Ca}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_3$ ($x=0.05,\ 0.10,\ 0.20$): II. СТЕХИОМЕТРИЧЕСКИЙ СОСТАВ, ФАЗОВОЕ РАССЛОЕНИЕ

© 2019 г. Д. И. Пчелина¹, И. Ю. Медвецкая¹, Н. И. Чистякова¹, В. С. Русаков¹, В. Д. Седых², *, Ю. А. Алехина¹

¹Московский государственный университет имени М.В. Ломоносова, 119991 Москва, Россия

²Институт физики твердого тела РАН, 142432 Черноголовка, Московская область, Россия

*E-mail: sedykh@issp.ac.ru

Поступила в редакцию 14.08.2018 г.
После доработки 23.09.2018 г.
Принята к публикации 23.09.2018 г.

Проведены мессбауэровские, рентгеновские и магнитные исследования фазового расслоения в легированном кальцием манганите лантана $\text{La}_{1-x}\text{Ca}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_3$ ($x=0.05,\,0.10,\,0.20$) стехиометрического состава в широком диапазоне температур. Структурное фазовое расслоение представляет собой сосуществование трех ромбических фаз (I, II и II*), описываемых одной пространственной группой *Pnma* и характеризующихся различными типами магнитного упорядочения при низких температурах. При понижении температуры фаза I переходит в ферромагнитное состояние, а фазы II и II* — в антиферромагнитное. При температуре 80 К образцы стехиометрического состава демонстрируют релаксационное поведение, которое может быть обусловлено наличием малоразмерных магнитных кластеров. С увеличением содержания Са растет относительное содержание ферромагнитной фазы и возрастает температура ее магнитного перехода.

Ключевые слова: легированные манганиты лантана, фазовое расслоение, мессбауэровская спектроскопия, магнитные свойства, суперпарамагнетизм.

DOI: 10.1134/S0207352819060106

ВВЕДЕНИЕ

Сильный интерес к легированным манганитам лантана обусловлен тем, что обнаружена тенденция к образованию в них фазово-расслоенных состояний, т.е. к сосуществованию нескольких структурных модификаций, сильно влияющему на их физические свойства [1]. Наличие фазового расслоения может играть существенную роль в формировании необычных физических свойств в оксидах марганца $\text{La}_{1-x}Me_x\text{MnO}_3$ (где Me = Ca, Sr, Ba). Обнаружено, что при $x \sim 0.1$ в этих оксидах реализуется переход от антиферромагнитного порядка ($T_N = 139.5$ K) к ферромагнитному ($T_C = 140$ K) [2].

При температурах ниже комнатной в легированных манганитах лантана могут происходить как магнитные, так и структурные превращения. При понижении температуры в этих материалах обнаружены мартенситные превращения (бездиффузионные структурные переходы) первого

рода [3-5] между высокотемпературной фазой и низкотемпературной фазой с пониженной симметрией [6]. Превращение идет через коллективное смещение атомов. Перестройка сопровождается самоорганизацией фазового расслоения в широкой температурной области, когда высокои низкотемпературные фазы, даже относящиеся к разным пространственным группам, могут сосуществовать. Фазовое расслоение было обнаружено и исследовано в манганите лантана, легированном 5% Ва [4]. При большом содержании легирующего элемента (20–30%) синтезированное соединение имеет стехиометрический состав (когда уже нет межузельного кислорода), и в нем не наблюдается фазовое расслоение. Такие соединения достаточно хорошо изучены в литературе. Соединения стехиометрического состава с малым содержанием легирующего элемента практически не изучены.

В настоящей работе проведено комплексное исследование фазового расслоения в легированном

Таблица 1. Параметры решетки полученных фаз в образцах $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ стехиометрического состава при разном содержании Ca

х	a, Å	b, Å	c, Å	<i>V</i> , Å ³	Фаза
0.00	5.725(2)	7.703(3)	5.537(2)	244.5(3)	II
0.05	5.681(2)	7.718(3)	5.534(2)	242.9(3)	II*
0.10	5.654	7.721	5.530	241.4	II* (75%)
	5.543	7.783	5.530	238.6	I (25%)
0.20	5.638	7.669	5.484		II* (15%)
	5.521	7.771	5.516	236.7	I (85%)

Примечание. Для сравнения в таблице также приведены данные для базисного соединения $LaMnO_{3+\delta}$ с добавкой 1.5% изотопа 57 Fe [8].

кальцием манганите лантана $\text{La}_{1-x}\text{Ca}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_3$ ($x=0.05,\,0.10,\,0.20$) стехиометрического состава в широкой температурной области с использованием мессбауэровской спектроскопии, рентгеноструктурного анализа и магнитных измерений. Стехиометрический состав получен отжигом синтезированных образцов в вакууме, что позволило расширить область содержания легирующего элемента в сторону его уменьшения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Поликристаллические образцы получены методом золь-гель из нитратов лантана и кальция, водного раствора нитрата изотопа ⁵⁷Fe и ацетата марганца. Все соли предварительно анализировали на содержание основных элементов, затем растворяли в стехиометрическом соотношении в водном растворе (2 ат. %) поливинилового спирта с добавлением лимонной кислоты в избытке до полного растворения образовавшихся осадков. Поскольку ионные радиусы Mn³+ и Fe³+ близки друг к другу, такая замена не вносит заметных структурных искажений.

Полученный раствор осторожно выпаривали при температуре $150{\text -}180~{\rm K}$ до разложения органических компонентов смеси. Предварительный отжиг проводили при температуре $800^{\circ}{\rm C}$. Основной синтез осуществляли на воздухе при $1100^{\circ}{\rm C}$ в течение $10{\text -}20$ ч. Для получения стехиометрического состава образцы ${\rm La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3}$ отжигали при $T=650^{\circ}{\rm C}$ в вакууме ($10^{-3}~{\rm Topp}$). Соотношение валентных состояний марганца ${\rm Mn^{3+}/Mn^{4+}}$ определяли методом йодометрического титрования.

Для аттестации порошковых образцов использовали дифрактометр Siemens D-500 ($CuK_{\alpha 1}$ - и CoK_{α} -излучение). Расчет параметров решетки выполнен по программе PowderCell (Werner Kraus & Gert Nolze, BAM Berlin).

Мессбауэровские исследования проведены с использованием источника ⁵⁷Со в матрице Rh на спектрометре MS-1104Em при комнатной температуре и 80 К. Спектры обрабатывали с помощью модельной расшифровки парциальных спектров по программе SpectrRelax [7]. В работе также использовали модель Гамильтона [7], в которой предполагается комбинированное магнитное дипольное и электрическое квадрупольное взаимодействие.

Измерения намагниченности выполнены на вибрационном магнитометре фирмы Lake Shore при температуре от 100 до 300 К в полях до 16 кЭ. Установка позволяет проводить измерения в широком интервале температур и магнитных полей с высокой степенью их стабилизации. Температурную зависимость намагниченности во внешнем магнитном поле 100 Э в режимах ZFC/FC (охлаждение в нулевом магнитном поле (ZFC — Zero-Field Cooling) и в ненулевом поле (FC — Field Cooling)) исследовали в диапазоне температур 100—300 К.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Рентгеноструктурные данные. Согласно данным йодометрического титрования [8] образцы после вакуумного отжига имеют стехиометрический состав $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$. Рентгеноструктурные данные показывают, что в образцах формируется смесь двух ромбических фаз II* и I (пр. гр. *Pnma*) при x = 0.10, 0.20 и фазы II* (пр. гр. *Pnma*) при x = 0.05 [8]. Параметры решетки полученных фаз при разном содержании Са приведены в табл. 1 [8]. Поскольку параметры элементарных ячеек, соответствующих фазам ІІ* и I в смеси фаз указанных составов, отличаются незначительно, погрешность в определении относительного вклада каждой фазы достаточно высокая. В исследуемых соединениях с ростом содержания Са параметры решетки, особенно параметр a, и объем элементарной ячейки уменьшаются (табл. 1) из-за большой разницы в ионных радиусах La^{3+} (1.13 Å) и Ca^{2+} (0.99 Å) (по Полингу [9]).

Мессбауэровские исследования. Мессбауэровские спектры легированных манганитов лантана ${\rm La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3}$ ($x=0.05,\,0.10,\,0.20$) стехиометрического состава предварительно были измерены при комнатной температуре в широком диапазоне скоростей ($\pm 11\,$ мм/с). Спектры образцов представляли собой сильно уширенные квадрупольные дублеты, секстеты в спектрах отсутствовали.

Для более тщательного исследования были получены спектры образцов в узком диапазоне скоростей (рис. 1), которые хорошо совпадают с данными [8, 10]. Каждый спектр описан комбинацией трех квадрупольных дублетов, параметры

Рис. 1. Мессбауэровские спектры, измеренные при комнатной температуре, манганитов лантана стехиометрического состава, легированных Са с концентрацией x: a - 0.05; 6 - 0.10; b - 0.20.

которых представлены в табл. 2. Полученные значения изомерных сдвигов мессбауэровской линии для всех парциальных спектров соответствуют трехвалентным атомам железа в высокоспиновом состоянии.

В [11] было показано, что в манганите лантана, легированном двухвалентным элементом, с ростом содержания легирующего элемента растет количество ионов Mn⁴⁺, а количество межузельного кислорода уменьшается. Это наблюдается по динамике изменения величины квадрупольного расщепления, отвечающей за искажение локальной симметрии окружения.

При исследовании базового соединения $LaMnO_{3+\delta}$ с 1.5% Fe, замещающего ионы Mn, в

[10] было показано, что фазе II, в которой присутствуют только ян-теллеровские ионы Mn³⁺, соответствует месбауэровский спектр с максимальным квадрупольным расщеплением, т.е. с максимальным искажением локального окружения ионов железа, когда решетка сильно искажена за счет эффекта Яна—Теллера. В фазе I часть ионов Mn³⁺ переходит в Mn⁴⁺ (например, при окислении), орбитальный порядок, связанный с эффектом Яна—Теллера, разрушается, повышается симметрия решетки. Мессбауэровский спектр с минимальной величиной квадрупольного расщепления соответствует этой фазе. При переходе из фазы II в I появляется промежуточная фаза II*

Таблица 2. Параметры парциальных спектров ядер 57 Fe в La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O₃ (x = 0.05, 0.10, 0.20) стехиометрического состава при комнатной температуре

№ парциального	Параметры парциального	x		
спектра	спектра спектра		0.10	0.20
	δ ₁ , мм/с	0.379 ± 0.002	0.360 ± 0.003	0.370 ± 0.001
1	ε_1 , MM/c	0.169 ± 0.005	0.174 ± 0.005	0.121 ± 0.002
(Фаза I)	Γ_1 , mm/c	0.290 ± 0.002	0.334 ± 0.005	0.348 ± 0.007
	I,%	9.0 ± 0.4	20.3 ± 1.1	69.3 ± 1.7
2 (Фаза II*)	δ_2 , mm/c	0.379 ± 0.002	0.382 ± 0.001	0.369 ± 0.002
	ε_2 , mm/c	0.391 ± 0.002	0.340 ± 0.004	0.283 ± 0.005
	Γ_2 , мм/с	0.290 ± 0.002	0.334 ± 0.005	0.348 ± 0.007
	I, %	34.5 ± 0.5	50.4 ± 0.9	26.2 ± 1.3
3 (Фаза II)	δ_3 , mm/c	0.377 ± 0.001	0.375 ± 0.002	0.357 ± 0.009
	ε_3 , MM/C	0.585 ± 0.001	0.525 ± 0.004	0.533 ± 0.013
	Γ_3 , mm/c	0.290 ± 0.002	0.334 ± 0.005	0.348 ± 0.007
	I,%	56.5 ± 0.5	29.3 ± 0.8	4.4 ± 0.5

Примечание. δ — сдвиг мессбауэровской линии, ϵ — квадрупольное смещение, Γ — ширина мессбауэровской линии, I — относительная интенсивность парциального спектра.

Рис. 2. Мессбауэровские спектры, измеренные при 80 K, манганитов лантана стехиометрического состава, легированных Са с концентрацией x: a-0.05; 6-0.10; b-0.20.

бауэровский спектр с промежуточным квадрупольным смещением.

По аналогии с [10] парциальный спектр 3 (табл. 2) с наибольшей величиной квадрупольного смещения соответствует ромбической фазе II. Парциальный спектр 1 с наименьшим значением квадрупольного смещения соответствует фазе I, парциальный спектр 2 — промежуточной фазе II*. С ростом содержания Са наблюдается увеличение ширины мессбуэровской линии Г, вызванное локальной неоднородностью в окружении атомов железа.

Для подтверждения правильности интерпретации полученных экспериментальных данных с помощью программы Lattice [12] проведен расчет вкладов в компоненты тензора градиента электрического поля (ГЭП) $\{V_{ij}\}$ точечных зарядов атомов кислорода V_{ij}^{mon} :

$$V_{ZZ} = (1 - \gamma_{\infty}) V_{ij}^{\text{mon}},$$

где $\gamma_{\infty}=-9.14$ — фактор антиэкранирования Штернхеймера [13]. Для расчета использовали формальные заряды атомов: $Z_{\rm O}=-2$, $Z_{\rm La}=+3$, $Z_{\rm Ca}=+2$, $Z_{\rm Mn}=+3$. Данные о положениях атомов La_{0.8}Ca_{0.2}MnO₃ были выбраны согласно [14].

Величину квадрупольного смещения резонансных линий в спектре оценивали по формуле:

$$\varepsilon_{\rm calc} = \frac{e^2 Q V_{zz}}{4} \left(1 + \frac{\eta^2}{3} \right)^{1/2},$$

где e — заряд электрона, Q = 0.21 барн — квадрупольный момент ядра атома ⁵⁷Fe в возбужденном состоянии [13], V_{zz} — главная компонента и η параметр асимметрии тензора ГЭП. В результате расчета были получены величины квадрупольного смещения для фаз I и II: +0.096 и +0.539 соответственно. Данные расчетов хорошо коррелируют с полученными экспериментальными результатами (табл. 2), а также со значениями для образцов нестехиометрического состава [15]. Тензор ГЭП и оценка величины квадрупольного смещения в выбранной модели показывает, что величина смещения положительна и полуколичественно совпадает для образцов. Результаты расчетов показывают также, что различие квадрупольных смещений для фаз I и II определяется в первую очередь атомами кислорода, образующими искаженные в различной степени октаэдры.

Таким образом, в легированных образцах $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ стехиометрического состава при комнатной температуре формируется фазово-расслоенная система, состоящая из трех ромбических фаз, описываемых одной пространственной группой *Pnma*. При увеличении концентрации кальция в мессбауэровских спектрах изменяется соотношение парциальных спектров, т.е. изменяется соотношение фаз в образцах.

Для данных образцов были также проведены мессбауэровские измерения при температуре 80 К. Соответствующие мессбауэровские спектры приведены на рис. 2. Они представляют собой секстеты с уширенными линиями и имеют характерный релаксационный вид.

Обработку спектров всех образцов проводили путем одновременного восстановления распределения сверхтонкого магнитного поля в модели Гамильтона (парциальный спектр 3) и модельной расшифровки с использованием двух релаксационных спектров (парциальных спектров 1 и 2) в модели многоуровневой суперпарамагнитной релаксации [16]. Модель Гамильтона была использована для обработки спектра ромбической фазы II с наибольшим квадрупольным смещением при комнатной температуре (табл. 2), характеризующим наибольшее искажение локальной симметрии, и наименьшей напряженностью сверхтонкого магнитного поля (табл. 3). Необходимость использования этой модели вызвана достаточно большой энергией квадрупольного взаимодействия по сравнению с энергией магнитного взаимодействия, когда наблюдается нарушение эквидистантности в расположении компонент спектра по шкале доплеровских скоростей. Парциальный спектр 1 соответствует ромбической фазе I с наименьшим квадрупольным смещением при комнатной температуре (и наибольшей напряженностью сверхтонкого магнитного поля). Парциальный спектр 2 с промежуточным значением квадрупольного смещения при комнатной температуре (табл. 3) соответствует фазе II* (табл. 2).

С ростом содержания кальция в образцах $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ изменяются относительные вклады парциальных спектров при 80 К (табл. 3). Обработка спектра образца с x=0.05 показала, что фаза II превалирует, объем фазы I минимален. В спектре образца с x=0.20, измеренного при 80 К, интенсивность парциального спектра 3, соответствующего ромбической фазе II, оказалась равной нулю. Это согласуется с данными, полученными при комнатной температуре (табл. 2), где в спектре образца с x=0.20 превалирует фаза I, а фаза II почти подавлена (интенсивность соответствующего дублета $4.4\pm0.5\%$).

Из литературы известно [14], что при низких температурах фаза I переходит в ферромагнитное состояние, а фаза II – в антиферромагнитное. Сверхтонкие магнитные поля и вклады каждого парциального спектра (каждой фазы) для образцов $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ (x = 0.05, 0.10, 0.20) стехиометрического состава, измеренных при 80 К, приведены в табл. 3. Исходя из полученных результатов и опираясь на литературные данные, можно считать, что при низких температурах фаза I (парциальный спектр 1) переходит в ферромагнитное состояние и имеет максимальную напряженность сверхтонкого магнитного поля. Фаза II (парциальный спектр 3) переходит в антиферромагнитное состояние и имеет минимальную напряженность сверхтонкого магнитного поля (табл. 3). Поскольку сверхтонкие поля парциальных спектров 2 и 3 близки, то можно предположить, что фаза ІІ* (парциальный спектр 2) при низких температурах также переходит в антиферромагнитное состояние.

Релаксационный характер низкотемпературных спектров фаз I и II* может быть связан с наличием небольших магнитных кластеров разных размеров, которые ведут себя подобно суперпарамагнитным частицам. Существование аналогичных магнитных кластеров в системах легированных манганитов лантана было выявлено в [17—19].

В модели многоуровневой суперпарамагнитной релаксации был рассчитан варьируемый параметр α (как в [15]), равный отношению энергии магнитной анизотропии к энергии тепловых колебаний, который составляет \sim 4 для фазы I и \sim 1 для фазы II*. Если предположить, что константы магнитной анизотропии для этих фаз существенно не различаются, можно утверждать, что размеры областей магнитных кластеров отличаются в

Таблица 3. Сверхтонкое магнитное поле H_n и вклад каждого парциального спектра (каждой фазы) Iдля образцов стехиометрического состава $\mathrm{La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3}$ ($x=0.05,\,0.10,\,0.20$) при 80 K

х		0.05	0.10	0.20
1	H_n , к Θ	452 ± 7	483 – fix	482.8 ± 0.6
(Фаза I)	<i>I</i> , %	6.9 ± 1.1	10.1 ± 1.2	76.4 ± 2.3
2	H_n , кЭ	373 – fix	373 – fix	373 ± 12
(Фаза II*)	<i>I</i> , %	26.0 ± 0.2	40.0 ± 0.6	23.6 ± 2.4
3 (Фаза II)	H_n^{\max} , кЭ	356.4 ± 0.4	353 ± 2	_
	<i>I</i> , %	67.1 ± 0.1	49.9 ± 1.1	

Примечание. fix – фиксированное значение.

четыре раза. По предварительным оценкам скорость релаксации для фазы II* заметно больше, чем для фазы I.

Таким образом, мессбауэровские исследования легированных кальцием манганитов лантана стехиометрического состава показали, что при низких температурах каждая ромбическая фаза переходит в соответствующее магнитное состояние.

Магнитные исследования. Для подтверждения результатов, полученных методом мессбауэровской спектроскопии, дополнительно были проведены магнитные исследования образцов $\text{La}_{1-x}\text{Ca}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_3$ ($x=0.05,\ 0.10,\ 0.20$) стехиометрического состава. Для каждого из образцов были измерены петли гистерезиса при температуре $100\ \text{K}$ в полях до $16\ \text{k}$ э и температурные зависимости намагниченности во внешнем магнитном поле $100\ \text{Э}$ в режимах ZFC/FC в диапазоне температур от $100\ \text{до}\ 300\ \text{K}$ в поле $100\ \text{Э}$.

Петли гистерезиса всех образцов представлены на рис. 3. Такой вид петель характерен для наноструктурных магнитных материалов, содержащих магнитомягкую ферромагнитную и высокоанизотропную антиферромагнитную фазу. На вставке рис. 3 в крупном масштабе показан фрагмент петли для образца с x = 0.05, на которой наблюдается заметное смещение петли гистерезиса перемагничивания относительно оси полей. Такое смещение петли по полю указывает на наличие двухфазного магнитного (ферромагнитного—антиферромагнитного) состояния [20].

Для образцов $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ стехиометрического состава характерно наличие магнитной анизотропии, которая приводит к появлению заметной коэрцитивной силы. С уменьшением содержания Са коэрцитивная сила H_c растет (табл. 4). Высокое коэрцитивное поле образца с x=0.05 характерно для магнитотвердых материалов ($H_c=1235$ Э), что подтверждает его антиферромагнитное поведение. Образцы с x=0.10 и 0.20 являются магнитомягкими (табл. 4).

Рис. 3. Петли гистерезиса, измеренные при 100 К, для легированных кальцием манганитов лантана стехиометрического состава с x: 0.05 (I); 0.10 (2); 0.20 (3). На вставке показан в крупном масштабе фрагмент петли для образца с x = 0.05.

Кроме того, с ростом концентрации кальция наблюдается увеличение намагниченности насыщения (табл. 4), что связано с уменьшением относительного содержания фаз II и II*, обладающих антиферромагнитным упорядочением, и преобладанием фазы I с ферромагнитным упорядочением. Образец с x=0.05 проявляет антиферромагнитное поведение (относительное содержание фазы I с ферромагнитным упорядочением при комнатной температуре составляет по мессбауэровским данным $9.0 \pm 0.4\%$) в отличие от образца с x=0.20, который демонстрирует ферромагнитное поведение (относительное содержание фазы I составляет $69.3 \pm 1.7\%$).

Нужно отметить, что в случае аналогичных образцов нестехиометрического состава [15] с ростом концентрации легирующего элемента наблюдалось увеличение коэрцитивной силы от 44 до 71 Э. Образцы нестехиометрического состава характеризуются большими значениями намагниченности насыщения, что обусловлено ферромагнитным упорядочением магнитных моментов в этих образцах.

Измерения температурной зависимости намагниченности насыщения во внешнем магнит-

Таблица 4. Коэрцитивная сила H_c , намагниченность насыщения I_S при температуре 100 К в поле 16 кЭ, температура блокировки T_b для $\text{La}_{1-x}\text{Ca}_x\text{Mn}_{0.98}\text{Fe}_{0.02}\text{O}_3$ ($x=0.05,\,0.10,\,0.20$) стехиометрического состава

x	<i>H</i> _c , Э	I_S , ед. СГС/г	$T_{\rm b}$, K
0.05	1235 ± 12	1.6 ± 0.5	140 ± 2
0.10	255 ± 9	8.8 ± 1.0	160 ± 2
0.20	128 ± 5	39 ± 4	170 ± 3

Рис. 4. Температурные зависимости намагниченности (ZFC/FC-измерения) в поле $100 \, \Im$ для легированных кальцием манганитов лантана стехиометрического состава с x: $0.05 \, (I)$; $0.10 \, (2)$; $0.20 \, (3)$.

ном поле 100 Э в режимах ZFC/FC проведены в диапазоне температур 100—300 К (рис. 4). Для всех образцов характерна расходимость зависимостей ZFC/FC. Это означает, что данные образцы демонстрируют суперпарамагнитное поведение, что также подтверждается данными мессбауэровской спектроскопии. С ростом содержания Са температура блокировки возрастает (табл. 4).

Таким образом, из полученных данных следует, что при низких температурах ромбическая фаза переходит в ферромагнитное состояние, а фазы II^* , II- в антиферромагнитное. С ростом концентрации кальция возрастает относительное содержание фазы с ферромагнитным упорядочением.

ЗАКЛЮЧЕНИЕ

Проведенные мессбауэровские и магнитные исследования легированных манганитов лантана $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ ($x=0.05,\,0.10,\,0.20$) стехиометрического состава показали следующее. В исследуемом оксиде после удаления межузельного кислорода в результате вакуумного отжига происходит структурное фазовое расслоение — образуются три ромбические фазы (I, II и II*), описываемые одной пр. гр. *Рпта* и характеризующиеся различными типами магнитного упорядочения при низких температурах. При температуре 80 K образцы стехиометрического состава демонстри-

руют релаксационное поведение, которое может быть обусловлено наличием малоразмерных магнитных кластеров. Проведенные оценки показывают, что фаза I характеризуется большим размером области магнитных кластеров, чем фаза ІІ*, и, соответственно, меньшим значением скорости релаксации. Магнитные измерения указывают на наличие при низких температурах двухфазного ферромагнитного—антиферромагнитного состояния, что подтверждается мессбауэровскими данными для 80 К. С ростом содержания Са увеличивается относительное содержание ферромагнитной фазы, возрастает намагниченность и температура блокировки. Магнитные исследования подтверждают сосуществование нескольких структурных фаз в системе, характеризующихся различными типами магнитного упорядочения.

Таким образом, расширена область концентраций в сторону уменьшения количества легирующего элемента в образцах стехиометрического состава. Это позволило изучить динамику изменения структуры и магнитных свойств в зависимости от содержания легирующего элемента, выявить в образцах стехиометрического состава при малом количестве легирующего элемента конкурирующие процессы — влияние эффекта Яна—Теллера (орбитальный порядок) и появление ионов Mn⁴⁺ (разрушение орбитального порядка).

БЛАГОДАРНОСТИ

Авторы выражают благодарность д. ф.-м. н. Г.Е. Абросимовой за помощь при обработке рентгеновских данных, профессору Н.С. Перову за обсуждение результатов магнитных измерений.

СПИСОК ЛИТЕРАТУРЫ

1. *Локтев В.М.*, *Погорелов Ю.Г.* // Физика низких температур. 2000. Т. 26. № 3. С. 231.

- Moussa F., Hennion M., Biotteau G. et al. // Phys. Rev. B. 1999, V. 60, P. 12299.
- 3. Polishchuk D.M., Tovstolytkin A.I., Fertman E. et al. // J. Magn. Magn. Mater. 2012. V. 324. № 24. P. 4225.
- 4. Дубинин С.Ф., Королев А.В., Теплоухов С.Г. и др. // ФТТ. 2008. Т. 50. № 1. С. 69.
- 5. *Arkhipov V.E., Bebenin N.G., Dyakina V.P. et al.* // Phys. Rev. B. 2000. V. 61. № 17. P. 11229.
- 6. Beznosov A.B., Fertman E.L., Desnenko V.A. et al. // Fiz. Nizk. Temp. 2009. V. 35. № 6. P. 571.
- 7. Matsnev M.E., Rusakov V.S. // AIP Conf. Proceed. 2012. V. 1489. P. 178.
- 8. Sedykh V.D. // AIP Conf. Proceed. 2014. V. 1622. P. 72.
- 9. *Коттон Ф., Уилкинсон Дж.* Современная неорганическая химия. М.: Мир, 1969. 224 с.
- 10. Седых В.Д., Русаков В.С., Зверькова И.И. и др. // ФТТ. 2011. Т. 53. № 7. С. 1367.
- 11. Sedykh V., Abrosomova G.E., Shekhtman V.Sh. et al. // Physica C. 2005. V. 418. № 3–4. P. 144.
- 12. *Русаков В.С., Гапочка А.М.* Св. гос. регистрации программы для ЭВМ (Lattice) № 2016661909 от 25.10.2016 г.
- 13. *Gutlich P., Bill E., Trautwein A.X.* Mössbauer Spectroscopy and Transition Metal Chemistry Fundamentals and Applications. Berlin, Heidelberg: Springer—Verlag, 2011.
- Huang Q., Santoro A., Lynn J.W. et al. // Phys. Rev. B. 1997. V. 55. P. 14987.
- Пчелина Д.И., Медвецкая И.Ю., Чистякова Н.И. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 11. С. 3. doi 10.1134/S020735281811015X
- Jones D.H., Srivastava K.K.P. // Phys. Rev. B. 1986.
 V. 34. P. 7542.
- 17. *Hannoyer B., Marest G., Greneche J.M. et al.* // Phys. Rev. B. 2000. V. 61. P. 9613.
- 18. Barandiarán J.M., Greneche J.M., Hernández T. et al. // Phys. Condens. Matter. 2002. V. 14. № 47. P. 12563.
- 19. *Junga G., Markovich V., Yuzhelevski Y. et al.* // J. Magn. Magn. Mater. 2004. V. 272–276. P. 1800.
- 20. *Kouvel J.S.* // J. Phys. Chem. Solids. 1961. V. 21. № 1–2. P. 57.

Mössbauer and Magnetic Studies of Doped Lanthanum Manganite $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ ($x=0.05,\ 0.10,\ 0.20$): II. Stoichiometric Composition and Phase Segregation

D. I. Pchelina, I. Yu. Medvetskaya, N. I. Chistyakova, V. S. Rusakov, V. D. Sedykh, Yu. A. Alekhina

Phase segregation in doped lanthanum manganite of a stoichiometric composition $La_{1-x}Ca_xMn_{0.98}Fe_{0.02}O_3$ (x=0.05, 0.10, 0.20) has been studied in a wide temperature range by Mössbauer spectroscopy, X-ray diffraction analysis, and magnetic methods. The structural phase segregation is a coexistence of three orthorhombic phases, I, II, and II*, described by the same space group *Pnma* and characterized by different types of magnetic ordering at low temperatures. The phase I transits to ferromagnetic state with a decrease in temperature and phases II and II* become antiferromagnetic. At 80 K, stoichiometric samples demonstrate a relaxation behavior which can be due to the presence of small-sized magnetic clusters. The relative content of the ferromagnetic phase increases with increasing in Ca content, and the temperature of its magnetic transition rises.

Keywords: doped lanthanum manganites, phase separation, Mössbauer spectroscopy, magnetic properties, superparamagnetism.