УДК 539.8

КОМПАКТНАЯ МАГНИТНАЯ ЯЧЕЙКА НА ОСНОВЕ ПОСТОЯННЫХ МАГНИТОВ ДЛЯ ЭКСПЕРИМЕНТОВ ПО РЕНТГЕНОВСКОЙ ДИФРАКЦИИ

© 2019 г. В. В. Тарнавич^{1, *}, В. А. Уклеев^{2, **}, Ю. П. Черненков¹, А. С. Волегов², С. В. Григорьев^{1, 4}

¹Петербургский институт ядерной физики, НИЦ "Курчатовский институт", 188300 Гатчина, Россия ²Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute, CH-5232, Villigen, Switzerland ³Уральский федеральный университет, 1620002 Екатеринбург, Россия

⁴Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия

*E-mail: tarnavich_vv@pnpi.nrcki.ru **E-mail: victor.ukleev@psi.ch Поступила в редакцию 04.01.2018 г. После доработки 10.02.2018 г. Принята к публикации 12.02.2018 г.

Проведен расчет и представлена конструкция магнитной ячейки на основе постоянных магнитов для исследования малых тонкопленочных образцов методом дифракции синхротронного излучения. В ячейке достигается внешнее магнитное поле с индукцией до 2 Тл при зазоре между полюсными наконечниками до 4 мм. Внешние размеры магнитной ячейки составляют 110 × 70 × 45 мм, что позволяет легко фиксировать ее на гониометрической головке. Тестовые эксперименты проведены на дифрактометре Pilatus@SNBL станции BM01A Швейцарско-Норвежских линий Европейского синхротронного центра.

Ключевые слова: магнитострикция, магнитное поле, синхротронное излучение. **DOI:** 10.1134/S0207352819070163

введение

На сегодняшний день существует несколько методов исследования магнитострикционного эффекта: дилатометрический, тензометрический [1] и микроскопический. К последнему относится дифракция нейтронного, электронного или рентгеновского (синхротронного) излучения, позволяющая непосредственно определять зависимость параметров кристаллической решетки от магнитного поля и/или температуры. Применение косвенных методов измерения магнитострикции в образцах малых размеров может приводить к значительному увеличению ошибки измерений [2]. Необходимую точность измерений можно получить при использовании дифракционных методов, в частности дифракции синхротронного излучения. Синхротронный пучок обладает высокой интенсивностью, даже когда его поперечное сечение составляет всего несколько десятков микрон.

Одной из актуальных задач является обнаружение и исследование магнитострикционного эффекта методом дифракции синхротронного излучения с целью изучения влияния внешнего магнитного поля на магнитное упорядочение в многослойных структурах на основе редкоземельных металлов [3, 4]. Обзор возможностей дифракционных станций на существующих синхротронных источниках показывает, что количество устройств для создания сильного внешнего магнитного поля (до 2 Тл) на образце ограничено. Из существующих станций необходимо отметить линию BOREAS (ALBA, Испания [5]).

КОНСТРУКЦИЯ МАГНИТНОЙ ЯЧЕЙКИ

Задачей было создание магнитной ячейки на основе постоянных магнитов для дифракционной линии BM01A (ESRF, Гренобль, Франция) [6], позволяющей получать внешнее магнитное поле с индукцией до 2 Тл на образце размером 2×2 мм и следить за изменением его структуры. Прототипом для создания устройства послужила ранее сконструированная ячейка для исследования макромолекулярных соединений [7]. В ней, однако, отсутствовала система крепления образца, а поле до 2 Тл достигалось при зазоре менее 1 мм, что ограничивало возможности исследования

Рис. 1. Магнитная ячейка для дифрактометра Pilatus@SNBL станции BM01A (ESRF): а – основные узлы (*A* – постоянный магнит (NdFeB); *Б* – полюсные наконечники (FeCo); *B* – ярмо магнита (Cт10); *Г* – бегунок регулировочный (Cт10); *Д* – направляющая (Cт10); *E* – шпилька для крепления образца CuZn); б – во время эксперимента.

тонкопленочных образцов. Станция BM01A оборудована дифрактометром Pilatus@SNBL. Магнитная ячейка была адаптирована под высоту поперечного сечения пучка и посадочную головку каппа-гониометра HUBER станции BM01A. Вид ячейки представлен на рис. 1.

Постоянные магниты изготовлены из сплава NdFeB марки N50M, имеющего остаточную магнитную индукцию $B_r = 1.40 - 1.45$ Тл. На поверхность магнитов цилиндрической формы диаметром 30 и высотой 17 мм с внутренним отверстием диаметром 4 мм нанесено многослойное антикоррозионное покрытие. Полюсные наконечники изготовлены из отожженного пермендюра (FeCo), обладающего высокой индукцией насышения. Они имели форму усеченного конуса для достижения максимальной напряженности в зазоре. Диаметр большего основания конуса равен диаметру магнита (30 мм), а диаметр меньшего – 4 мм, угол раствора конуса 106°. Ярмо U-образной формы изготовлено из стали Ст10, характеризующейся высокой магнитной проницаемостью. Расстояние между полюсами магнитов может меняться за счет вращения бегунка, соединенного с ярмом резьбовым соединением и связанного со стальной направляющей (Ст10), которая образует замкнутый контур магнитной системы. Образец размещается на латунной шпильке. Положение шпильки регулируется по высоте и вдоль оси полюсных наконечников.

Напряженность магнитного поля в зазоре такой конструкции магнитной ячейки предварительно была рассчитана методом конченых элементов с помощью пакета программ Comsol Multiphysics. На рис. 2а представлено распределение *x*-компоненты магнитной индукции. Видно, что максимум напряженности находится в области, расположенной между малыми основаниями полюсных наконечников.

На рис. 26 продемонстрированы расчетная и экспериментальная зависимости плотности магнитного потока в центре зазора внутри ячейки как функции расстояния между полюсными наконечниками. На расчетной кривой максимум магнитной индукции, соответствующий $B \approx 2$ Тл, достигается при расстоянии между полюсными наконечниками 0-6 мм. Незначительный спад магнитной индукции при расстояниях между полюсами до 4 мм обусловлен так называемыми краевыми эффектами. Отклонение значения индукции в центре зазора магнитной системы от значения на поверхности полюсного наконечника зависит от межполюсного расстояния и уменьшается при сближении полюсов. Экспериментальная зависимость плотности магнитного потока от расстояния между полюсными наконечниками получена с помощью стандартного датчика Холла. Она схожа с теоретической, но наблюдается в меньшем полевом диапазоне. Это можно объяснить малой толщиной магнитопровода, не обеспечивающего полную передачу магнитного потока между магнитами, а также отсутствием в конструкции обтекаемых форм, что приводит к частичному рассеянию магнитного потока. Следует отметить, что распределение магнитной индукции по поверхности полюсных наконечников не превышает 10% от максимума, достигаемого в центре зазора.

ТЕСТОВЫЙ ЭКСПЕРИМЕНТ

Тестовый эксперимент проводили на образце размером 2 × 2 мм многослойной структуры Ho/Y на дифракционной линии BM01A (ESRF, Гренобль, Франция) [6]. Образец Ho/Y представлял

Рис. 2. Моделирование напряженности магнитного поля в зазоре полюсных наконечников магнитной ячейки: а – карта градиентного распределения плотности магнитного потока; б – расчетная (*1*) и экспериментальная (*2*) зависимости плотности магнитного потока как функция расстояния между полюсными наконечниками.

собой структуру, состоящую из 30 чередующихся бислоев Ho (60 Å) и Y (30 Å), напыленных на корундовую подложку размером 2 × 2 мм методом молекулярно-пучковой эпитаксии. Цель исследований состояла в том, чтобы обнаружить изменение кристаллической структуры Ho/Y, обусловленное магнитострикцией, т.е. влиянием внешнего магнитного поля на данную структуру в пределах разрешения, доступного для дифрактометра. Эксперимент проводили на станции BM01A синхротрона ESRF в геометрии на отражение. Образец был помещен в центр зазора между полюсными наконечниками, равного 3.5 мм, а магнитное поле было направлено в плоскости

образца. Чтобы достичь температуры фазового перехода Но из парамагнитной фазы в геликоидальную ($T_{\rm N} = 123$ К для Но в многослойной структуре), использовали систему CryoStream, с помощью которой образец охлаждался парами жидкого азота до T = 90 К. Геометрическая конфигурация магнитной ячейки и расположение двумерного позиционно-чувствительного детектора позволяют собрать достаточно полный объем информации для определения параметров гексагональной кристаллической решетки суперструктуры Ho/Y, что представлено на рентгенограмме (рис. 3), полученной от образца Ho/Y при T = 90 К в отсутствие внешнего магнитного поля.

В магнитном поле $B \approx 2$ Тл при температуре T = 90 К параметры a = 3.61(1) и c = 5.63(2) Å близки к параметрам ячейки обычного кристаллического гольмия с учетом возможных напряжений в слоистой структуре. При той же температуре, но в малом магнитном поле (не более 0.05 Тл, когда один из магнитов отведен на максимальное расстояние от образца), параметры элементарной ячейки a = 3.56 (2), c = 5.579 (14) Å. Видно, что в случае сильного магнитного поля параметры элементарной ячейки a u c больше, чем в случае слабого поля, в пределах двух—трех стандартных ошибок. Этот факт может свидетельствовать о магнитострикционном отклике в системе Ho/Y [8, 9].

ЗАКЛЮЧЕНИЕ

В работе проведен расчет и представлена конструкция магнитной ячейки на основе постоянных магнитов для исследования малых тонкопленоч-

Рис. 3. Рентгенограмма образца Но/У при T = 90 К в отсутствие внешнего магнитного поля.

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 7 2019

ных образцов методом дифракции синхротронного излучения. Магнитная ячейка рассчитана для применения на установках рентгеновского и синхротронного рассеяния и спектроскопии, когда требуется штатное оборудование для создания внешнего магнитного поля на образце. Проведен тестовый эксперимент на монокристаллическом образце размером 2×2 мм многослойной структуры Ho/Y на дифракционной линии BM01A (ESRF, Гренобль, Франция). Показана принципиальная возможность получения дифракционных данных с использованием магнитной ячейки этого типа.

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке РФФИ (проект № 18-32-00005 мол_а). Авторы выражают благодарность Чернышову Д.Ю. и Дядькину В.А., сотрудникам линии ВМ01А, за помощь в проведении эксперимента.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Чечерников В.И.* Магнитные измерения. М.: Изд-во Моск. ун-та, 1969. 388 с.
- Roscoe J. T., Byars J.A. // J. Am. Stat. Association. 1971. V. 66. № 336. P. 755.
- Tarnavich V.V., Lott D., Mattauch S. et al. // Phys. Rev. B. 2014. V. 89. P. 054406.
- 4. Tarnavich V., Tartakovskaya E., Chetverikov Yu. et al. // Phys. Rev. B. 2017. V. 96. P. 014415.
- Barla A., Nicolás J., Cocco D. et al. // J. Synchr. Rad. 2016. V. 23. P. 1507.
- Dyadkin V., Pattison P., Dmitriev V., Chernyshov D. // J. Synchr. Rad. 2016. V. 23. P. 825.
- Oldenbourg R., Phillips W.C. // Rev. Sci. Instrum. 1986. V. 57. P. 2362.
- Ciria M., Arnaudas J.I., Moral A. et al. // Phys. Rev. Lett. 1995. V. 75. P. 1634.
- Arnaudas J.I., Moral A., Ciria M. et al. // J. Magn. Magn. Mater. 1996. V. 156. P. 421.

Compact Magnetic Cell with Permanent Magnets for X-Ray Diffraction Experiments

V. V. Tarnavich, V. A. Ukleev, Yu. P. Chernenkov, A. S. Volegov, S. V. Grigoriev

The calculation and design of compact magnetic cell with permanent magnets for study of small single-crystal samples by the diffraction of synchrotron radiation are carried out. The cell produces a magnetic field up to 2 T when a gap between the pole tips is up to 4 mm. The external dimensions of the magnetic cell are $110 \times 70 \times 45$ mm, which makes it easy to fix it on the goniometric head. Test experiments are carried out on a Pilatus@SNBL diffractometer at BM01A station of the Swiss-Norwegian beamlines of the European synchrotron radiation facility.

Keywords: magnetostriction, magnetic field, synchrotron radiation.