УДК 537.534.9

ОТРАЖЕНИЕ АТОМОВ ВОДОРОДА И ДЕЙТЕРИЯ ОТ КРИСТАЛЛА ВОЛЬФРАМА В РЕЖИМЕ ПОВЕРХНОСТНОГО КАНАЛИРОВАНИЯ

© 2019 г. П. Ю. Бабенко^{1,} *, А. Н. Зиновьев¹, А. П. Шергин¹

¹Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия *E-mail: babenko@npd.ioffe.ru Поступила в редакцию 18.08.2018 г. После доработки 22.01.2019 г. Принята к публикации 25.01.2019 г.

Проведены расчеты коэффициентов отражения и угловых распределений рассеянных частиц при бомбардировке атомами водорода и дейтерия аморфных и кристаллических мишеней из вольфрама. При скользящих углах падения на кристаллические мишени наблюдается коэффициент отражения, близкий к 100%. Вольфрам в виде поликристаллических пластин планируется использовать в качестве материала дивертора токамака ИТЭР. Данное явление следует принимать во внимание при расчете энерговыделения на диверторе.

Ключевые слова: скользящие углы падения, коэффициенты отражения, энерговыделение на диверторе, токамак.

DOI: 10.1134/S020735281908002X

ВВЕДЕНИЕ

В монографии [1] содержится большое количество данных по коэффициентам отражения атомов R_N от поверхности для нормального угла падения пучка атомов на мишень. Приводятся ссылки на значительное количество расчетных работ. Количество экспериментальных работ существенно меньше, а для скользящих углов падения крайне ограничено. В частности, немногочисленные экспериментальные данные о коэффициентах отражения приведены в работах [2–7].

Поскольку в качестве материала первой стенки токамака ИТЭР планируется использовать вольфрам W, в задачу настоящей работы входил расчет коэффициентов отражения и угловых распределений атомов водорода и дейтерия при рассеянии на кристаллическом и аморфном вольфраме.

МЕТОДЫ, ИСПОЛЬЗОВАННЫЕ ПРИ КОМПЬЮТЕРНОМ МОДЕЛИРОВАНИИ

В основу моделирования ионного рассеяния поверхностью кристалла была взята программа, рассматривающая последовательность бинарных соударений частиц в веществе. Использовался алгоритм, аналогичный примененному Робинсоном в работе [8]. Алгоритм программы составлен так, что для набора необходимой статистики за приемлемое время достаточно быстродействия персонального компьютера. В процессе вычислений записываются глубина достигнутого слоя и прицельные координаты налетающей частицы. Это позволяет отслеживать вклад в рассеяние различных атомных слоев мишени. В программе предусмотрена возможность пошагово отслеживать траекторию частицы, проводить расчеты с высоким угловым и энергетическим разрешением. Как правило, число обрабатываемых траекторий составляло 1 × 10⁶. Учитывались потери, связанные с рассеянием на ионах решетки и торможением при взаимодействии с электронами металла. Принималось во внимание тепловое движение атомов мишени. Использовался потенциал, предложенный в работах [9, 10], наилучшим образом описывающий существующие экспериментальные данные о рассеянии частиц:

$$U = \frac{Z_1 Z_2 e^2}{r} \exp\left\{\frac{-x}{c_1 + c_2 x^{1/2} + c_3 x}\right\}$$

где Z_1 , Z_2 – заряды ядер, e – заряд электрона, r – межъядерное расстояние, $x = r_0/a_{\rm f}$, $a_{\rm f} = 0.8853 \times (Z_1^{0.5} + Z_2^{0.5})^{-2/3}$ – длина экранирования, предложенная Фирсовым, $c_1 = 0.582$, $c_2 = 0.654$, $c_3 = -0.03$. Все параметры приведены в атомных единицах.

Учитывались температурные колебания атомов решетки, которые заметно влияют на угловые распределения рассеянных частиц. Смещение

Рис. 1. Геометрия эксперимента.

атомов описывалось распределением Гаусса с амплитудой колебаний, равной 0.05 Å. Колебания считались независимыми.

Для расчетов коэффициентов отражения от аморфных мишеней применялась программа SRIM [11], а для получения угловых распределений применялась программа обработки файлов, разработанная нами.

РЕЗУЛЬТАТЫ РАСЧЕТА КОЭФФИЦИЕНТОВ ОТРАЖЕНИЯ ПРИ ВЗАИМОДЕЙСТВИИ ВОДОРОДА И ДЕЙТЕРИЯ С КРИСТАЛЛИЧЕСКИМ ВОЛЬФРАМОМ

В настоящей работе мы не принимали во внимание заряд падающей частицы и зарядовые состояния рассеянных частиц. Считается, что коэффициент отражения и угловое распределение рассеянных частиц просуммированы по всем зарядовым фракциям. Геометрия эксперимента представлена на рис. 1.

На рис. 2 представлены коэффициенты отражения R_N для случаев D–W(100) и D–W(110) для энергий соударения $E_0 = 0.1-10$ кэВ и углов $\alpha = 1^{\circ}-90^{\circ}$. Пучок направлялся вдоль атомной цепочки (100).

Данные для водорода и дейтерия практически совпадают, так как использованный потенциал взаимодействия не зависит от массы, а потери энергии, связанные с прохождением в кристаллических мишенях в нашем случае незначительны.

В работе Линдхарда [12] было предложено использовать понятие энергии поперечного движения частицы $E_{\perp} = E_0 \sin^2 \alpha$ в качестве параметра, характеризующего захват частицы в поверхностный канал. Как видно из рис. 3, при таком масштабировании наблюдается универсальность поведения кривых при малых E_{\perp} . Это не удивительно, т.к. рассеяние определяется одним и тем же

Рис. 2. Зависимость коэффициента отражения R_N при рассеянии D на поверхности вольфрама при энергиях E_0 (0.1–10 кэВ) от угла скольжения α : а – плоскость W(100) и б – плоскость W(110). Пучок в обоих случаях направлен вдоль атомной цепочки (100).

поверхностным потенциалом. Критическое значение $E_{\perp c}$ значение, когда 100%-отражение прекращается, практически не зависит от начальной энергии. Во всех изученных случаях значение $E_{\perp c}$ оказывается больше минимального значения поверхностного потенциала, при котором возможно проникновение частицы внутрь твердого тела. Значение $E_{\perp c}$ зависит от ориентации кристалла и больше для плотно упакованных направлений.

При определенных углах наблюдаются максимумы, связанные с проявлением эффектов блокировки.

СРАВНЕНИЕ ДАННЫХ О КОЭФФИЦИЕНТАХ ОТРАЖЕНИЯ ДЛЯ КРИСТАЛЛИЧЕСКОГО И АМОРФНОГО ВОЛЬФРАМА

На рис. 4 представлены результаты расчетов на аморфном вольфраме, выполненные с помощью

Рис. 3. Зависимость коэффициента отражения R_N при рассеянии D на поверхности вольфрама при энергиях E_0 (0.1–10 кэВ) от параметра $E_{\perp} = E_0 \sin^2 \alpha$: а – плоскость W(100) и б – плоскость W(110), пучок направлен вдоль атомной цепочки.

программы SRIM. Данные для водорода и дейтерия несколько различаются, что связано с зависимостью потери энергии частиц при прохождении через вещество от скорости.

На рис. 5 представлено сравнение данных для кристаллического и аморфного вольфрама для $E_0 = 400$ эВ, типичной для энергии частиц в пристеночной области токамаков. Как видно из рис. 5, данные для кристаллической и аморфной мишеней существенно отличаются. Для кристаллической мишени имеет место высокий коэффициент отражения, близкий к 1, вплоть до углов падения $\alpha = 20^{\circ}$. Этот эффект можно применить для уменьшения энерговыделения в случае изготовления дивертора из кристаллического вольфрама. При больших углах коэффициент отражения на кристалле падает более резко, чем для аморфной мишени, что связано с каналированием частиц в веществе.

Рис. 4. Зависимость коэффициента отражения R_N при рассеянии D на поверхности аморфного вольфрама от угла скольжения α .

Данные измерений для поликристаллической мишени [4] находятся в согласии с нашим расчетом для аморфной мишени. Как видно из рис. 5, для углов падения, меньших $\alpha < 20^{\circ}$, экспериментальные данные отсутствуют.

УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ РАССЕЯННЫХ ЧАСТИЦ

Угловое распределение рассеянных частиц характеризуется углами φ и δ, отсчитываемыми, как показано на рис. 1. Результаты расчетов для кристаллической и аморфной мишеней из вольфрама представлены на рис. 6 и 7. При рассеянии на кристаллической мишени в зависимости от угла δ проявляется эффект ионной фокусировки, обусловленный рассеянием в поверхностном канале, а в зависимости от угла ф распределение имеет характерные радужные максимумы. Как было показано в нашей работе [13], при изменении прицельного параметра вдоль оси y, при y = 0 из-за соображений симметрии кристалла угол рассеяния $\phi = 0$. С ростом у значение ϕ растет. При значении y = d/2 (*d* – расстояние между двумя параллельными цепочками атомов в кристалле), значение ф снова равно нулю (также из соображений симметрии задачи о рассеянии на двух параллельных цепочках атомов). Это означает, что зависимость $\phi(y)$ имеет экстремум на участке $y = \{0, d/2\}$. При значении угла φ_r производная $d\varphi/dy = 0$, а спектр частиц $dN/d\phi \sim dy/d\phi$ имеет резкий максимум. Вследствие теплового движения атомов мишени и углового разброса в направлении падения атомов пучка, этот пик размывается. С увеличением угла падения угловое распределение уширяется, а при углах падения ($\alpha > 20^{\circ}$) данное явление

Рис. 5. Коэффициенты отражения *H* и *D* от поверхности кристаллического вольфрама W(100) и аморфного вольфрама. Экспериментальные данные для поликристаллической мишени взяты из работы [4].

Рис. 6. Угловые распределения рассеянных частиц для системы D–W для кристаллической и аморфной мишеней в зависимости от азимутального угла ф.

Рис. 7. Угловые распределения рассеянных частиц для системы D–W для кристаллической и аморфной мишеней в зависимости от угла δ.

исчезает, поскольку отсутствует захват частицы в поверхностный канал.

Для аморфной мишени все угловые распределения сглажены. Как видно из рис. 6 и 7, при углах $\alpha > 20^{\circ}$ угловые распределения для кристалла и аморфной мишени становятся подобными. Изменения в угловых распределениях хорошо коррелируют с областью, где наблюдается близкий к 100% коэффициент отражения. При малых углах рассеяния на кристалле проявляется эффект блокировки.

ЗАКЛЮЧЕНИЕ

Проведенные расчеты демонстрируют существенное отличие в поведении коэффициентов отражения частиц от кристаллических и аморфных материалов.

Близкий к 100% коэффициент отражения атомов водорода и дейтерия от кристаллического вольфрама может быть использован для уменьшения энерговыделения на диверторе.

Имеет место явная недостаточность экспериментальных данных о коэффициентах отражения и соответствующих угловых зависимостях.

СПИСОК ЛИТЕРАТУРЫ

- Экштайн В. Компьютерное моделирование взаимодействия частиц с поверхностью твердого тела. М.: Мир, 1995. 321 с.
- Braun M., Thomas E.W. // J. Appl. Phys. 1982. V. 53. Iss. 9. P. 6446. https://doi.org/10.1063/1.331519
- Chen C.K., Scherzer B.M.U., Eckstein W. // Appl. Phys. A. 1984. V. 33. Iss. 4. P. 265. https://doi.org/10.1007/BF00614669
- Bandurko V.V., Koborov N.N., Kumaev V.A., Sotnikov V.M., Zabeyda O.V. // J. Nucl. Mater. 1990. V. 176–177. P. 630.

https://doi.org/10.1016/0022-3115(90)90118-7

- Chen C.K., Eckstein W., Scherzer B.M.U. // Appl. Phys. A. 1983. V. 31. Iss. 1. P. 37. https://doi.org/10.1007/BF00617186
- Mashkova E.S. // Rad. Eff. 1981. V. 54. Iss. 1–2. P. 1. https://doi.org/10.1080/00337578108207123
- Boittiger J., Wolder Jorgensen H., Winterbon K.B. // Rad. Eff. 1971. V. 11. Iss. 3–4. P. 133. https://doi.org/10.1080/00337577108231098
- Robinson M.T., Torrens I.M. // Phys. Rev. B. 1974. V. 9. Iss. 12. P. 5008. https://doi.org/10.1103/PhysRevB.9.5008
- Zinoviev A.N. // NIMB. 2011. V. 269. Iss. 9. P. 829. https://doi.org/10.1016/j.nimb.2010.11.074
- 10. Зиновьев А.Н. // Поверхность. Рентген., синхротр. и нейтр. исслед. 2008. Т. 5. С. 38.
- 11. Ziegler J.F., Biersack J.P. // SRIM http://www.srim.org.
- 12. Линдхард Й. // УФН. 1969. Т. 99. Вып. 2. С. 249.
- 13. Babenko P.Yu., Zinoviev A.N., Shergin A.P. // NIMB. 2015. V. 354. P. 137. https://doi.org/10.1016/j.nimb.2014.12.035

БАБЕНКО и др.

Reflection of Hydrogen and Deuterium Atoms from a Tungsten Crystal in the Mode of Surface Channeling

P. Yu. Babenko, A. N. Zinoviev, A. P. Shergin

Reflection coefficients and angular distributions of scattered particles in bombarding amorphous and crystalline tungsten targets with H, D atoms have been calculated. In the case of glancing angles and crystalline targets, the reflection coefficient of almost 100% has been observed. Tungsten in the form of polycrystalline plates is planned to be used as a material for the ITER tokamak divertor. This phenomenon should be taken into account when calculating the energy input into the divertor.

Keywords: incidence angles, reflection coefficients, energy input into the divertor, tokamak.