УДК 539.25,544.02

ФАЗЫ СОЕДИНЕНИЙ ВОЛЬФРАМА В АЛМАЗОПОДОБНЫХ КРЕМНИЙ-УГЛЕРОДНЫХ НАНОКОМПОЗИТАХ

© 2019 г. А. И. Попов^{1, 3, *}, В. П. Афанасьев¹, А. Д. Баринов^{1, 3}, Ю. Н. Бодиско¹, А. С. Грязев¹, И. Н. Мирошникова^{1, 3}, М. Ю. Пресняков², М. Л. Шупегин¹

¹Национальный исследовательский университет "МЭИ", 111250 Москва, Россия ²Национальный исследовательский центр "Курчатовский институт", 123182 Москва, Россия ³Институт нанотехнологий микроэлектроники РАН, 119991 Москва, Россия *E-mail: popovai2009@gmail.com

* E-mail: popoval2009@gmail.com Поступила в редакцию 17.12.2018 г. После доработки 14.01.2019 г. Принята к публикации 20.01.2019 г.

Проведены исследования форм вхождения вольфрама в алмазоподобные кремний-углеродные пленки методами электронной микроскопии и рентгеновской фотоэлектронной спектроскопии. Пленки изготавливались одновременным плазмохимическим разложением кремнийсодержащего органического прекурсора и магнетронным распылением металла. Установлено, что пленки вольфрамсодержащих алмазоподобных кремний-углеродных нанокомпозитов, наряду с нанокристаллической фазой карбида вольфрама, содержат значительное количество аморфной фазы оксида вольфрама.

Ключевые слова: алмазоподобные кремний-углеродные пленки, нанокомпозиты, просвечивающая электронная микроскопия высокого разрешения, рентгеновская фотоэлектронная спектроскопия. **DOI:** 10.1134/S0207352819090129

введение

Алмазоподобные аморфные кремний-углеродные пленки, состоящие из взаимно стабилизирующих структурных сеток углерода с водородом и оксида кремния, обладают всеми достоинствами традиционных алмазоподобных углеродных покрытий, при отсутствии многих их недостатков. Это открывает перспективы их широкого использования в качестве защитных покрытий в космической технике [1], в оптоэлектронике [2], как антифрикционные покрытия в машиностроении [3]. Кроме того, высокая стабильность кремний-углеродной матрицы обеспечивает возможность введения в материал десятков атомных процентов металла при сохранении ее аморфного состояния. Это позволяет варьировать свойства нанокомпозиционных материалов на основе металлсодержащих кремний-углеродных пленок в широких пределах. Например, возможные изменения электропроводности достигают 16 порядков величины [4]. Общепринято, что введение в кремний-углеродные пленки карбидообразующих металлов приводит к формированию нанокристаллов соответствующих карбидов. Если же металл не образует карбидов (например, платина), то нанокомпозит содержит нанокристаллы чистого металла. Размеры нанокристаллов зависят от вида металла, его концентрации и лежат в пределах от 1 до 10 нм [4].

Настоящая работа проводилась с целью исследования форм вхождения металла в алмазоподобную кремний-углеродную матрицу.

ИЗГОТОВЛЕНИЕ ОБРАЗЦОВ И МЕТОДЫ ИХ ИССЛЕДОВАНИЯ

Исследуемые образцы представляли собой вольфрамсодержащие кремний-углеродные нанокомпозитные пленки. Пленки изготовлялись одновременным плазмохимическим разложением кремнийорганического прекурсора полифенилметилсилоксана (CH₃)₃SiO(CH₃C₆H₅SiO)_nSi(CH₃)₃ (ПФМС) и магнетронным распылением вольфрама на монокристаллические кремниевые подложки. Конструкция установки позволила получить образцы с различным содержанием вольфрама в диапазоне от 7 до 36 ат. % в едином технологическом цикле [5]. Толщина пленок составляла порядка 0.5 мкм. Исследования проводились с использованием просвечивающего электронного микроскопа STEM/TEM

Рис. 1. Электронно-микроскопическое изображение поперечного среза кремний-углеродной пленки с вольфрамом.

80—300 методами электронной микроскопии высокого разрешения, дифракции и энергодисперсионного рентгеновского микроанализа, а также на установках рентгеновской фотоэлектронной спектроскопии (РФЭС) Versa ProbeII ULVAC-PHI и Kratos Axis Ultra DLD.

РЕЗУЛЬТАТЫ ЭЛЕКТРОННО-МИКРОСКОПИЧЕСКИХ И ДИФРАКЦИОННЫХ ИССЛЕДОВАНИЙ

Электронно-микроскопические исследования высокого разрешения показали, что во всем анализируемом диапазоне концентраций вольфрама образцы представляют собой двухфазную систему: аморфная кремний-углеродная матрица с внедренными в нее нанокристаллами. Размеры нанокристаллов при концентрациях вольфрама 15-24 ат. % в среднем составляют 1 нм (рис. 1). Анализ электронограмм показал, что кристаллические включения представляют собой нанокристаллы карбида вольфрама. Однако уширение дифракционных рефлексов вследствие малых размеров наночастиц и близость параметров кристаллических решеток карбидов вольфрама (WC) и дивольфрама (W₂C) не позволили достоверно определить, какой именно карбид образует нанокристаллы.

ИССЛЕДОВАНИЕ И МОДЕЛИРОВАНИЕ СПЕКТРОВ РФЭС

Для определения химического состава карбида вольфрама в нанокристаллах была проведена рентгеновская фотоэлектронная спектроскопия образцов с использованием монохроматической линии AlK_{α} . Перед получением спектров для удаления приповерхностного слоя проводилось травление поверхности образцов ионами аргона (энергия ионов составляла 2 кэВ, площадь 2 × 2 мм) до стабилизации химического состава образцов (время травления 5 мин).

Профили концентраций элементов по толщине стравливаемого слоя для образца, содержащего 24 ат. % вольфрама, приведены на рис. 2а. Обзорные спектры выполнялись в режиме энергии пропускания анализатора $E_{pass} = 160$ эВ. Обзорный спектр РФЭС-образца, содержащего 24 ат. % вольфрама, после его травления представлен на рис. 26. Спектры высокого разрешения в области энергий пика углерода С 1s и пиков вольфрама W $4f_{7/2}$ и W $4f_{5/2}$ снимали при энергии пропускания $E_{pass} = 40$ эВ.

На рис. За представлен спектр РФЭС, полученный в области энергий связи атомов углерода С 1s (280-290 эВ). Как видно из рисунка, данный спектр аппроксимируется двумя пиками: пик 1 при энергиях 283.3-283.5 эВ и пик 2 при энергиях 284.3-284.5 эВ. Учитывая, что в спектре исходного прекурсора (ПФМС) присутствует пик при энергии, соответствующей пику 2, уместно предположить, что этот пик принадлежит атомам углерода, входящим в кремний-углеродную матрицу. В то же время в спектрах ПФМС нет пиков при энергии, соответствующей пику 1. Более того, положение пика практически совпадает с энергией связи атомов углерода с вольфрамом в карбиде вольфрама WC (283.2 эВ) [6]. Отсюда следует, что в вольфрамсодержащих кремнийуглеродных пленках образуются нанокристаллы карбида вольфрама WC.

Спектры РФЭС, полученные в области энергий связи атомов вольфрама (30-44 эВ) (рис. 3б), подтверждают сделанный вывод, поскольку в них присутствуют пики при 31.95 и 34.15 эВ (сдвиг по отношению к пикам чистого вольфрама 0.7 эВ), соответствующие химическим связям вольфрамуглерод в карбиде вольфрама WC [8–10]. Однако в рассматриваемых спектрах присутствуют еще два очень четких пика при 36.15 и 38.35 эВ (сдвиг по отношению к пикам чистого вольфрама 4.90 эВ). Положение этих пиков практически совпадает с диапазоном энергий связей в оксиде вольфрама WO₃ [9, 10]. Это свидетельствует, что в вольфрамсодержащих кремний-углеродных нанокомпозитах наряду с нанокристаллической карбидной фазой присутствует оксидная фаза. Причем, поскольку электронная микроскопия высокого разрешения и дифракционный анализ обнаружива-

50

3000

2800

2600

2400

2200

2000

1800

1600

1400 └─ 294

292

290

288

286

284

282

280

Интенсивность, имп./с

(a)

100

90

Рис. 2. Профили концентраций элементов $(1 - C \, 1s, 2 - W \, 4f, 3 - Si \, 2p, 4 - O \, 1s)$ по толщине стравливаемого слоя (а) и обзорный спектр РФЭС (б) образца, содержащего 24 ат. % вольфрама.

ют в исследуемых образцах только нанокристаллы карбида металла, следует предположить, что оксид вольфрама находится в аморфном состоянии.

Для определения соотношения вольфрама, образующего карбидную и оксидную фазы, было проведено моделирование спектров РФЭС в области энергий связей атомов вольфрама для материалов с различными значениями этого соотношения. Для образца с 28 ат. % вольфрама наилучшее совпадение с экспериментальным спектром дала кривая, рассчитанная для материала, в кото-

Рис. 3. Спектры РФЭС в области энергий связи атомов углерода С 1s (282–286 эВ) (а) и атомов вольфрама W 4 $f_{7/2}$ и W 4 $f_{5/2}$ (30–44 эВ) для образца с 28 ат. % W (б). Расчетный спектр (сплошная линия) построен для модели, содержащей 56% оксида и 44% карбида вольфрама. Эксперимент – кружки; спектр чистого вольфрама [7] – штриховая кривая.

ром 44% атомов вольфрама образуют карбидную фазу WC, а 56% атомов вольфрама входят в оксидную фазу WO₃ (рис. 36). Распределение вольфрама между карбидной и оксидной фазами зависит от общей концентрации вольфрама в образце. Так увеличение концентрации вольфрама до 36 ат. % приводит к росту вольфрама в карбидной фазе до 55% и к уменьшению концентрации вольфрама в оксидной фазе до 45%.

Таким образом, показано, что при введении в кремний-углеродные пленки вольфрама, наряду с

карбидной нанокристаллической фазой, происходит образование аморфной оксидной фазы металла.

ЗАКЛЮЧЕНИЕ

При расчетах концентрационных зависимостей электрических и механических свойств металлосодержащих кремний-углеродных нанокомпозитов, а также порога перколяции до настоящего времени определение количества нанокристаллической карбидной фазы в образцах проводилось исходя из предположения, что все атомы металла образуют карбилную фазу [11-14]. Однако, как видно из приведенных выше данных, введенный в кремний-углеродную пленку вольфрам распределяется примерно поровну между нанокристаллической карбидной фазой и аморфной оксидной фазой, обладающих существенно отличными физическими свойствами. Следовательно, количество нанокристаллической фазы оказывается в два раза меньше ранее предполагаемой величины, что, безусловно, оказывает влияние на вид концентрационных зависимостей свойств.

При анализе полученных в работе результатов возникает естественный вопрос: образуется ли, наряду с карбидной, оксидная фаза при введении в кремний-углеродную пленку других металлов. Из анализа литературных данных следуют некоторые косвенные свидетельства о возможности существования оксидной фазы и в этом случае. Например, в спектре характеристических потерь энергии электронов танталсодержащего кремний-углеродного нанокомпозита, полученном вблизи края поглощения кислорода, наблюдался пик при 539 эВ, характерный для оксида тантала (рис. 15 в работе [14]). Однако ответ на этот вопрос требует проведения дополнительных исследований. В частности, необходимо более детальное изучение спектров РФЭС, которое наряду с анализом интенсивностей пиков фотоэлектронных линий элементов с их химическими сдвигами, должно включать область неупругих потерь энергии электронами для восстановления дифференциального сечения однократного неупругого рассеяния электронов, которое определяет электронную структуру исследуемого вещества [15, 16].

БЛАГОДАРНОСТИ

Работа выполнена при финансовой поддержке РФФИ (грант № 19-07-00021).

СПИСОК ЛИТЕРАТУРЫ

- Mangolini F., Krick B.A., Jacobs T.D.B. et al. // Carbon. 2018. V. 130. P. 127. https://doi.org/10.1016/j.carbon.2017.12.096
- Popov A.I., Barinov A.D., Presniakov M.Y. // J. Nanoelectron. Optoelectron. 2014. V. 9. P. 787. https://doi.org/10.1166/jno.2014.1678
- Zavedeev E.V, Zilova O.S., Barinov A.D. et al. // Appl. Phys. A. 2016. V. 122. P. 961. https://doi.org/10.1007/s00339-016-0508-7
- 4. *Popov A*. Disordered Semiconductors: Physics and Applications. Second edition. Pan Stanford Publ. 2018. 319 p.
- 5. *Шупегин М.Л.* // Завод. лаб. Диагностика материалов. 2013. Т. 79. № 2. С. 28.
- 6. *Oyama S.T.* The Chemistry of Transition Metal Carbides and Nitrides. Springer, 1996. 536 p.
- 7. *MoulderJ., Stickle W., Sobol P., Bomben K.* Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minnesota, 1995. 261 p.
- Powell C.J. // J. Electron Spectrosc. Relat. Phenom. 2012. V. 185. P. 1. https://doi.org/10.1016/j.elspec.2011.12.001
- Katrib A., Hemming F., Wehrer P., Hilaire L., Maire G.J. // J. Electron Spectrosc. Relat. Phenom. 1995. V. 76. P. 195. https://doi.org/10.1016/0368-2048(95)02451-4
- Naumkin A.V., Kraut-Vass A., Gaarenstroom S.W., Powell C.J. // NIST X-ray Photoelectron Spectroscopy Database. Version 4.1. 2012. http://www.srdata.nist.gov/xps.
- Polyakov V.I., Rukovishnikiv A.I., Perov P.I. // Thin Solid Films. 1997. V. 292. P. 91. https://doi.org/10.1016/S0040-6090(96)08936-5
- 12. Ротнер С.М., Мокрицкий В.А., Лагутин В.В. // Технология и конструирование в электронной аппаратуре. 2006. № 6. С. 58.
- 13. Баринов А.Д., Попов А.И., Пресняков М.Ю. // Неорганические материалы. 2017. Т. 53. № 7. С. 706.
- Пресняков М.Ю., Попов А.И., Усольцева Д.С., Шупегин М.Л., Васильев А.Л. // Российские нанотехнологии. 2014. Т. 9. С. 70.
- Afanas'ev V.P., Gryazev A.S., Efremenko D.S., Kaplya P.S. // Vacuum. 2017. V. 136. P. 146. https://doi.org/10.1016/j.vacuum.2016.10.021
- Afanas'ev V.P., Bocharov G.S., Eletskii A.V., Ridzel O.Yu., Kaplya P.S., Köppen M. // J. Vac. Sci. Technol. B. 2017. V. 35. P. 041804. https://doi.org/10.1116/1.4994788

Phases of Tungsten Compounds in Diamond-Like Silicon-Carbon Nanocomposites

A. I. Popov, V. P. Afanas'ev, A. D. Barinov, Y. N. Bodisko, A. S. Gryazev, I. N. Miroshnikova, M. Y. Presniakov, M. L. Shupegin

The forms of tungsten entering the diamond-like amorphous silicon-carbon matrix are studied by electron microscopy and X-ray photoelectron spectroscopy. The films were produced by simultaneous plasma-chemical decomposition of silicon organic precursor and magnetron sputtering of metal. It was found that the films of tungsten-containing diamond-like silicon-carbon nanocomposites, along with the nanocrystalline phase of tungsten carbide, contain a significant amount of amorphous phase of tungsten oxide.

Keywords: diamond-like silicon-carbon films, nanocomposite, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy.