УДК 621.384.665:621.52

ПЕРВЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ НА НОВОМ КАНАЛЕ ВЫВОДА СИ НА ВЭПП-2000 ДЛЯ ВАКУУМНОЙ СИСТЕМЫ HL–LHC

© 2020 г. А. М. Семенов^{*a*, *b*, *, В. В. Анашин^{*a*}, А. А. Жариков^{*a*}, А. А. Краснов^{*a*, *c*}, Г. А. Фатькин^{*a*}, Д. Б. Шварц^{*a*, *c*}}

^аИнститут ядерной физики им. Будкера СО РАН, Новосибирск, 630090 Россия ^bНовосибирский государственный технический университет, Новосибирск, 630087 Россия ^cНовосибирский государственный университет, Новосибирск, 630090 Россия

> *E-mail: А.М.Semenov@inp.nsk.su Поступила в редакцию 11.02.2019 г. После доработки 25.03.2019 г. Принята к публикации 25.03.2019 г.

В рамках проекта модернизации большого адронного коллайдера (LHC) предлагается использование новых материалов. Аморфный углерод, нанесенный на стенку вакуумной камеры, рассматривается в качестве покрытия с низким коэффициентом вторичной электронной эмиссии в сверхпроводящих системах, предназначенных для реализации проекта модернизации LHC на более высокую светимость (HL–LHC). Так как протоны будут создавать поток синхротронного излучения до 10^{16} фотон · м⁻¹ · c⁻¹ с критической энергией ~10 эВ, важно изучить их влияние на поверхность, покрытую аморфным углеродом при комнатной и очень низкой температуре. Описываются конструкция и параметры установки на канале вывода синхротронного излучения на бустере ВЭПП-2000. Также представлены первые результаты измерения коэффициента фотонно-стимулированной десорбции.

Ключевые слова: вакуум, большой адронный коллайдер, фотодесорбция, аморфный углерод. **DOI:** 10.31857/S1028096020010148

введение

Большой адронный коллайдер (LHC – Large Hadron Collider) в CERN в настоящее время успешно работает при номинальной светимости, обеспечивая протон-протонные столкновения при энергии 13 ТэВ в центре масс. Модернизация LHC предназначена для обеспечения примерно в 10 раз большей интегральной светимости (High Luminosity – HL) с целью достижения ~3000 фб⁻¹ к середине 2030-х годов [1, 2]. Для этого необходимо увеличить ток пучка в два раза, дополнительно уменьшить сечение пучка и угол, при котором происходит столкновение встречных протонных пучков, для достижения желаемой светимости, в пять раз превышающей пиковую светимость сегодняшнего LHC.

В таких ускорительных комплексах вакуумная система подвергается синхротронному излучению (СИ) и электронной бомбардировке из-за накопления электронного облака. В частности, уровень вакуума в вакуумных камерах должен быть минимально возможным, для того чтобы избежать рождения дополнительных электронов из молекул остаточных газов. В проекте HL–LHC (High Luminosity Large Hadron Collider) конечная система фокусировки, состоящая из трех квадруполей (так называемых "внутренних триплетов") имеет защитный экран, работающий при ~60 К. Данный экран необходим для перехватывания дополнительных притоков тепла. Он создается в точке взаимодействия и тем самым обеспечивает температуру 1.9 К.

В рамках проекта HL-LHC необходимо подробно изучить вакуумные характеристики нового поверхностного материала. Одним из таких покрытий является аморфный углерод, нанесенный на стенку вакуумной камеры. Аморфный углерод (а-С) – покрытие с низким коэффициентом вторичной электронной эмиссии [3-5]. Это условие необходимо, чтобы минимизировать тепловые нагрузки на защитном экране и уменьшить фон в эксперименте, обусловленный рассеянием протонов на молекулах остаточного газа. В ускорителе HL-LHC протоны в триплетах генерируют СИ с критической энергией ~10 эВ, поток ~10¹⁶ фотон \cdot м⁻¹ \cdot с⁻¹. Очень важно изучить влияние таких фотонов на аморфный углерод, находящийся при комнатной или очень низкой температуре, и сравнить результаты с материалом, используемым сейчас в LHC.

ПЕРВЫЕ ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Параметр	Минимум	Номинал	Максимум
Энергия пучка, МэВ	193	390	900
Ток пучка, А	0.22	0.5	0.04
Радиус поворотного магнита, мм	1280		
Критическая энергия $E_{\rm c}$, эВ	14	100	1260
Средний поток, 10^{15} фотон \cdot мрад ⁻¹ \cdot с ⁻¹	5.5	24	4.7
Мощность СИ, Вт · мрад $^{-1}$	0.0034	0.013	0.29
Полный вертикальный угол расхождения СИ при <i>E</i> _c , мрад	2.5	1.25	0.56

Таблица 1.	Параметры С	СИ при р	азличной энер	эгии пучка на БЭП
------------	-------------	----------	---------------	-------------------

Новый канал вывода СИ, который в настоящее время создан на БЭП ВЭПП-2000 (ИЯФ СО РАН) обеспечивает СИ при угле падения ~10 мрад с критической энергией 10–1300 эВ и потоком ~5 × 10^{16} фотон · м⁻¹ · с⁻¹. Данная установка предназначена для исследования фотонностимулированной молекулярной десорбции, фотоэлектронной эмиссии кандидатов в материалы для проекта HL-LHC, находящихся при комнатной или низкой температуре.

ПАРАМЕТРЫ КАНАЛА ВЫВОДА СИ

Бустер электронов и позитронов (БЭП) – бустерный синхротрон коллайдера ВЭПП-2000, в который инжектируются пучки электронов и позитронов из нового инжекционного комплекса ИЯФ СО РАН. БЭП реконструирован для работы при энергии электронов или позитронов в диапазоне 50–1000 МэВ (стандартный режим 390 МэВ). Тем не менее, непрерывная работа возможна до 900 МэВ. Параметры потока фотонов из дипольных магнитов БЭП при энергии электронов 200, 300 и 900 МэВ представлены в табл. 1. Данные параметры охватывают требования для LHC и HL–LHC.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Принципиальная схема экспериментальной установки на канале вывода СИ БЭП показана на рис. 1. Основными элементами являются: опорная точка поворота для точной настройки излучения; конус с термокатодом для улучшения измерения вакуума [6, 7]; концевой коллектор (для измерений зеркального рассеяния); цельнометаллический электропневматический прямопролетный клапан, необходимый для изоляции БЭП от экспериментальной установки; натекатель (для калибровки масс-спектрометра); датчик давления с горячим катодом; квадрупольный масс-спектрометр; турбомолекулярный насос; два не-

распыляемых геттерных насоса; абсорбер излучения и зеркало для контроля параметров пучка в БЭП. Канал вывода СИ также содержит коллиматор для управления горизонтальным и вертикальным размерами сечения пучка СИ.

Тестовая камера установлена коаксиально внутри трубы большего диаметра. Применяемая мощная система откачки (два геттерных картриджа и турбомолекулярный насос) имитирует высокую распределенную скорость откачки в холодных вакуумных камерах для проекта HL–LHC. Цель состоит в том, чтобы получить уровень давления в диапазоне 10⁻⁸ Па или даже ниже без прогрева.

Геометрическое решение обеспечивает легкость замены тестовых камер, позволяет установить азимутальные коллекторы (10 штук) за отверстия в тестовой камере для измерения азимутального распределения рассеянных фотонов (или распределения фотоэлектронов в случае положительного напряжения смещения на коллекторах относительно тестовой камеры) и позволяет охлаждать камеру до 60 К (по крайней мере) с использованием стандартного криокуллера. Табл. 2 содержит основные параметры установки.

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОГРАММА И РЕЗУЛЬТАТЫ ПРОВЕДЕННЫХ РАБОТ

Первый этап экспериментальной программы состоит в количественном измерении фотонностимулированной молекулярной десорбции при помощи калиброванного анализатора остаточного газа, выхода фотоэлектронов, азимутального распределения фотоэлектронов и азимутального распределения диффузно-рассеянных фотонов.

Измерения проводятся в следующих условиях: накопленная доза (от 10^{21} до 10^{23} фотон · м⁻¹); угол падения СИ 10 мрад; накопленная доза достигается при критической энергии фотонов в диапазоне 40–50 эВ, сканирование по критической

Рис. 1. Схема экспериментальной установки: Р – опорная точка поворота; С – конус с термокатодом; ЕС – концевой коллектор; заслонка – цельнометаллический прямопролетный клапан; ИД – датчик давления с горячим катодом; КМС – квадрупольный масс-спектрометр; ТМН – турбомолекулярный насос; НЕГ картридж – нераспыляемый геттерный насос; А & 3 – абсорбер СИ и зеркало.

энергии при 10, 25, 50, 100, 200, 400, 800, 1250 эВ и выбранных дозах 10²¹, 10²², 10²³ фотон · м⁻¹ [8].

Эти измерения выполняются при комнатной температуре для двух образцов медной тестовой камеры OFE-Cu — без покрытия и покрытой изнутри аморфным углеродом. Геометрические размеры: внутренний диаметр 40.5 мм, толщина 2.5 мм, длина 1500 мм. Экспериментальная программа и параметры одинаковы для обоих образцов. Второй раунд эксперимента будет повторен позже для отдельных, наиболее "интересных" измерений в диапазоне температур 60–300 К.

В настоящее время проведены измерения коэффициента фотонно-стимулированной десорбции при дозе 10^{21} фотон · м⁻¹ для обоих образцов (медная труба без покрытия и покрытая аморфным углеродом). В табл. 3 приведена зависимость коэффициента фотонно-стимулированной десорбции для различных образцов от критической энергии фотонов.

Параметр	Величина		
Максимальный горизонтальный угол СИ, мрад		10	
Полная длина тестовой камеры, мм		1500	
Длина камеры, подверженная облучению, мм	1300		
Горизонтальный размер сечения пучка на входе в тестовую камеру (минимум × номинал × максимум), мм		$5 \times 13 \times 21$	
Максимальный поток СИ при $E_{\rm c} = 100$ эВ, 10^{17} фотон · м ⁻¹ · c ⁻¹	1.2	3.1	5.0
Угол облучения камеры, мрад	5 ± 1.2	13 ± 3	21 ± 5

Таблица 2. Основные параметры установки

	÷ •		
$E_{\rm c}, \Im { m B}$	$\eta(a-C), 10^{-4}$ молекул · фотон ⁻¹	η (Cu), 10 ⁻⁴ молекул · фотон ⁻¹	η(Cu)/η(<i>a</i> -C)
12.5	Менее 0.15	0.32	_
25	0.27	1.3	5.0
50	0.51	2.1	4.2
100	1.5	4.7	3.1
200	2.3	9.6	4.1
400	5.8	19	3.2
800	15	35	2.3
1250	29	46	1.6

Таблица 3. Результаты измерений коэффициента фотонно-стимулированной десорбции (η) для различных образцов при потоке 10^{21} фотон · м⁻¹ и критической энергии (E_c)

выводы

Новая экспериментальная установка на новом канале вывода СИ обеспечивает подробное исследование вакуумных свойств прототипов, подвергнутых высокоинтенсивному СИ. При помощи данной установки накопленная доза фотонов будет сопоставима с дозой СИ, ожидаемой в экспериментальных зонах для проекта HL–LHC.

Сравнение коэффициентов фотонно-стимулированной десорбции медной камеры, покрытой аморфным углеродом, и без покрытия показывает, что применение покрытий более эффективно для получения предельного вакуума при высокоинтенсивном излучении.

СПИСОК ЛИТЕРАТУРЫ

1. *High-Luminosity Large Hadron Collider (HL-LHC)*. Preliminary Design Report. CERN-2015-005, CERN. Geneva, 2015.

- Benedikt M., Zimmermann F. Status of the Future Circular Collider Study // Proceed. Russ. Particle Accelerator Conf. St. Petersburg, Russia, 2016. P. 34.
- 3. Costa Pinto P, Calatroni S., Chiggiato P, et al. Thin Film Coatings for Suppressing Electron Multipacting in Particle Accelerators // Proceed. Particle Accelerator Conf. New York, USA, 2011. P. 2096.
- Costa Pinto P., Calatroni S., Neupert H. et al. // Vacuum. 2013. V. 98. P. 29.
- Baglin V., Bojko J., Grobner O. et al. The Secondary Electron Yield of Technical Materials and its Variation with Surface Treatments // Proceed. EPAC-2000. Vienna, 2000. P. 217.
- Anashin V., Dostovalov R., Fedorov N. et al. A Photodesorption Study of a TiZrV Coated Stainless Steel Vacuum Chamber // Proceed. EPAC-2002. Paris, France, 2002. P. 2550.
- 7. Анашин В.В., Достовалов Р.В., Краснов А.А. и др. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2003. № 11. С. 37.
- 8. *Anashin V., Baglin V., Chiggiato P. et al.* A Synchrotron Radiation Beamline Installed at BINP to Study the High Luminosity LHC Vacuum System // Proceed. Russ. Particle Accelerator Conf. St. Petersburg, Russia, 2016. P. 572.

First Experimental Data on New SR Beamline of VEPP-2000 Complex for HL–LHC Vacuum System

A. M. Semenov^{1, 2, *}, V. V. Anashin¹, A. A. Zharikov¹, A. A. Krasnov^{1, 3}, G. A. Fatkin¹, D. B. Shwartz^{1, 3}

¹Budker Institute of Nuclear Physics, Novosibirsk, 630090 Russia ²Novosibirsk State Technical University, Novosibirsk, 630087 Russia ³Novosibirsk State University, Novosibirsk, 630090 Russia *e-mail: A.M.Semenov@inp.nsk.su

In the framework of LHC upgrade project, new materials are proposed for vacuum use. Amorphous carbon deposited on a vacuum chamber wall is examined as a coating with a low secondary electron emission rate for superconducting system designed to upgrade the LHC, i.e., to increase the luminosity of the machine (HL–LHC). Since protons will generate synchrotron radiation with a critical energy of ~10 eV and flux of 10^{16} photon m⁻¹ s⁻¹, it is important to study the effect of photons on the surface covered with amorphous carbon at room and cryogenic temperature. The construction and the parameters of the set-up on a new synchrotron beamline of the VEPP-2000 booster are described. First results of measuring the coefficient of photon-stimulated desorption are also presented.

Keywords: vacuum, Large Hadron Collider, photon-stimulated desorption, amorphous carbon.