УДК 539.216.2:621.318.122

НАНОКОМПОЗИТНЫЕ ПЛЕНКИ СоPt–Al₂O₃: СИНТЕЗ, СТРУКТУРНЫЕ И МАГНИТНЫЕ СВОЙСТВА

© 2020 г. В. С. Жигалов^{*a*, *}, Л. Е. Быкова^{*a*, **}, В. Г. Мягков^{*a*}, А. Н. Павлова^{*b*}, М. Н. Волочаев^{*a*}, А. А. Мацынин^{*a*}, Г. С. Патрин^{*a*, *c*}

^аИнститут физики им. Л.В. Киренского ФИЦ КНЦ СО РАН, Красноярск, 660036 Россия

^bСибирский государственный университет науки и технологий им. М.Ф. Решетнева, Красноярск, 660000 Россия

> ^сСибирский федеральный университет, Красноярск, 66004 Россия *E-mail: zhigalov@iph.krasn.ru **E-mail: lebyk@iph.krasn.ru Поступила в редакцию 14.01.2019 г. После доработки 18.02.2019 г. Принята к публикации 21.02.2019 г.

Представлены результаты исследования структурных и магнитных свойств нанокомпозитных пленок CoPt–Al₂O₃, полученных путем отжига двухслойных пленок Al/(Co₃O₄ + Pt) на подложке MgO(001) при температуре 650°C в вакууме. Синтезированные композитные пленки содержали ферромагнитные наногранулы CoPt со средним размером 25–45 нм, вложенные в непроводящую матрицу Al₂O₃. Намагниченность насыщения $M_s \sim 330$ Гс и коэрцитивная сила $H_c \approx 6$ кЭ измерены в плоскости пленки и перпендикулярно ей. Полученные пленки обладали пространственной магнитной вращающейся анизотропией, позволяющей произвольно устанавливать легкую ось намагничивания, как в плоскости пленки, так и перпендикулярно ей, в магнитном поле напряженностью, превышающей коэрцитивную силу ($H > H_c$).

Ключевые слова: тонкие пленки, ферромагнитные нанокомпозиты, сплав CoPt, магнитная анизотропия.

DOI: 10.31857/S1028096020010227

введение

Композитные наноматериалы в последние годы стали объектом многочисленных исследований, так как они обладают новыми функциональными свойствами, отличными от физических свойств их компонентов [1]. Интенсивно исследуются композитные ферромагнитные пленки, содержащие нанокластеры переходных металлов Со, Fe или Ni в диэлектрической или полупроводниковой матрице, полученные различными физическими и химическими методами [2–16]. Ранее для получения ферромагнитных нанокомпозитных пленок Fe–In₂O₃ [12], Co–In₂O₃ [13], Co–Al₂O₃ [14, 15], Fe–ZrO₂ [16], Co–ZrO₂ [17] были использованы термитные реакции.

Тонкие пленки FePd, FePt и CoPt, упорядоченные по типу $L1_0$, обладают большой константой магнитной анизотропии K_1 ($K_1 > 3 \times 10^7$ эрг/см³) с осью легкого намагничивания, расположенной перпендикулярно поверхности пленки (так называемая перпендикулярная магнитная анизотропия). Нанокомпозитные пленки, которые содержат изолированные высококоэрцитивные $L1_0$ -кластеры, вложенные в немагнитную матрицу [18–25], могут быть использованы для магнитной записи информации с высокой плотностью.

В настоящее время имеется небольшое количество работ, посвященных получению и исследованию нанокомпозитов, содержащих наночастицы $L1_0$ -CoPt и $L1_0$ -FePt в оксидных матрицах [18, 19, 22–25]. Для практических применений такие исследования необходимы, чтобы получать нанокомпозиты с заданными магнитными, структурными и транспортными свойствами.

В настоящей работе представлены результаты синтеза, исследования структурных и магнитных свойств высококоэрцитивных нанокомпозитных пленок CoPt–Al₂O₃. Синтез таких пленок был проведен с использованием твердофазной реакции в пленочной системе Al/(Co₃O₄ + Pt)/MgO путем отжига в вакууме при температуре 650°C в течение 1 ч. Определены основные характеристики синтеза: температура инициирования, фазовый состав реагентов и продуктов реакции. Полученные образцы обладали пространственной

Рис. 1. Схема изготовления нанокомпозитных пленок CoPt-Al₂O₃.

магнитной вращающейся анизотропией, позволяющей произвольно устанавливать легкую ось намагничивания в любом пространственном направлении, как в плоскости пленки, так и перпендикулярно ей, в магнитном поле напряженностью, превышающей коэрцитивную силу, и сохранять новое направление после снятия внешнего магнитного поля. Высококоэрцитивные нанокомпозитные пленки с магнитной вращающейся анизотропией могут найти применение в устройствах с настраиваемой легкой осью.

МЕТОДИКА ЭКСПЕРИМЕНТОВ И ПРИГОТОВЛЕНИЕ ОБРАЗЦОВ

На рис. 1 приведена схема изготовления нанокомпозитных пленок CoPt–Al₂O₃. Вначале получали высококоэрцитивные ферромагнитные пленки $L1_0$ -CoPt(111) по методике, описанной в [26], которая включала: магнетронное распыление пленок Pt толщиной ~50 нм в вакууме (10⁻⁶ Topp) на подложку MgO(001), подогретую до температуры 250°С, что обеспечивало эпитаксиальный рост плоскости (111) пленки Pt относительно поверхности подложки; термическое осаждение поликристаллической пленки Co толщиной ~70 нм в вакууме (10⁻⁶ Topp) на пленку Pt при комнатной температуре для предотвращения реакции между слоями (выбранные толщины реагирующих слоев Со ~ 70 нм и Pt ~ 50 нм обеспечивали попадание в эквиатомный состав); отжиг полученных двухслойных образцов Co/Pt(111)/MgO в вакууме (10⁻⁶ Topp) при температуре 650°С в течение 90 мин. После отжига образцов Co/Pt(111)/MgO магнитожесткая фаза $L1_0$ -CoPt(111) формируется в пленочной структуре Co/Pt(111) на основе ориентированного слоя Pt(111) [26].

Далее проводили окисление пленок $L1_0$ -CoPt/ MgO на воздухе при температуре ~550°C в течение 3 ч. В результате окисления получали пленочную структуру Co₃O₄ + Pt, содержащую нанокластеры Pt, диспергированные в матрицу Co₃O₄. Надо заметить, что при данном методе происходило окисление только Co, а Pt оставалась неокисленной.

На следующем этапе проводили термическое осаждение слоя Al толщиной ~140 нм в вакууме (10^{-6} Торр) на поверхность пленки Co₃O₄ + Pt. Для предотвращения неконтролируемой реакции между слоями осаждение Al осуществляли при комнатной температуре. В результате получали исходную пленочную структуру Al/(Co₃O₄ + Pt)/ MgO(001).

Для получения нанокомпозитных пленок CoPt–Al₂O₃ проводили отжиг исходных Al/(Co₃O₄ +

+ Pt)/MgO(001) образцов в вакууме (10⁻⁶ Topp) в температурном интервале 350–650°С с шагом 50°С, выдерживая их при каждой температуре в течение 40 мин. После каждого отжига измеряли намагниченность пленки. По появлению намагниченности фиксировали образование магнитных фаз Со и CoPt. В результате этих измерений были определены температуры инициирования и окончания синтеза нанокомпозита CoPt–Al₂O₃.

Толщины реагирующих слоев определяли методом рентгеноспектрального флуоресцентного анализа. Намагниченность насыщения *M*_s и коэрцитивную силу Н_с измеряли на вибрационном магнетометре в магнитных полях напряженностью до 20 кЭ. Кривые крутящих моментов измерены на крутильном магнетометре в максимальном магнитном поле 17 кЭ. Фазовый состав исследовали методом рентгеновской дифракции на дифрактометре ДРОН-4-07 с использованием излучения Си K_{α} ($\lambda = 0.15418$ нм). Структурные исследования синтезированных пленок также проводили методами просвечивающей электронной микроскопии в микроскопе Hitachi HT7700, оснащенном энергодисперсионным спектрометром Bruker X-Flash 6T/60, при ускоряющем напряжении 100 кВ. Поперечные срезы изготавливали с помощью однолучевой системы фокусируемого ионного пучка (FIB, Hitachi FB2100). Температурная зависимость электросопротивления пленки Al/(Co₃O₄ + Pt) была измерена четырехзондовым методом с прижимными контактами в вакууме (10⁻⁶ торр) при скорости нагрева ~5 град/мин.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Процесс восстановления кобальта и образования ферромагнитных гранул CoPt был исследован путем измерения намагниченности насыщения исходных образцов Al/(Co₃O₄ + Pt)/MgO(001) в зависимости от температуры отжига $M_s(T)$ (рис. 2а). Из зависимости $M_s(T)$ видно, что до температуры ~490°С в исследуемой структуре Al/(Co₃O₄ + Pt) отсутствуют процессы восстановления Co, поэтому намагниченность близка к нулю. Намагниченность резко увеличивается при T > 500°C. Отжиг при T > 650°C способствует появлению максимального количества гранул CoPt.

На рис. 2б приведена температурная зависимость электросопротивления пленки Al/(Co₃O₄ + + Pt)/MgO(001). Из рисунка видно, что до ~490°C сопротивление носит металлический характер, который определяется верхним слоем алюминия, и перемешивание слоев не происходит. На зависимости R(T) можно выделить две области: вблизи $T_1 \sim 490$ °C и $T_2 \sim 600$ °C. Известно [14], что T_1 близка к температуре ~500°C восстановления Со

Рис. 2. Зависимость намагниченности насыщения M_s (а) и электросопротивления R (б) от температуры отжига T пленки Al/(Co₃O₄ + Pt)/MgO.

из оксида Co₃O₄ в пленочной системе Al/Co₃O₄. В то же время известно [27], что образование фазы $L1_0$ -CoPt начинается при температуре ~375°C в пленках Pt/Co. Можно сделать вывод, что при $T_1 \sim 490$ °C начинается реакция восстановления Co из оксида Co₃O₄ с образованием фаз CoPt и Al₂O₃. В [27] показано, что фаза CoPt₃ образуется при температуре ~575°C, которая близка к температуре $T_2 \sim 600$ °C. В результате при температуре выше 600°C электросопротивление пленки резко возрастает, что указывает на продолжение твердофазной реакции в пленке Al/(Co₃O₄ + Pt)/ MgO(001) с образованием фаз CoPt, CoPt₃ и Al₂O₃.

Температура инициирования реакции $T_{\rm in} = T_1 \approx 490^{\circ}$ С в пленочной системе Al/(Co₃O₄ + Pt)/ MgO(001), определенная по зависимости R(T), совпадает с температурой T_1 на зависимости намагниченности от температуры отжига $M_{\rm s}(T)$. По этим зависимостям также была определена температура окончания реакции и образования гранул CoPt ~650°C.

После окисления пленки CoPt(111) и нанесения слоя Al рентгеновские измерения показали, что сформировавшаяся система состояла из фаз Co₃O₄, Pt и Al (рис. 3, кривая *I*). Отжиг при температуре 650°С приводил к образованию в продуктах реакции упорядоченной тетрагональной фазы $L1_0$ —CoPt, что подтверждается наличием сверх-

Рис. 3. Дифрактограммы пленки Al/(Co₃O₄ + + Pt)/MgO: *1* – исходной; *2* – после отжига при 650°С.

структурного рефлекса 001, а также упорядоченной кубической фазы $CoPt_3$ (сверхструктурный рефлекс 001) (рис. 3, кривая 2). Рефлексы фазы Al_2O_3 не наблюдались в виду ее высокой дисперсности.

Структурные исследования синтезированных пленок проводили также в просвечивающем электронном микроскопе. Электронограмма полученных образцов CoPt $-Al_2O_3$ (рис. 4, табл. 1) содержит рефлексы упорядоченных фаз $L1_0$ –CoPt и $L1_2$ –CoPt₃ (на это указывают сверхструктурные и фундаментальные рефлексы 001 и 002 фазы $L1_0$ –CoPt и 100 и 200 фазы $L1_2$ –CoPt₃) и фаз

Рис. 4. Электронограмма нанокомпозитной пленки $CoPt-Al_2O_3$.

 α -Al₂O₃, γ -Al₂O₃, а также небольшого количества алюминиевой шпинели CoAl₂O₄.

Поперечные срезы исходной пленки $Al/(Co_3O_4 + Pt)/MgO(001)$ (рис. 5а) и после отжига при T = 650°C (рис. 5б) показывают, что исходная пленка состоит из слоя сплава $Co_3O_4 + Pt$ и слоя Al, а после отжига образуется композит CoPt-Al₂O₃. Это подтверждают рентгеновские и электронно-микроскопические измерения.

Электронно-микроскопическое изображение поверхности синтезированного образца $CoPt-Al_2O_3$ (рис. 6) показывает, что наночастицы CoPt равномерно распределены в продукте реакции.

№ кольца	CoPt	CoPt ₃	α -Al ₂ O ₃	γ -Al ₂ O ₃	CoAl ₂ O ₄
1	001	100	—	—	—
2	—	—	—	—	220
3	—	110	—	220	—
4	110	—	104	—	—
5	—	111	—	222	—
6	111	_	113	—	—
7	—	200	—	—	400
8	002	—	—	400	331
9	—	210	024	—	—
10	201	—	116	—	422
11	112	211	018	511	511
12	—	220	214	400	440
13	220	—	—	—	—
14	—	310	—	—	_
15	311	_	_	_	_

Таблица 1. Индицирование дифракционных рефлексов hkl нанокомпозитной пленки CoPt-Al₂O₃

Рис. 5. Изображение поперечного разреза пленки $Al/(Co_3O_4 + Pt)/MgO$: а – исходной; б – после отжига при $T = 650^{\circ}C$.

Среднее атомное число для образца фазы Al_2O_3 ниже атомного числа CoPt, поэтому темные области соответствуют гранулам CoPt, а светлые области – Al_2O_3 . Средний размер гранул CoPt находится в диапазоне 25–45 нм.

По результатам рентгеновских и электронномикроскопических измерений можно сделать вывод, что полученная пленка после отжига содержит наногранулы CoPt ($L1_0$ -CoPt + $L1_2$ -CoPt₃), окруженные Al₂O₃. Процесс синтеза нанокомпозита включает последовательное протекание трех твердофазных реакций:

$$\sim 490^{\circ}\mathrm{C} \rightarrow 8\mathrm{Al} + 3\mathrm{Co}_{3}\mathrm{O}_{4} \rightarrow 9\mathrm{Co} + 4\mathrm{Al}_{2}\mathrm{O}_{3}, \quad (1)$$

$$\sim 490^{\circ}C \rightarrow Co + Pt \rightarrow Ll_0 - CoPt,$$
 (2)

$$\sim 600^{\circ}\mathrm{C} \to L1_{0} - \mathrm{CoPt} + 2\mathrm{Pt} \to L1_{2} - \mathrm{CoPt}_{3}.$$
(3)

В полученных образцах обнаружена пространственная магнитная вращающаяся анизотропия, легкую ось которой можно вращать в полях напряженностью, превышающей коэрцитивную силу, как в плоскости образца, так и перпендикулярно ей, что подтверждается исследованиями на крутильном магнетометре (рис. 7 и 8).

На рис. 7 схематически изображено вращение легкой оси (EA) и показана кривая крутящего момента $L_{\parallel}(\phi)$ в плоскости полученной пленки CoPt-Al₂O₃ (прямой ($\phi = 0^{\circ}-360^{\circ}$) и обратный ($360^{\circ}-0^{\circ}$) ходы) в магнитном поле 10 кЭ. Эксперименты показали, что легкая ось из начального положения EA₀ выстраивалась в направлении EA_{ϕ} в плоскости пленки при вращении магнитного поля **H** на угол ϕ в плоскости образца и сохраняла это направление после снятия внешнего магнитного поля. Кривая крутящего момента обладала гистерезисом вращения (запаздывание на угол α). Для количественной характеристики магнитной вращающейся анизотропии в [26] была введена константа $L_{\parallel}^{\text{rot}}$, которая определена как сдвиг кривой крутящего момента при вращении магнитного поля по часовой ($+L_{\parallel}^{\text{rot}}$) и против часовой ($-L_{\parallel}^{\text{rot}}$) стрелки ($L_{\parallel}^{\text{rot}} = +L_{\parallel}^{\text{rot}} = -L_{\parallel}^{\text{rot}}$) (рис. 7). Из кривой видно, что в пленке наводится магнитная вращающаяся анизотропия величиной $L_{\parallel}^{\text{rot}} \approx 7 \times 10^5$ эрг/см³ и есть небольшой вклад одноосной анизотропии $K_0 \sin 2\varphi$, где $K_0 \approx 1.5 \times 10^5$ эрг/см³ – константа одноосной анизотропии.

На рис. 8 схематически изображено вращение легкой оси (ЕА) и показана кривая крутящего мо-

Рис. 6. Электронно-микроскопическое изображение поверхности нанокомпозитной пленки CoPt-Al₂O₃. Темные области соответствуют гранулам CoPt, светлые области – матрице Al₂O₃.

Рис. 7. Схематическое изображение вращения легкой оси (ЕА) и кривая крутящего момента $L_{\parallel}^{\text{rot}}(\phi)$ в плоскости пленки CoPt-Al₂O₃ (прямой ($\phi = 0^{\circ}-360^{\circ}$) и обратный ($360^{\circ}-0^{\circ}$) ходы) в магнитном поле 10 кЭ.

мента $L_{\perp}(\phi)$ перпендикулярно плоскости полученной пленки CoPt—Al₂O₃ (прямой (0°—360°) и обратный (360°—0°) ходы) в магнитном поле 10 кЭ. Легкая ось **EA**₀ из начального положения выстраивалась в направлении **EA**_{ϕ} перпендикулярно плоскости пленки при вращении магнитного поля **H** на угол ϕ перпендикулярно плоскости образца с учетом запаздывания на угол α и сохраняла это направление после снятия внешнего магнитного поля. Крутящий момент при вращении магнитного поля перпендикулярно плоскости образца (рис. 8) может быть разложен на магнитную вращающуюся анизотропию $L_{\perp}^{\text{rot}} \approx 7 \times 10^5$ эрг/см³ и одноосную анизотропию с $K_0 \approx 2.5 \times 10^5$ эрг/см³.

При наличии магнитной вращающейся анизотропии в пленках петли гистерезиса в любом пространственном направлении одинаковые [27, 28]. На рис. 9 приведены петли гистерезиса, измеренного в плоскости пленки CoPt-Al₂O₃ и перпендикулярно ей. Петли гистерезиса близки по форме и характеризуются коэрцитивной силой $H_{\rm c} \approx 6~{
m k}$ Э и намагниченностью насыщения M_s ~330 Гс в обоих направлениях. При исследовании нанокомпозитных пленок CoPt-AlN [22], CoPt-TiO₂ и FePt-TiO₂ [24] показано, что они демонстрируют одинаковые петли гистерезиса, как в плоскости пленки, так и перпендикулярно ей. На основании этого можно предположить, что в этих пленках, так же, как и в изученных в настоящей работе образцах, существует магнитная вращающаяся ани-

Рис. 8. Схематическое изображение вращения легкой

оси (ЕА) и кривая крутящего момента $L_{\perp}^{\text{rot}}(\phi)$ перпендикулярно плоскости пленки CoPt-Al₂O₃ (прямой ($\phi = 0^{\circ}$ -360°) и обратный (360°-0°) ходы) в магнитном поле 10 кЭ.

зотропия. В литературе выдвигаются различные предположения о ее источниках: перестройка доменной структуры, мартенситные превращения, управляемая магнитострикция и так далее. Однако до сих пор отсутствуют убедительные модели. проясняющие этот эффект. Ранее было исследовано формирование магнитной вращающейся анизотропии в тонких поликристаллических δ-Мп_{0.6}Ga_{0.4} [28], МпВі [29], Со₂₈Рt₇₂ [27] и эпитаксиальных L10-CoPt(111) [26] пленках. В [26] одним из механизмов, ответственным за появление анизотропии, считают обменное магнитное взаимодействие двух фаз $-L1_0$ -CoPt и $L1_2$ -CoPt₃. Формирование этих фаз наблюдается в исследуемых нанокомпозитных пленках CoPt-Al₂O₃. Магнитную вращающуюся анизотропию в полученных пленках можно объяснить обменным

Рис. 9. Петли гистерезиса в плоскости нанокомпозитной пленки CoPt-Al₂O₃ и перпендикулярно ей.

магнитным взаимодействием фаз $L1_0$ -CoPt и $L1_2$ -CoPt₃, входящих в состав гранул CoPt.

ЗАКЛЮЧЕНИЕ

Отметим основные результаты проведенных исследований. Синтезированы высококоэрцитивные нанокомпозитные пленки CoPt-Al₂O₃ путем отжига пленочной системы $Al/(Co_2O_4 + Pt)/$ MgO в вакууме при температуре 650°С в течение 1 ч. Определена температура инициирования синтеза ~490°С. Комплекс проведенных структурных и магнитных исследований однозначно указывает на образование в продуктах реакции ферромагнитных кластеров CoPt (L10-CoPt + $+ L1_2$ -CoPt₂) со средним размером 25–45 нм в непроводящей матрице Al₂O₃, намагниченность насышения ~330 Гс/см³ и коэрцитивная сила ~6 кЭ. В полученных образцах присутствует пространственная магнитная вращающаяся анизотропия, легкую ось которой можно устанавливать, как в плоскости образца, так и перпендикулярно ей, с помошью магнитного поля. напряженность которого превышает коэрцитивную силу, и сохранять это направление после снятия внешнего магнитного поля. Магнитная вращающаяся анизотропия в полученных пленках объясняется обменным магнитным взаимодействием фаз L10-CoPt и L1₂-CoPt₃, входящих в состав гранул CoPt. Изучение механизмов и условий появления магнитной врашаюшейся анизотропии в пленках может быть востребовано для создания наноустройств с настраиваемой легкой осью намагничивания. Таким образом, твердофазный метод является перспективным способом синтеза нанокомпозитных тонких пленок, содержащих ферромагнитные кластеры, вложенные в оксидные матрицы, и имеющих высокую намагниченность и хорошую химическую стабильность.

БЛАГОДАРНОСТИ

Авторы благодарят Д.А. Великанова за измерение петель гистерезиса образцов, Г.Н. Бондаренко за структурные рентгеновские эксперименты. Электронно-микроскопические исследования поверхности и поперечного среза образцов проведены с использованием оборудования Центра коллективного пользования Федерального исследовательского центра КНЦ СО РАН.

Работа выполнена при финансовой поддержке РФФИ совместно с Правительством Красноярского края, Красноярского краевого фонда науки (проект № 18-42-243009р_мол_а, и №19-43-240003р_а), Фонда содействия развитию малых форм предприятий в научно-технической сфере (договор № 11843ГУ/2017, код 0033636, конкурс "Умник").

СПИСОК ЛИТЕРАТУРЫ

- 1. *Nan C.-W.* // MRS Bull. 2015. V. 40. № 09. P. 719. https://doi.org/10.1557/mrs.2015.196
- Fouad O.A., Makhlouf S.A., Ali G.A.M., El-Sayed A.Y. // Mater. Chem. Phys. 2011. V. 128. P. 70. https://doi.org/10.1016/j.matchemphys.2011.02.072
- Rathore A.K., Pati S.P., Ghosh M. et al. // J. Mater. Sci.: Mater. Electron. 2017. V. 28. P. 6950. https://doi.org/10.1007/s10854-017-6395-7
- Xu J., Yang H., Fu W. et al. // J. Alloys Compd. 2008. V. 458. P. 119. https://doi.org/10.1016/j.jallcom.2007.03.149
- Xu G.-R., Shi J.-J., Dong W.-H. et al. // J. Alloys Compd. 2015. V. 630. P. 266.
- https://doi.org/10.1016/j.jallcom.2015.01.067 6. *Dokukin E.B., Erhan R.V., Islamov A.Kh. et al.* // Phys.
- Status Sol. B. 2013. V. 250. P. 1656. https://doi.org/10.1002/pssb.201248379
- Goyal R., Lamba S., Annapoorni S. // Phys. Status Sol. A. 2016. V. 213. P. 1309. https://doi.org/10.1002/pssa.201532704
- Pati S.P., Bhushan B., Das D. // J. Solid State Chem. 2010. V. 183. P. 2903. https://doi.org/10.1016/j.jssc.2010.09.037
- Panda N.R., Pati S.P., Das A., Das D. // Appl. Surf. Sci. 2018. V. 449. P. 654. https://doi.org/10.1016/j.apsusc.2017.12.003
- Gokul B., Saravanan P., Vinod V.T.P. et al. // Powder Technol. 2015. V. 274. P. 98. https://doi.org/10.1016/j.powtec.2015.01.002
- Cao Y., Kobayashi N., Zhang Y.-W. et al. // J. Appl. Phys. 2017. V. 122. P. 133903. https://doi.org/10.1063/1.5005620
- Myagkov V.G., Tambasov I.A., Bayukov O.A. et al. // J. Alloys Compd. 2014. V. 612. P. 189. https://doi.org/10.1016/j.jallcom.2014.05.176
- Быкова Л.Е., Жигалов В.С., Мягков В.Г. и др. // ФТТ. 2018. Т. 60. № 10. С. 2028. https://doi.org/10.21883/FTT.2018.10.46535.087
- Myagkov V.G., Bykova L.E., Zhigalov V.S. et al. // J. Alloys Compd. 2017. V. 724. P. 820. https://doi.org/10.1016/j.jallcom.2017.07.081
- Волочаев М.Н., Комогорцев С.В., Мягков В.Г. и др. // ФТТ. 2017. Т. 60. № 7. С. 1409. https://doi.org/10.21883/FTT.2018.07.46132.025
- Myagkov V.G., Bykova L.E., Bayukov O.A. et al. // J. Alloys Compd. 2015. V. 636. P. 223. https://doi.org/10.1016/j.jallcom.2015.02.012
- Myagkov V.G., Zhigalov V.S., Bykova L.E. et al. // J. Alloys Compd. 2016. V. 665. P. 197. https://doi.org/10.1016/j.jallcom.2015.12.257
- Qiu Z.G., Zeng D.C., Zhao L.Z. et al. // Physica B. 2016.
 V. 500 P. 111. https://doi.org/10.1016/j.physb.2016.07.029
- Lin J.J, Pan Z.Y, Karamat S. et al. // J. Phys. D: Appl. Phys. 2008. V. 41. P. 095001. https://doi.org/10.1088/0022-3727/41/9/095001
- Shiroyama T., Varaprasad B.S.D.Ch.S., Takahashi Y.K., Hono K. // AIP Adv. 2016. V. 6. P. 105105. https://doi.org/10.1063/1.4964930

- Cui W.B., Varaprasad B., Takahashi Y.K. et al. // Solid State Commun. 2014. V. 182. P. 17. https://doi.org/10.1016/j.ssc.2013.11.010
- 22. Yu Y., Shi J., Nakamura Y. // J. Appl. Phys. 2011. V. 109. P. 07C1031. https://doi.org/10.1063/1.3536789
- Tang R., Zhang W., Li. Y. // J. Magn. Magn. Mater. 2010. V. 322. P. 3490. https://doi.org/10.1016/j.jmmm.2010.06.051
- 24. Tang R., Zhang W., Li. Y. // J. Alloys Compd. 2010. V. 496. P. 380. https://doi.org/10.1016/j.jallcom.2010.02.018
- White C.W., Withrow S.P., Budai J.D. et al. // J. Appl. Phys. 2005. V. 98 P. 114311. https://doi.org/10.1063/1.2138801

- 26. *Мягков В.Г., Жигалов В.С., Быкова Л.Е. и др.* // Письма в ЖЭТФ. 2015. Т. 102. № 6. С. 393. https://doi.org/10.7868/S0370274X15180071
- Myagkov V.G., Bykova L.E., Zhigalov V.S. et al. // J. Alloys Compd. 2017. V. 706. P. 447. https://doi.org/10.1016/j.jallcom.2017.02.261
- Myagkov V.G., Zhigalov V.S., Bykova L.E. et al. // Phys. Status Sol. B. 2012. V. 249. P. 1541. https://doi.org/10.1002/pssb.201248064
- 29. *Мягков В.Г., Быкова Л.Е., Яковчук В.Ю. и др. //* Письма в ЖЭТФ. 2017. Т. 105. № 10. С. 610. https://doi.org/10.7868/S0370274X1710006X

Nanocomposite CoPt-Al₂O₃ Films: Synthesis, Structural and Magnetic Properties

V. S. Zhigalov^{1, *}, L. E. Bykova^{1, **}, V. G. Myagkov¹, A. N. Pavlova², M. N. Volochaev¹, A. A. Matsynin¹, G. S. Patrin^{1, 3}

¹Kirensky Institute of Physics Federal Research Center KSC Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, 660036 Russia

²Reshetnev Siberian State University of Science and Technology, Krasnoyarsk, 660000 Russia ^cSiberian federal University, Krasnoyarsk, 66004 Russia *e-mail: zhigalov@iph.krasn.ru

**e-mail: lebyk@iph.krasn.ru

Structural and magnetic properties of CoPt–Al₂O₃ nanocomposite films obtained by annealing two-layer Al/(Co₃O₄ + Pt) films on a MgO(001) substrate at 650°C in a vacuum were studied. The synthesized composite films contained ferromagnetic CoPt nano-granules of 25–45 nm in average size, enclosed in a non-conducting Al₂O₃ matrix. The saturation magnetization $M_s \sim 330$ G and the coercive force $H_c \approx 6$ kOe were measured in the plane of the film and perpendicular to it. The obtained films had a spatial magnetic rotatable anisotropy, allowing arbitrarily setting the easy axis of magnetization, both in the film plane and perpendicular to it, using a magnetic field greater than the coercive force $H > H_c$.

Keywords: thin films, ferromagnetic nanocomposites, CoPt alloy, magnetic anisotropy.