УДК 537.533

СТРУКТУРА ПЛЕНОК СИЛИЦИДОВ *Me*Si (*Me*: Li, Rb, K и Cs) ПО ДАННЫМ ЭЛЕКТРОННОЙ МИКРОСКОПИИ И ДИФРАКЦИИ МЕДЛЕННЫХ ЭЛЕКТРОНОВ

© 2020 г. М. Т. Нормурадов^b, А. С. Рысбаев^{a, *}, Ж. Б. Хужаниёзов^a, Д. А. Нормурадов^{b, **}

^а Ташкентский государственный технический университет им. И.А. Каримова, Ташкент, 100095 Узбекистан ^b Каршинский государственный университет, Карши, 180103 Узбекистан *e-mail: rysbaev@mail.ru **e-mail: normurodovd 1989@mail.ru Поступила в редакцию 14.01.2020 г. После доработки 25.02.2020 г. Принята к публикации 28.02.2020 г.

Методами электронной спектроскопии, растровой электронной микроскопии и дифракции медленных электронов исследован процесс формирования тонких наноразмерных пленок силицидов металлов MeSi (Me: Li, Rb, K и Cs). В результате имплантации большой дозы (10^{17} см⁻²) низкоэнергетических (5 кэВ) ионов Li, Rb, K и Cs в монокристаллы Si(111) и Si(100) и кратковременного термического отжига в приповерхностной области кремния созданы монокристаллические силицидные пленки LiSi, RbSi, CsSi, KSi. Определены оптимальные режимы ионной имплантации и отжига для формирования тонких монокристаллических пленок силицидов металлов. Показано, что толщина силицидных пленок растет с увеличением энергии имплантируемых ионов и при фиксированной энергии пропорциональна квадратному корню из дозы ионов.

Ключевые слова: монокристаллы кремния, имплантация больших доз низкоэнергетических ионов, концентрационные профили распределения атомов, термический отжиг, образование пленок щелочных металлов, структура и состав наноразмерных пленок.

DOI: 10.31857/S1028096020100155

введение

Повышенный интерес к получению тонких пленок силицидов металлов на поверхности Si и исследованию электронной и кристаллической структуры обусловлен перспективой их использования в качестве материала низкоомных контактов [1], термоэлектрических материалов [2, 3], р-п-переходов, элементов кремниевых интегральных схем и эффективных геттеров [3, 4]. Сведения о способах получения и свойствах массивных силицилов различных элементов содержатся в [5]. В последние годы в качестве перспективных материалов чаще всего упоминают силицидные пленочные материалы (CoSi₂, CrSi, FeSi₂, NiSi₂ и другие). что обусловлено возможностью их практического использования в качестве гетероструктурных, термоэлектрических и других приборных элементов [6]. О поведении в кремнии и германии щелочных элементов тяжелее лития впервые сообщалось в [7]. Авторы отмечают, что все они характеризуются медленной диффузией и не создают электронных уровней вблизи границ запрещенной зоны. В случае германия хорошо изученным шелочным элементом является только литий, который ведет себя как подвижный мелкий донор. Благодаря этому свойству он нашел применение в производстве германиевых детекторов ядерных излучений. В [8] впервые получены доказательства проявления донорных свойств ионов натрия, имплантированных в германий. Установлены дозы и температуры отжига, при которых термозонд регистрирует *n*-тип проводимости на поверхности легированного слоя. Ранее [9, 10] исследованы поверхности Si(111) и Si(100), имплантированные ионами Na и Ba. Было обнаружено, что при имплантации в кремний большой дозы ионов Na и Ba с низкой энергией в приповерхностной области формируются тонкие пленки силицида натрия и бария. Отсутствие подобных сведений о поведении других щелочных элементов в Si послужило поводом для проведения настоящей работы.

Целью работы было исследование влияния имплантации различных доз низкоэнергетиче-

Рис. 1. Оже-спектр Si(111) при имплантации ионов Rb⁺ с $E_0 = 1$ кэВ, доза облучения D: 0 (1); 5 × 10¹³ (2); 5 × 10¹⁴ (3); 5 × 10¹⁵ (4); 10¹⁶ (5); 8 × 10¹⁶ (6); 2 × × 10¹⁷ см⁻² (7).

ских ионов Li⁺, Rb⁺, K⁺ и Cs⁺ на элементный, химический состав и кристаллическую структуру поверхности Si(111) и Si(100), установление оптимальных режимов имплантации и отжига для формирования на поверхности кремния монокристаллической пленки силицида металла.

МЕТОДИКА

В работе исследована электронная и кристаллическая структура тонких наноразмерных пленок силицидов *Me*Si (*Me*: Na, Rb, Cs, Li). Экспериментальные измерения проводили на приборе с анализатором типа сферического зеркала с тормозящим полем, позволяющим исследовать поверхность методами электронной оже-спектроскопии, спектроскопии упруго рассеянных электронов, фотоэлектронной спектроскопии и дифракции медленных электронов при давлении остаточных газов не более 10^{-7} Па [11]. В качестве объектов исследования были выбраны монокристаллы Si(111), Si(100) *n*- и *p*-типа с удельным сопротивлением 6 кОм · см. В В технологической камере проводили обработку поверхности исследуемых материалов термическим прогревом, электронной бомбардировкой, ионным травлением, а также проводили имплантацию ионов Ва и щелочных элементов с энергией 0.5-5 кэВ дозой от 10^{13} до 2 × 10^{17} см⁻². Образцы Si очищали путем традиционного отжига в два этапа: длительно при температуре 1200 К в течение 60 мин и кратковременно при 1500 К в течение 1 мин. Также применяли разработанный авторами новый способ очистки поверхности монокристаллов Si, который заключается в предварительной имплантации большой дозы ионов Ва или щелочных элементов с низкой энергией в очищенный традиционным способом кремний и в последующем кратковременном отжиге при 1550 К [11]. В результате внедренные атомы щелочных металлов удаляются из приповерхностной области Si, образуя соединения с атомами Si, C, O, S, и тем самым приводят к дополнительной очистке Si. Морфологию, микроструктуру и химический состав образцов исследовали методами растровой электронной спектроскопии (РЭМ) и рентгеновской энергодисперсионной спектрометрии с использованием микроскопа Ouanta 200 3D при ускоряющем напряжении от 5 до 30 кВ в режимах детектирования вторичных и обратно рассеянных электронов.

Для установления типа кристаллической структуры поверхности наноразмерных пленок силицидов после проведения кратковременного (в течение 1—2 мин) при соответствующих температурах отжига ионно-имплантированных образцов Si снимали картины дифракции медленных электронов. Изменения элементного и химического состава приповерхностной области Si при имплантации щелочных элементов исследовали методом электронной оже-спектроскопии.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 1 приведены оже-спектры кремния, имплантированного различной дозой ионов Rb с $E_0 = 1$ кэВ. Как показывают спектры, при имплантации до дозы 10^{15} см⁻² пики, характерные для Rb, практически отсутствуют. Вероятно, это связано с глубоким проникновением ионов Rb⁺ при малых дозах облучения вследствие каналирования. Начиная с дозы 5×10^{15} см⁻² (кривая 4) в спектре появляются оже-пики, характерные для Rb – при 28, 31, 57, 76, 106 и 114 эВ, также присутствует основной низкоэнергетический пик кремния Si_{L2,3VV} при 92 эВ. С увеличением дозы ионов Rb⁺, при $D > 10^{16}$ см⁻², в спектре наблюдается трансформация оже-пика Si_{L2,3VV} из синглентной формы в дублетную (рис. 1, спектры 5–7). При этом сохраняются оже-пики Rb при 28, 31, 55.5 и 76 эВ.

Рис. 2. Оже-спектры чистого Si(111) (*1*) и Si, имплантированного ионами Li⁺ с $E_0 = 1$ кэВ при дозе облучения *D*: 5 × 10¹³ (*2*); 5 × 10¹⁴ (*3*); 5 × 10¹⁵ (*4*); 10¹⁶ (*5*); 10¹⁷ (*6*); 5 × 10¹⁷; 5 × 10¹⁷ см⁻² и отжиг при 1000 К в течение 1 мин (*7*).

Такое изменение формы оже-пика кремния при 92 эВ, вероятно, связано с образованием химического соединения между атомами Rb и Si. Связь осуществляют *sp*³-гибридизированные электроны Si и *s*-электроны Rb [5]. Отметим, что подобная картина наблюдалась в [12] при имплантации ионов Cr⁺ и N⁺ в кремний. Авторами получены пленки силицида хрома Cr₂Si и нитрида кремния Si₃N₄. Аналогичное раздвоение оже-пика кремния Si_{L2,3VV} наблюдалось также при имплантации ионов Li⁺, Na⁺, K⁺, Cs⁺ и Ba⁺. В качестве примера на рис. 2 и 3 приведены оже-спектры Si(111), имплантированного ионами Li⁺ и Cs⁺ с энергией $E_0 = 1$ кэВ при различной дозе облучения.

Согласно [5] в кристаллических структурах силицидов щелочных металлов (NaSi, KSi, RbSi, CsSi) атомы кремния образуют тетраэдрические изолированные группировки с электронной конфигурацией sp^3 , представляющие (Si₄)⁴-полианионы, окруженные 16 атомами щелочного металла. То есть в данном случае наблюдается сочетание ионной связи (между атомами металлов и атомами кремния) с ковалентной связью между атома-

Рис. 3. Оже-спектр кремния при имплантации ионов $Cs^+ c E_0 = 1$ кэВ, доза облучения *D*: 0 (*1*); 5 × 10¹³ (*2*); 5 × 10¹⁴ (*3*); 5 × 10¹⁵ (*4*); 10¹⁶ (*5*); 8 × 10¹⁶ (*6*); 2 × × 10¹⁷ см⁻² (*7*).

ми Si. Таким образом, трансформация оже-пика Si_{12 3VV} из синглентной формы в дублетную при имплантации больших доз ионов щелочных элементов в Si, вероятно, связана с образованием химического соединения между атомами Si и внедренной примеси. Типы образующихся химических соединений определяли из профилей распределения концентрации атомов в ионно-имплантированном слое кремния по интенсивности низкоэнергетических пиков Si и внедренной примеси. Профили распределения атомов по глубине получали методом количественной электронной ожеспектроскопии при послойном стравливании пучком ионов Ar⁺ с энергией 1.5-3 кэВ, падающими под углом 15° к поверхности. Скорость травления составляла 3–4 Å · мин⁻¹.

Концентрации имплантированных атомов в кремнии рассчитывали с помощью введения факторов обратной элементной оже-чувствительности с матричными поправками [13]. На рис. 4 приведены концентрационные профили распределения атомов Rb в Si(111), имплантированном ионами с $E_0 = 1$ кэВ при различных дозах облучения, полученные расчетным способом по отме-

Рис. 4. Концентрационные профили распределения атомов Rb, имплантированных в Si(111) с энергией $E_0 = 1$ кэB, доза облучения D: 5×10^{13} (1); 5×10^{14} (2); 5×10^{15} (3); 8×10^{16} (4); 2×10^{17} см⁻² (5).

ченной выше методике. Видно, что при дозах имплантации до 5×10^{15} (кривая 3) форма профилей распределения атомов Rb по глубине близка к гауссовской, с увеличением дозы ионов максимум распределения смещается к поверхности. Максимальная глубина проникновения Rb составляет 110 Å. При лозе имплантации 2×10^{17} см⁻² максимум распределения наблюдается на поверхности. Образуется практически ступенчатый профиль распределения с концентрацией Rb примерно 50 ат. % на глубине 40 Å. Учитывая характер изменения пика Si_{L2.3VV}, можно предположить, что в этой области образуется моносилицид рубидия RbSi. Другой особенностью экспериментальных профилей является то, что глубина проникновения ионов оказывается несколько больше, чем в случае профилей, полученных компьютерным моделированием. Данное расхождение может быть обусловлено вбиванием атомов Rb ионами Ar⁺ при травлении, проявлением эффекта каналирования ионов, особенно в начале ионной имплантации. поскольку диаметр атома рубидия меньше межатомного расстояния в плоскости Si(111). Небольшой хвост в распределении атомов вблизи поверхности образца при больших дозах облучения $D = 2 \times 10^{17}$ см⁻², очевидно, обусловлен избыточными несвязанными атомами Rb, частично осажденными из ионного пучка в процессе имплантации. Аналогичные закономерности наблюдались для концентрационных профилей распределения ионов Li⁺ (рис. 5). Из сравнения профилей следует, что ионы Li проникают в Si(111) гораздо глубже, чем другие ионы. Глубина проникновения Li с энергией 1 кэВ при имплантации составляет 150 Å. Это связано с тем, что ковалентный радиус атомов Li наименьший и составляет 1.23 Å, что значительно меньше межатомного расстояния атомов Si на грани (111). Для

Рис. 5. Концентрационные профили распределения атомов Li, имплантированных в Si(111) с энергией $E_0 = 1$ кэВ, доза облучения D: 2×10^{13} (1); 2×10^{14} (2); 2×10^{15} (3); 5×10^{16} (4); 5×10^{17} см⁻² и отжиг при T = 1000 K (5).

доведения концентрации Li в приповерхностной области Si до 50 ат. % после имплантации дозы ионов Li 5 × 10^{17} см⁻² необходим отжиг при T == 1000 К в течение 1 мин. За счет диффузии атомов Li к поверхности в приповерхностном слое толщиной 60 Å образуется моносилицид лития. При измерении профилей распределения атомов щелочных элементов в Si(100) было установлено, что глубина проникновения ионов при одинаковых условиях имплантации больше, чем в Si(111). Это, очевидно, связано с тем, что грань (111) кремния наиболее плотно упакованная, а (100) наименее плотная. Экспериментально установлено также, что кратковременный отжиг имплантированных большой дозой ионов образцов Si в течение 2–10 мин при температуре T = 700-1000 К приводит к десорбции несвязанных атомов примеси и к полному соединению оставшихся атомов с атомами Si.

На рис. 6 приведены РЭМ-изображения поверхности, полученные на разных стадиях формирования пленки силицида рубидия. Из рисунка видно, что при имплантации дозы ионов Rb⁺ 10^{15} см⁻² (рис. 6а) формируются отдельные мелкие островки силицида рубидия с размерами 10-30 нм. С увеличением дозы до 10^{16} см⁻² они сливаются в более крупные островки округлой формы размером от 30 до 100 нм (рис. 6б). Наличие огранки свидетельствует об их монокристаллической структуре [14]. Однако между крупными островками наблюдаются неограненные мелкие островки с аморфной структурой. Дальнейшие увеличение дозы имплантации ионов Rb до 2 × $\times 10^{17}$ см⁻² приводит к росту плотности островков, но их размеры заметно не меняются (рис. 6в). После проведения последующего кратковременного отжига при T = 900 K в течение 1 мин происходит полное слияние островков и формирование

88

Рис. 6. РЭМ-изображения поверхности Si(111), имплантированной ионами Rb⁺ с $E_0 = 1$ кэВ при T = 300 K, доза облучения: $a - 10^{15}$; $6 - 10^{16}$; $B - 2 \times 10^{17}$; $r - 2 \times 10^{17}$ см⁻² и отжиг при T = 900 K в течение 1 мин.

Рис. 7. Картины дифракции медленных электронов для поверхности Si(111), имплантированной ионами Li, Rb, K и Cs с $E_0 = 1$ кэВ, после отжига в течение 1 мин при T = 900 (а), 800 (б, в), 500 K (г), образование сверхструктур: a – Si(111)– (4 × 4)Li; б – Si(111)–(2 × 2)Rb; в – Si(111)–(4 × 4)K; г – Si(111)–(4 × 4)Cs.

сплошной пленки силицида рубидия (рис. 6г). На картине дифракции медленных электронов в пленке силицида рубидия наблюдается сверхструктура Si(111)— (2×2) Rb. Аналогичные результаты также наблюдались при имплантации в Si ионов других щелочных элементов [15]. На рис. 7 приведены картины дифракции медленных электронов на поверхности Si(111), имплантированных ионами Li, Rb, K и Cs с энергией 1 кэВ, полученные после кратковременного отжига при различных температурах. На дифракционной картине Si(111)— (4×4) Li (рис. 7а) кроме основных рефлексов наблюдаются двойниковые рефлексы — дублеты. Наличие дублетов свидетельствует о доменном характере пленки лития, образованной на кремнии. Двойниковые или дробные рефлексы также наблюдаются на дифракционной картине Si (111)–(4 × 4)K (рис. 4в) и Si(111)–(4 × 4)Cs (рис. 4г). Имеют место три системы дополнительных рефлексов, которые отвечают трем плоскостям, ограняющим появившиеся фасетки. Поскольку с увеличением энергии первичных электронов E_p дополнительные рефлексы, возникающие из двумерного рефлекса 00, смещались в направлении $\langle 10 \rangle$, можно предположить, что гранями фасетки являются плоскости типа (110). При отжиге образцов Si(100), имплантированных ионами Li⁺, Rb⁺, K⁺ и Cs⁺ с $E_0 = 1$ кэВ, обнаружены следую-

Рис. 8. Картины дифракции медленных электронов для поверхности Si(100), имплантированной ионами Li, Rb, K и Cs c $E_0 = 1$ кэB, после отжига в течение 1 мин при T = 900 (а), 800 (б, в), 500 K (г), образование сверхструктур: a – Si(100)–(2 × 1)Li; 6 - Si(100)-(2 × 4)Rb; B - Si(100)-(2 × 1)K; r - Si(100)-(2 × 8)Cs.

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 10 2020

Тип силицида	LiSi	KSi	RbSi	CsSi
Параметры				
Структура исходного Si	100	100	100	100
	111	111	111	111
Энергия ионов, кэВ	0.5-5	0.5-5	0.5-5	0.5-5
<i>Т</i> отжига, К	900-1000	800-850	800-850	500-600
Толщина силицида, Å	50-110	35-95	30-90	40-90
Тип сверхструктуры	2×1	2×1	2×4	2×8
	4×4	4×4	2×2	4×4
Энергия электронов E_p , эВ	42	49	35	39
			42	30
Т восстановления исходной структуры, К	1400	1200	1200	1000

Таблица 1. Оптимальные режимы формирования тонких наноразмерных пленок силицидов бария и щелочных элементов

щие поверхностные сверхструктуры (рис. 8): Si(100)– (2×1) Li, Si(100)– (2×4) Rb, Si(100)– (2×1) K, Si(100)– (2×8) Cs.

В табл. 1 приведены режимы формирования (структура исходного Si, энергия ионов, температура последующего отжига) и типы поверхностных сверхструктур силицидов щелочных элементов, образующихся при отжиге ионно-имплантированных образцов кремния, а также толщина силицидной пленки и температура восстановления исходной структуры кремния. Отметим, что указанные поверхностные сверхструктуры наблюдались и при отжиге образцов, имплантированных ионами с большой энергией ($E_0 = 2 -$ 5 кэВ). Различие заключалось лишь в том, что для формирования поверхностных структур требовался более длительный (тем больше, чем больше энергия иона) отжиг при соответствующих температурах. В зависимости от вида исходной грани поверхности кремния и типа имплантируемых ионов щелочных элементов образуются поверхностные сверхструктуры различных типов.

Ранее [15] было показано, что в результате имплантации большой дозы ионов щелочных элементов в Si в приповерхностной области преимущественно образуется химическое соединение, состоящее из внедренных атомов и атомов кремния. Последующий кратковременный отжиг приводит к формированию пленок силицидов и десорбции излишних щелочных атомов. Как показали концентрационные профили распределения атомов, измеренные при послойном стравливании поверхности, в приповерхностной области формируются пленки моносилицидов щелочных элементов толщиной от 30 до 110 Å при увеличении энергии ионов от 0.5 до 5 кэВ.

ЗАКЛЮЧЕНИЕ

Показано, что имплантация ионов щелочных элементов в Si(111) и Si(100) при больших дозах $(10^{16} - 10^{17} \text{ см}^{-2})$ приводит к частичному образованию силицилов металлов и после кратковременного отжига при соответствующих температурах образуются пленки моносилицидов Li, Na, K, Rb, Cs и Ba. Установлено, что при дозах до 5×10^{15} форма профилей распределения имплантированных атомов по глубине близка к гауссовской, с увеличением дозы ионов максимум распределения смещается к поверхности. При высоких дозах $\sim 2 \times 10^{17} \, {\rm cm}^{-2}$ максимум распределения наблюдается непосредственно на поверхности. Образуется практически ступенчатый профиль распределения. В ходе исследований методом РЭМ высокого разрешения установлено, что при имплантации дозы ионов Rb^+ 10¹⁵ см⁻² формируются отдельные мелкие островки силицида рубидия с размерами 10-30 нм. С увеличением дозы имплантации они сливаются в более крупные (размером 30-100 нм) монокристаллические островки округлой формы. Между крупными островками наблюдаются неограненные мелкие островки с аморфной структурой. При дозе 6×10^{16} см⁻² и отжиге при T = 900 К происходит полное слияние островков и формирование сплошной пленки силицида рубидия. Определены оптимальные режимы формирования тонких наноразмерных пленок силицидов бария и щелочных элементов. Показано, что толщина пленок силицидов металлов линейно растет с увеличением энергии имплантируемых ионов и при фиксированной энергии увеличивается с ростом дозы как $D^{1/2}$.

СПИСОК ЛИТЕРАТУРЫ

- Nolph C.A., Vescovo E., Reinke P. // Appl. Surf. Sci. 2009. V. 255. P. 7642.
- Schmitt A.L., Higgins J.M., Szczech J.R., Jin S. // J. Mater. Chem. 2009. V. 20. P. 223.
- 3. Орехов А.С., Камилов Т.С., Ибрагимова Б.В. и др. // Физика и техника полупроводников. 2017. Т. 51. № 6. С. 740.
- 4. *Мьюрарка Ш.* Силициды для СБИС. М.: Мир, 1986. 176 с.
- 5. *Самсонов Г.В., Дворина Л.А., Рудь Б.А.* Силициды. М.: Металлургия, 1979. 270 с.
- 6. Ivanenko L.I., Shaposhnikov V.L., Filonov A.B. et al. // Thin Solid Films. 2004. V. 461. P. 141.
- Баграев П.Т., Буравлев А.Д., Клячкин Л.Е. и др. // Физика и техника полупроводников. 2002. Т. 36. С. 462.
- 8. *Король В.М., Кудрявцев Ю. //* Физика и техника полупроводников. 2012. Т. 46. Вып. 2. С. 268.
- 9. Rysbaev A.S., Khujaniyazov J.B., Rakhimov A.M., Bekpulatov I.R. // Tech. Phys. 2014. V. 59. № 10. P. 1526.

- 10. *Rysbaev A.S., Khujaniyozov J.B., Normuradov M.T. et al.* // Tech. Phys. 2014. V. 59. № 11. P. 1705.
- Рысбаев А.С., Хужаниёзов Ж.Б., Рахимов А.М., Бекпулатов И.Р. Способ дополнительной очистки поверхности монокристаллов кремния. Патент № IAP 05720. 30.11.2018.
- Иваненко Л.И. Формирование полупроводниковых силицидов методом ионно-лучевого синтеза // Матер. IV междунар. конф. "Взаимодействие излучений с твердым телом". Минск, 2001. С. 22.
- 13. Oura K., Lifshits V.G., Saranin A.A. et al. Surface Science an Introdiction. Berlin-Heidelberg: Springer-Verlag, 2006. 490 p.
- 14. Уанг Ж.Л., Борисевич А., Джианнуцци А.Л. и др. Растровая электронная микроскопия для нанотехнологий. Методы и применение. М.: Лаборатория знаний, 2015. 601 с.
- 15. Рысбаев А.С., Нормурадов М.Т., Насриддинов С.С., Адамбаев К.А. // Радиотехника и электроника. 1997. Т. 42. № 1. С. 125.

Structure of *Me*Si Silicide Films (*Me*: Li, Rb, K and Cs) according to Electron Microscopy Data and Diffraction of Slow Electrons

M. T. Normuradov², A. S. Risbaev^{1, *}, J. B. Khujaniyozov¹, D. A. Normuradov^{2, **}

¹Tashkent State Technical University named after I.A. Karimov, Tashkent, 100095 Uzbekistan ²Karshi State University, Karshi, 180103 Uzbekistan *e-mail: rysbaev@mail.ru **e-mail: normurodovd1989@mail.ru

The formation of thin nanosized films of metal silicides MeSi (Me: Li, Rb, K and Cs) was studied by electron spectroscopy techniques, scanning electron microscopy, and slow electron diffraction. As a result of high dose (10^{17} cm⁻²) implantation of low-energy (5 keV) Li, Rb, K and Cs ions into Si(111) and Si(100) single crystals and short-term thermal annealing, single-crystal silicide films LiSi, RbSi, CsSi, KSi were created in the near-surface silicon region. The optimal modes of ion implantation and annealing were determined for the formation of thin single-crystal films of metal silicides. The thickness of silicide films was shown to increase with increasing energy of implanted ions and at a fixed energy to be proportion to the square root of the ion dose.

Keywords: silicon single crystals, implantation with high doses of low-energy ions, concentration profiles of atom distribution, thermal annealing, formation of alkali metal films, structure and composition of nanoscale films.