УДК 533.537

ПОЛУЧЕНИЕ И ИЗУЧЕНИЕ ЭЛЕКТРОННОЙ СТРУКТУРЫ НАНОПЛЕНОК МоО₃/Мо

© 2020 г. Г. Х. Аллаярова*

Ташкентский государственный технический университет им. Ислама Каримова, Ташкент, 100095 Узбекистан *e-mail: ftmet@rambler.ru Поступила в редакцию 12.01.2020 г. После доработки 28.02.2020 г. Принята к публикации 03.03.2020 г.

С использованием комплекса методов — растровой электронной микроскопии и дифракции быстрых электронов, фотоэлектронной спектроскопии и вторичной электронной эмиссии — изучены состав, морфология поверхности, кристаллическая и электронная структура нанопленок MoO₃, по-

лученных методом имплантации ионов O_2^+ в нагретый при T = 850 К монокристалл молибдена. Пленки разной толщиной (~30, 60 и 90 Å) получены при энергии ионов 1–5 кэВ и дозе $D = (4-8) \times 10^{17}$ см⁻². Показано, что формируется сплошная и однородная поликристаллическая пленка MoO₃ с шероховатостью поверхности не более 1.5 нм. Ширина запрещенной зоны этих пленок составляет ~3.4 эВ, а ширина зоны проводимости – 4.5 эВ. Обнаружено, что в валентной зоне имеются четыре максимума плотности электронных состояний, вероятно, обусловленные гибридизацией энергетических уровней N_5 , N_{45} , N_4 Мо и энергетических уровней L_2 , L_{23} и L_3 кислорода.

Ключевые слова: ионная имплантация, нанопленки, отжиг, фотоэлектронная спектроскопия, поверхностные состояния.

DOI: 10.31857/S1028096020110023

введение

Одним из перспективных материалов современной микро-, нано- и оптоэлектроники являются нанопленки оксида Мо и многослойные структуры на их основе [1, 2]. Основные эксперименты проводились в пленках МоО₃, полученных на поверхности стекла термическим напылением порошков оксида молибдена [3, 4]. В некоторых случаях оксиды типа МоО, получены в результате окисления Мо в атмосфере кислорода (или воздуха) [5, 6]. В настоящее время хорошо изучены морфология поверхности и электронно-зонная структура, оптические свойства пленок МоО₃ и системы Ві-МоО₃ [3, 7, 8] и влияние на них мощного ионного пучка, лазерного облучения, электронной и ионной бомбардировки [9, 10]. В [11, 12] с помощью имплантации высокоэнергетических (до $E_0 = 1.5 \text{ M} \Rightarrow \text{B}$) ионов кислорода в поликристаллический молибден при различных температурах мишени (160-700°С) получены скрытые оксидные слои. Анализ рентгеновских спектров показал, что при $T = 160^{\circ}$ С преимущественно образуется фаза MoO_3 (или MoO_4O_{11}), а в интервале $T = 300-700^{\circ}$ C — фаза MoO₂ [11]. Известно [13— 19], что низкоэнергетическая ионная имплантация является эффективным средством получения однородных, со стехиометрическим составом нанопленок на поверхности материалов различной природы. В частности, в [13–15] методом рентгеновской фотоэлектронной спектроскопии исследованы поверхностное окисление молибдена при бомбардировке низкоэнергетическими ($E_0 = 1 -$ 5 кэВ) пучками ионов кислорода. Имплантация в основном проводилась при комнатной температуре. Образовались тонкие оксидные пленки, содержащие фазы MoO_2 , MoO_x (2 < x < 3) и MoO_3 . Фазовый состав поверхности сначала (до $t \approx 20$ мин) существенным образом зависел от времени бомбардировки. При t > 20 мин состав поверхности менялся слабо, и при t = 40 мин концентрации MoO_2 , MoO_x и MoO_3 устанавливались на уровне ~42-45, 18-20 и 32-35 ат. %, соответственно, а концентрация неокисленного Мо не превышала 5-7 ат. %. Исследования, проведенные в последние годы [16], показали, что низкоэнергетическая имплантация ионов кислорода в нагретую при определенной температуре (700-1100 К) пленку позволяет получить тонкие пленки оксида молибдена определенного состава.

Рис. 1. Поверхность пленки MoO_3 толщиной 60 Å, полученной методом ионной имплантации: а – изображение в атомно-силовом микроскопе; б – электронограмма (дифракция быстрых электронов).

В настоящей работе впервые изучены состав, параметры энергетических зон, плотности состояния валентных электронов нанопленок MoO_3 , полученных имплантацией ионов O_2^+ в нагретый при T = 850 К монокристалл Мо.

МЕТОДИКА ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

Мишенью являлись монокристаллические шайбы Мо(111) диаметром ~10 мм и толщиной ~0.3 мм. Образцы после шлифовки полировали при помощи алмазных паст до получения зеркально гладкой поверхности, а затем подвергали электрополировке в серно-метиловом спиртовом растворе. После промывки образцы устанавливали в сверхвысоковакуумный прибор, который состоит из двух отсеков. В первом отсеке проводили отжиг, термическое окисление и ионную бомбардировку. Во втором исследовали состав, электронные и оптические свойства с использованием методов электронной оже-спектроскопии, ультрафиолетовой фотоэлектронной спектроскопии, измерения энергетических зависимостей коэффициентов вторичной электронной эмиссии. Профили распределения атомов по глубине определяли методом электронной оже-спектроскопии в сочетании с послойным травлением ионами аргона с $E_0 = 2$ кэВ под углом $5^{\circ}-10^{\circ}$ относительно поверхности образца. Для получения информации о морфологии поверхности и кристаллической структуры оксидного слоя использовали методы атомно-силовой микроскопии (ХА-200) и дифракции быстрых электронов (ЭМР-2). Получали изображения различных участков поверхности оксидной пленки.

Перед имплантацией ионов O_2^+ образцы обезгаживали в условиях сверхвысокого вакуума (10⁻⁶ Па) сначала при длительном отжиге при T= = 1700–1800 К в течение 25–30 ч и кратковременном отжиге при T = 2200 К в сочетании с мягким травлением поверхности ионами Ar⁺ с E_0 = 1 кэВ под углом 10°–15° относительно поверхности. Кислород напускали из специального баллона в отсек ионной пушки до давления 10⁻² Па. Ионизацию кислорода осуществляли в процессе бомбардировки электронами, движущимися по спирали в поле анода под действием электрического

и магнитного полей. Энергия ионов O_2^+ варьировалась в пределах от 1 до 5 кэВ. Имплантацию проводили перпендикулярно поверхности образца Мо при T = 850 К и дозе $(4-8) \times 10^{17}$ см⁻². При этой температуре преимущественно образовалось соединение МоО₃. Основные исследования проводили для пленок толщиной ~30, 60 и 90 Å. Пленки толщиной 30 Å получены имплантацией ионов O_2^+ с энергией 1 кэВ, пленки толщиной 60 Å – при последовательной имплантации O₂⁺ с энергией 3 и 1 кэВ, а пленки толщиной 90 Å – последовательной имплантацией ионов с энергией 5, 3 и 1 кэВ. Во всех случаях образовалась сплошная поликристаллическая пленка МоО₃ с шероховатостью поверхности не более 1.5 нм (рис. 1). Шероховатость поверхности оценена по среднему арифметическому отклонению профиля. Для сравнения исследовали аморфные пленки МоО₃, полученные термическим окислением в атмосфере кислорода в этом же приборе.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 2 приведены отдельные части ожеспектров чистого кристалла Мо и имплантированного при 850 К ионами O_2^+ с $E_0 = 1$ кэВ при дозе $D = 4 \times 10^{17}$ см⁻². Видно, что в спектре *1* наряду с основным низкоэнергетическим $N_{23}VV$ (E = 28 эВ) пиком Мо обнаруживаются очень слабые, не свя-

Рис. 2. Оже-спектры Mo(111): а – чистого; б – имплантированного при 850 К ионами O_2^+ с энергией 1 кэВ при дозе 4 × 10¹⁷ см⁻².

занные с Мо пики примесных атомов С и О. Общая концентрация этих примесей не превышает 1.5-2 ат. %. После ионной имплантации оже-пик Мо полностью исчезает, и появляются новые пики при значениях энергии 15 и 33 эВ. Оже-пик Мо практически не обнаруживается, а интенсивности оже-пиков О резко увеличиваются, и они смещаются на 7-8 эВ в сторону меньших значений энергии. Все это указывает на существенное изменение плотности состояния электронов валентной зоны, что связано с формированием оксидной пленки. Расчет концентрации атомов О и Мо с использованием высокоэнергетических оже-пиков (Mo – 189, O – 506 эВ) показали, что их концентрации на поверхности составляют ~74-76 и 24-26 ат. % соответственно. Такой состав практически не меняется до глубины 30-35 Å. Из этих данных следует, что формируется пленка МоО₃ толщиной 30–35 Å. Оже-пик при 15 эВ, повидимому, обусловлен переходом $L_1(O)V(MoO_3)$ -V(MoO₃), а пик при 33 эВ – переходом $N_1(Mo)L_1(O) - V(MoO_3)$. Отметим, что при наличии различных фаз оксида молибдена в ожеспектре вблизи пика N₂₃VV в интервале 14-25 эВ появляются несколько пиков, характерных для МоО, МоО₂ и МоО_x [20].

На рис. 3 приведены зависимости коэффициента упруго отраженных электронов *R* и коэффициента истинно вторичных электронов δ от энер-

Рис. 3. Зависимости коэффициента упруго отраженных электронов R и коэффициента истинно вторичных электронов δ от энергии первичных электронов E_p для пленки MoO₃ толщиной 60 Å.

гии первичных электронов Е_р для пленки MoO₃/Mo толщиной 60 Å, получе́нные в области $E_{p} = 1 - 20$ эВ. Отсчет энергии ведется относительно уровня вакуума. Характер этих зависимостей немонотонный. Ход зависимостей $R(E_n)$ и $\delta(E_n)$ в области малых значений энергии тесно связан с зонным строением исследуемого материала. Начальное резкое уменьшение *R* (начало неупругого процесса), наблюдаемое при $E_{p\eta} = 3.4$ эВ, обусловлено переходом электронов из потолка валентной зоны E_v на дно зоны проводимости E_c , энергия которого равна ширине запрещенной зо-ны $E_g: E_{p\eta} = E_g = E_v - E_c = 3.4$ эВ. Второе резкое уменьшение *R* наблюдается при $E_{p\delta} = 7.9$ эВ, и оно соответствует начальному резкому росту б. Отсюда видно, что уменьшение *R* связано с переходом электронов из E_v на уровень вакуума $E_{\rm B}$. Из этих данных следует, что значение E_v относительно $E_{\rm B}$ приблизительно равно 7.9 эВ. Сродство к электрону (ширину зоны проводимости) можно определить по формуле: $\chi = E_v - E_g = 4.5$ эВ. На кривых $R(E_p)$ и $\delta(E_p)$ в интервале $E_p = 4-8$ эВ обнаруживаются низкоинтенсивные пики, по-видимому, связанные с переходом электронов из примесных уровней (Е_{пр}) в зону проводимости или в вакуум. Другие особенности, наблюдаемые на этих кривых, могут быть связаны с двукратными переходами электронов из E_v в E_c и E_B , а также переходом электронов из максимумов плотности состояния валентных электронов в максимумы свободных состояний.

На рис. 4 приведены спектры (кривые энергетического распределения) фотоэлектронов Мо и MoO₃, измеренные при 10.8 и 15.6 эВ соответственно. Видно, что ширина спектра фотоэлектронов молибдена ΔE составляет 6.3 эВ, а MoO₃ – 7.7 эВ. По формуле $hv = \Delta E + \Phi$ можно определить положение E_v [21, 22], где Φ – работа выхода

Рис. 4. Фотоэлектронные спектры Мо (1) и пленки MoO_3 (2), измеренные при энергии: 1 - 10.8; 2 - 15.6 эВ. ПС – поверхностные состояния.

фотоэлектронов. Расчеты показывают, что для MoO₃ $E_v = \Phi = hv - \Delta E = 7.9$ эВ, что хорошо согласуется с зависимостями $R(E_p)$ и $\delta(E_p)$. Известно, что ультрафиолетовая фотоэлектронная спектроскопия дает ценную информацию не только о параметрах энергетических зон, но и плотности занятых электронных состояний [21, 22]. При $hv \le 15-20$ эВ структура кривой энергетического распределения фотоэлектронов примерно отражает плотность состояния валентных электронов. Однако при hv = 10.8 эВ спектры фотоэлектронов МоО3 только частично охватывают валентную зону. Поэтому на рис. 4 приведен спектр фотоэлектронов МоО₃, измеренный при 15.6 эВ. В этом спектре наблюдаются четыре максимума, т.е. в валентной зоне пленки МоО3 имеются четыре максимума плотности электронных состояний. Эти максимумы, вероятно, образуются вследствие гибридизации энергетических уровней N_4 , N_5, N_{45} молибдена с энергетическими уровнями L_2, L_{23} и L_3 кислорода. Возможные механизмы их формирования показаны на рис. 4.

Таким образом, в настоящей работе впервые изучены состав, параметры энергетических зон и плотность занятых электронных состояний поликристаллических пленок MoO_3 , полученных имплантацией ионов O_2^+ в Мо. Показано, что по сравнению с пленками, полученными методами термического окисления, нанопленки MoO_3 , полученные методом ионной имплантации, имеют однородный и более совершенный стехиометрический состав.

БЛАГОДАРНОСТИ

Автор благодарит Д.А. Ташмухамедову и Б.Е. Умирзакова за полезные обсуждения.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Коршунов А.В.* // Размерные и структурные эффекты в процессах окисления металлов: монография. Томск, 2013. 360 с.
- 2. Миннеханов А.А., Вахрина Е.В. Константинова Е.А., Кашкаров П.К. // Письма в ЖЭТФ. 2018. Т. 107. Вып. 4. С. 270.
- 3. *Surovoi E.P., Surovaia V.E., Bugerko L.N.* // J. Phys. Chem. A. 2013. V. 87. № 5. P. 826.
- 4. *Ковивчак В.С., Панова Т.В.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 12. С. 41.
- 5. Гаврилов С.А., Белов А.Н. Электрохимические процессы в технологии микро- и наноэлектроники. М.: Высшее образование, 2009. 272 с.
- 6. Буназаров Д.Б., Касымов А.Х., Нормурадов М.Т., Пугачева Т.С. // Радиотехника и электроника. 1976. № 7. С. 21.
- 7. *Суровой Э.П., Суровая В.Э., Бугерко Л.Н. //* Журн. физ. химии. 2013. Т. 87. № 5. С. 842.
- Chary K.V.R., Reddy K.R., Gurram K. et al. // J. Catal. 2004. V. 226. № 2. P. 283. https://doi.org/10.1016/j.jcat.2004.04.028
- Scanlon D.O., Watson G.W., Payne D.J. et al. // J. Phys. Chem. C. 2010. V. 114. P. 4636. https://doi.org/10.1021/jp9093172
- Kang M., Oh E., Kim I. et al. // Current Appl. Phys. 2012. V. 12. P. 489. https://doi.org/10.1016/j.cap.2011.08.007
- 11. Bohne N.Y., Shevchenko F., Prokert J. // Nucl. Instrum. Methods Phys. Res. B. 2005. V. 24. Iss. 1–2. P. 157.
- 12. Bernd R., Claus H., Bernd R. // Nucl. Instrum. Methods Phys. Res. B. 2000. V. 160. Iss. 3. P. 363.
- Alov N.V. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 256. Iss. 1. P. 337.
- Ivna K., Piltaverlavana J., Badovinac R. // Appl. Surf. Sci. 2017. V. 425. P. 416.
- Алов Н.В., Леонов М.П. // Физика и химия обработки материалов. 1986. Т. 6. № 6. С. 94.
- Умирзаков Б.Е., Ташмухамедова Д.А., Гулямова С.Т., Аллаярова Г.Х. // ЖТФ. 2020. Т. 90. Вып. 5. С. 831.
- 17. Isakhanov Z.A., Mukhtarov Z.E., Umirzakov B.E., Ruzibaeva M.K. // Tech. Phys. 2011. V. 56. Iss. 4. P. 546.
- Donaev S.B., Djurabekova F., Tashmukhamedova D.A., Umirzakov B.E. // Phys. Stat. Sol. C. 2015. V. 12. Iss. 1– 2. P. 89.
- Эргашов Ё.С., Ташмухамедова Д.А., Раббимов Э. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 4. С. 38.
- 20. *Алиев А.А., Шалимов З.Т.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2003. № 8. С. 105.
- Умирзаков Б.Е., Ташмухамедова Д.А., Мурадкабилов Д.М., Болтаев Х.Х. // ЖТФ. 2013. Т. 83. Вып. 6. С. 66–70. [Umirzakov, B.E., Tashmukhamedova, D.A., Muradkabilov, D.M., Boltaev, K.K. // Technical Physics, 2013, Vol. 58, No. 6, pp. 841–844.]
- 22. Адамчук В.К., Федосенко С.И. // Изв. АН СССР. Сер. физ. 1979. Т. 43. № 3. С. 523.

Fabrication and Study of the Electronic Structure of MoO₃/Mo Nanofilms

АЛЛАЯРОВА

G. Kh. Allayarova*

Tashkent State Technical University Named after Islam Karimov, Tashkent, 100095 Uzbekistan *e-mail: ftmet@rambler.ru

Using the complex of methods of scanning electron microscopy and fast electron diffraction, photoelectron spectroscopy and secondary electron emission, the composition, surface morphology, crystal and electronic

structure of MoO₃ nanofilms obtained by implanting O_2^+ ions into molybdenum single crystal heated at T = 850 K have been studied. Films of different thicknesses (~30, 60, and 90 Å) were obtained at an ion energy of 1–5 keV and a dose of $D = (4-8) \times 10^{17}$ cm⁻². A continuous and homogeneous polycrystalline MoO₃ film is shown to be formed with a surface roughness of no more than 1.5 nm. The band gap of these films is ~3.4 eV, and the width of the conduction band is 4.5 eV. Four maxima of the density of electronic states are found to be in the valence band probably due to the hybridization of the energy levels N_5 , N_{45} , N_4 of Mo and the energy levels L_2 , L_{23} and L_3 of oxygen.

Keywords: ion implantation, nanofilms, annealing, photoelectronic spectroscopy, surface states.

2020