УДК 532.614.2+539.211+548.528

ВЫЧИСЛЕНИЕ ПОВЕРХНОСТНОЙ ЭНЕРГИИ КРИСТАЛЛА И ЕЕ ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ И ДАВЛЕНИЯ

© 2020 г. М. Н. Магомедов*

Институт проблем геотермии и возобновляемой энергетики — филиал Объединенного института высоких температур РАН, Махачкала, 367030 Россия

**e-mail: mahmag4@mail.ru* Поступила в редакцию 26.02.2020 г. После доработки 16.03.2020 г. Принята к публикации 20.03.2020 г.

Исходя из параметров парного потенциала межатомного взаимодействия Ми–Леннард-Джонса, разработан метод расчета удельной поверхностной энергии σ , изохорной и изобарной производных функции σ по температуре и изотермической производной функции σ по давлению. Показано, что метод применим как для макро-, так и для нанокристалла с заданным числом атомов и с определенной формой поверхности. Для реализации этого метода параметры парного межатомного потенциала были определены самосогласованным способом на основе термоупругих свойств кристалла. Метод был апробирован на макрокристаллах Fe, Au, Nb, Ta, Mo, W при различных температурах и показал хорошее согласие с экспериментальными данными. На примере ОЦК-Та изучены изменения поверхностных свойств при уменьшении размера нанокристалла вдоль изотерм T = 10, 300, 2500 К. Показано, что при высоких давлениях и низких температурах функция σ может возрастать при изоморфо-изотермо-изобарическом уменьшении размера нанокристалла.

Ключевые слова: поверхностная энергия, межатомный потенциал, нанокристалл, уравнение состояния, тепловое расширение.

DOI: 10.31857/S1028096020110102

ВВЕДЕНИЕ

На сегодняшний день предложено несколько методов для расчета удельной поверхностной энергии σ кристалла простого (однокомпонентного) вещества (например, [1–10]). Но большинство из этих методов (например, [1, 5, 6, 8]) работают только при нулевой температуре (T = 0 K) и нулевом давлении (P = 0). Поэтому актуальным является вопрос о зависимости величины σ от P-T-условий, в которых находится кристалл.

В работах [2–4, 7, 9, 10] были предложены различные методы расчета производной функции о по температуре: $\sigma'(T) = (\partial \sigma / \partial T)$. Но из-за отсутствия в этих работах уравнения состояния, осталось неясным – является ли предложенное в этих работах выражение для $\sigma'(T)$ изохорной ($\sigma'(T)_v$) или изобарной ($\sigma'(T)_p$) производной?

Что касается зависимости поверхностной энергии от давления, то выражения для расчета функции $\sigma'(P) = (\partial \sigma / \partial P)_T$ в литературе пока нет, и поэтому оценок этой величины никто не проводил. Проблема связана с тем, что в теоретических моделях, в рамках которых рассчитывалась функция σ , уравнение состояния кристалла с поверхностью получено не было. Между тем зависи-

мость $\sigma(P)$ необходима при изучении как возникновения трещин при барическом воздействии на макрокристалл, так и для получения уравнения состояния нанокристалла.

В связи с этим, в данной работе будет предложен метод, позволяющий с единых позиций, исходя из парного потенциала межатомного взаимодействия, рассчитать, как уравнение состояния, так и величину σ при произвольных *P*–*T*-условиях. Показано, что метод применим как для макро-, так и для нанокристалла с заданным числом атомов *N* и с определенной формой поверхности. Метод позволяет вычислять производные функции σ по температуре как при изохорических, так и при изобарических условиях. Метод позволяет также изучить производные функции σ по температуре и давлению для нанокристалла из *N* атомов в различных *P*–*T*-условиях.

МЕТОД РАСЧЕТА ПОВЕРХНОСТНЫХ СВОЙСТВ

Рассмотрим наносистему из N одинаковых атомов, ограниченную поверхностью, которая имеет площадь Σ . Изменение свободной энергии Гельмгольца (F_H) такой системы при вариации

температуры, объема *V*, числа атомов и площади поверхности обычно представляют в виде [11, 12]:

$$dF_{H} = \left(\frac{\partial F_{H}}{\partial T}\right)_{N,V,\Sigma} dT + \left(\frac{\partial F_{H}}{\partial V}\right)_{N,T,\Sigma} dV + \left(\frac{\partial F_{H}}{\partial N}\right)_{T,V,\Sigma} dN + \left(\frac{\partial F_{H}}{\partial \Sigma}\right)_{N,V,T} d\Sigma =$$
(1)
$$= -SdT - PdV + \mu_{g}dN + \sigma d\Sigma,$$

откуда и определяют значения энтропии S, давления P, химического потенциала μ_g и удельной (на единицу площади) поверхностной свободной энергии σ .

Если число атомов в системе не изменяется, то выражение для dF_H можно преобразовать к виду:

$$df_{H} = d\left(\frac{F_{H}}{N}\right) = -sdT - Pdv + \sigma d\left(\frac{\Sigma}{N}\right), \qquad (2)$$

где s = S/N и v = V/N - удельные (на атом) значения энтропии и объема наносистемы.

Из формулы (2) легко видеть, что удельная поверхностная энергия равна:

$$\sigma(T, v, N) = \left(\frac{\partial f_H}{\partial(\Sigma/N)}\right)_{T, v, N}$$

при этом изменение удельной поверхности должно происходить обратимым путем: без необратимого разрушения системы и без нарушения аксиом равновесной и обратимой термодинамики.

Но при N = const нельзя изоморфно изменить площадь поверхности, не изменив при этом объем, так как при постоянной форме нанокристалла они связаны соотношением: $\Sigma \sim V^{2/3}$. Поэтому, как это было указано в [13, 14], при $\Sigma/N \neq 0$ определить функцию σ можно только путем изохорно-изотермической обратимой деформации формы наносистемы, т.е. из выражения:

$$\sigma(T, v, N, f) = \left(\frac{\partial f_H}{\partial (\Sigma/N)}\right)_{T, N, v} = \left(\frac{\partial f_H}{\partial f}\right)_{T, N, v} / \left(\frac{\partial (\Sigma/N)}{\partial f}\right)_{T, N, v},$$
(3)

где f — некоторый параметр, который управляет формой системы с конечным значением числа атомов N, которая ограничена поверхностью площадью Σ .

Из (2) видно, что давление в наносистеме должно вычисляться по формуле:

$$P(T, v, N) = -\left(\frac{\partial f_H}{\partial v}\right)_{T, N, \Sigma}.$$
(4)

Но при постоянных значениях T, N и Σ невозможно изменить удельный объем ограниченной поверхностью системы. Поэтому, для того чтобы обойти данную неопределенность, будем далее определять давление как изменение удельной свободной энергии Гельмгольца при вариации удельного объема при N и T = const, и полагая, что поверхность системы является геометрической поверхностью, не имеющей объема.

Это допущение позволит представить свободную энергию в виде [11]:

$$F_{H}(T, v, N, f) = F_{H in}(T, v) + + \sigma(T, c, N, f)\Sigma(c, N, f).$$
(5)

Здесь свободная энергия Гельмгольца для объема наносистемы равна:

$$F_{H in}(T, v) = N \lim_{N \to \infty} \left[\frac{F_H(T, v, N, f)}{N} \right]_{v = \text{const}},$$

где $c = (6k_p v/\pi)^{1/3}$ – среднее (по объему наносистемы) расстояние между центрами ближайших атомов, k_p – коэффициент упаковки структуры из N атомов.

При этом площадь поверхности $\Sigma(c, N, f)$ здесь является площадью гладкой геометрической поверхности, которую называют поверхностью Гиббса [11, 12].

Таким образом, используя (5), определим давление в наносистеме выражением следующего вида:

$$P(T, v, N, f) = -\left(\frac{\partial f_H}{\partial v}\right)_{T,N} =$$

= $P_{in}(T, v) - P_{sf}(T, c, N, f).$ (6)

Здесь P_{in} — "объемное" давление, т.е. давление, определяемое без учета поверхностного члена в (2) и в (5):

$$P_{in}(T,v) = -\lim_{N \to \infty} \left[\frac{\partial f_{H,in}}{\partial v} \right]_{T,N}.$$
 (7)

Функция P_{sf} – поверхностное давление, которое равно [14, 15]:

$$P_{sf}(T,c,N,f) = \left[\frac{\partial(\sigma\Sigma/N)}{\partial v}\right]_{T,N} = P_{ls}(1-\Delta_p). \quad (8)$$

Первый сомножитель в (8) — давление Лапласа, которое определяется изменением площади поверхности с изменением объема для наносистемы в вакууме:

$$P_{ls}(T, v, N, f) = \sigma \left[\frac{\partial (\Sigma/N)}{\partial v} \right]_{T,N} = \sigma \left(\frac{\Sigma/N}{v} \right) \left[\frac{\partial \ln(\Sigma/N)}{\partial \ln(v)} \right]_{T,N}.$$
(9)

Выражение для функции Δ_p из формулы (8) имеет вид:

$$\Delta_p = -\left[\frac{\partial \ln(\sigma)}{\partial \ln(\Sigma/N)}\right]_{T,N}.$$
(10)

Для жидкой фазы выполняется: $(\partial \sigma / \partial \Sigma)_{T, N} = 0.$ Это обусловлено динамической природой жилкого состояния. где большая доля атомов находится в делокализованном состоянии. Изотермическое растяжение площади "гиббсовской" поверхности жидкой фазы вызывает приток к ее поверхности новых атомов из объема. Если приток атомов к поверхности происходит со скоростью, достаточной для того, чтобы поверхностная плотность атомов сохранялась неизменной, то величина σ для жидкой фазы не будет меняться с ростом Σ , и значение Δ_p будет равным нулю. Именно поэтому условие: $\Delta_p = 0$, как это было показано в [16], можно использовать в качестве "поверхностного" критерия фазового перехода кристалл-жидкость для системы с геометрической поверхностью Гиббса.

Для твердой фазы считать $\Delta_p = 0$ нельзя. На это впервые было указано в работе [17]. Причем, наличие функции Δ_p в формуле (8) приводит к эффектам, присущим только твердой фазе наносистемы [7, 8]:

1) так как $\Delta_p > 0$, то для нанокристалла всегда выполняется: $P_{sf} < P_{ls}$;

2) если $\Delta_p > 1$, то поверхностное давление становится растягивающим: $P_{sf} < 0$;

3) при плавлении нанокристалла поверхностное давление резко возрастает.

Если кристаллическая структура (характеризуемая коэффициентом упаковки k_p) и форма поверхности (характеризуемая управляющим формой параметром f) не изменяются при изотермической вариации удельного объема, то функции P_{ls} и Δ_p из (9) и (10) примут вид:

$$P_{ls} = \sigma \left(\frac{\Sigma/N}{v}\right) \left[\frac{\partial \ln(\Sigma/N)}{\partial \ln(v)}\right]_{T,N,k_p,f} = \frac{2}{3}\sigma \left(\frac{\Sigma/N}{v}\right), \quad (11)$$

$$\Delta_{p} = -\left[\frac{\partial \ln(\sigma)}{\partial \ln(\Sigma/N)}\right]_{T,N} = -\frac{1}{2}\left[\frac{\partial \ln(\sigma)}{\partial \ln(c)}\right]_{T,N,k_{p},f}.$$
 (12)

Таким образом, для дальнейших расчетов необходимо, используя формулу (3), определить функцию $\sigma(T, c, N, f)$. Для этого необходимо принять некую геометрическую модель нанокристалла с варьируемой формой поверхности.

ГЕОМЕТРИЧЕСКАЯ МОДЕЛЬ НАНОКРИСТАЛЛА

Как и в работах [13–16, 18, 19] положим, что нанокристалл со свободной поверхностью имеет вид прямоугольного параллелепипеда с квадратным основанием, ограненный гранями типа (100) с геометрической поверхностью Гиббса. Если в решетке нанокристалла простого вещества содержится N_{ν} вакансий, однородно распределенных по объему, то первое координационное число (т.е. число ближайших атомов) для атома в объеме нанокристалла равно [14, 18, 19]:

$$k_n(\infty) = \frac{k_n^{\circ}(\infty)N}{N+N_v} = k_n^{\circ}(\infty)(1-\phi_v), \qquad (13)$$

где $\phi_v = N_v / (N_v + N)$ — вероятность образования вакансии в решетке простого вещества, $k_n^{o}(\infty)$ число ближайших к данному атому ячеек (как заня-

тых, так и вакантных), т.е. это первое координационное число в объеме нанокристалла при $N_v = 0$. Величина $f = N_{ps}/N_{po} = N_{ps}^{o}/N_{po}^{o}$ — параметр формы, который определяется отношением чис-

формы, который определяется отношением числа N_{ps}^{o} атомов (или $N_{ps} = N_{ps}^{o}/(1 - \phi_v)^{1/3}$ ячеек) на боковом ребре к числу N_{po}^{o} атомов (или $N_{po} = N_{po}^{o}/(1 - \phi_v)^{1/3}$ ячеек) на ребре основания. Очевидно, что для стержневидной формы f > 1, для куба f = 1, для пластинчатой формы f < 1.

Число ячеек и число атомов в нанокристалле определенной формы равно:

$$N + N_{\nu} = f \frac{N_{po}^{3}}{\alpha} = f \frac{\left(N_{po}^{\circ}\right)^{3}}{\alpha(1 - \phi_{\nu})},$$

$$N = f \frac{\left(N_{po}^{\circ}\right)^{3}}{\alpha},$$
(14)

где $\alpha = \pi/(6k_p)$ – параметр структуры.

Число атомов и параметр формы в этой модели могут изменяться в пределах:

$$\frac{\mathrm{INT}[2^3/\alpha] \le N \le \infty,}{\frac{2}{\mathrm{INT}[(N+N_v)\alpha/2]^{1/2}} \le f \le \frac{\mathrm{INT}[(N+N_v)\alpha/4]}{2},$$

где в выражении для f представлены выражения для двух предельных форм модели: левая величина относится к пластине, а правая — к стержню биатомной толщины. Функция INT[x] округляет величину x до целого значения, так как число атомов или ячеек по определению являются целыми числами.

Ограничение системы поверхностью приведет к обрыву связей на границе. Поэтому, если использовано приближение "взаимодействия только ближайших соседей", то вместо первого координационного числа k_n необходимо брать функцию $\langle k_n \rangle$, которая есть среднее (по всей наносистеме) значение первого координационного числа. Очевидно, что функция $\langle k_n \rangle$ зависит как от размера, так и от формы наносистемы. При этом структуру наносистемы полагаем неизменной: k_p = const. Данная модель нанокристалла в виде прямоугольного параллелепипеда (Rectangular Parallelepiped), форму которого можно варьировать с помощью параметра формы *f*, была названа в работах [13–16] RP-моделью. Аналогичная модель из $N + N_v$ ячеек была названа в [18, 19] RP(vac)-моделью.

В рамках RP(vac)-модели зависимость нормированного среднего значения первого координационного числа от $N + N_v$ и *f* описывается выражением [18]:

$$k_n^* = \frac{\langle k_n(N+N_v, f) \rangle}{k_n(\infty)} = 1 - Z_s(f) \times \left(\frac{\alpha^2}{N+N_v}\right)^{1/3} = 1 - Z_s(f) \left(\frac{\alpha^2}{N}(1-\phi_v)\right)^{1/3},$$
(15)

где $k_n(\infty) = k_n^{\circ}(\infty)(1 - \phi_v)$ – координационное число для макрокристалла с учетом вакансий.

Входящая в (15) функция формы: $Z_s(f) = (1 + 2f)//(3f^{2/3})$, достигает минимума равного единице при f = 1, т.е. для системы в форме куба. Для пластинчатых (f < 1) или стержневидных (f > 1) форм значение функции формы больше единицы: $Z_s(f \neq 1) > 1$. Поэтому функция $k_n(f)^*$ при любом значении N атомов (или $N + N_v$ ячеек) имеет максимум при f = 1, т.е. для наиболее энергетически оптимальной — кубической формы прямоугольного параллелепипеда.

Объем и площадь поверхности для RP(vac)модели равны:

$$V = (N_{po}^{o})^{3} fc^{3} / (1 - \phi_{v}) =$$

= $(N + N_{v})\alpha c^{3} =$
= $(N_{po}^{o})^{3} fc_{o}^{3},$ (16)
$$\Sigma = 6c^{2}\alpha_{s}[(N + N_{v})\alpha]^{2/3}Z_{s}(f) =$$

= $6c_{o}^{2}\alpha_{s}(N\alpha)^{2/3}Z_{s}(f),$

где α_s — коэффициент, учитывающий плотность упаковки атомов на грани (т.е. в поверхностном слое) нанокристалла: $\alpha_s \cong \alpha^{2/3}$; $c_o = [6k_pV/(\pi N)]^{1/3} = c/(1 - \phi_v)^{1/3}$ — среднее (по объему наносистемы) расстояние между центрами ближайших атомов с учетом вакансий, $c = [6k_pV/\pi(N + N_v)]^{1/3} = c_o(1 - \phi_v)^{1/3}$ — расстояние между центрами ближайших ячеек (как занятых, так и вакантных).

Легко видеть, что объем нанокристалла зависит от формы системы только через зависимость c(N, f).

Кубическая форма может реализовываться только при определенном числе ячеек, из которого можно построить куб: $(N + N_v)_{cub} = (N_{po}^{o})^3 / [\alpha(1 - \phi_v)]$, где $N_{po}^{o} = 2, 3, 4,$ При "некубичном" значении числа ячеек: $N + N_v \neq (N + N_v)_{cub}$, параллелепипед может иметь либо пластинчатую, либо стержневидную форму, причем выполняется неравен-

ство:
$$k_n((N+N_v)_{\text{cub}} \pm 1)^* \le k_n(N+N_v)_{\text{cub}}^*$$
.

Таким образом, изоморфная (т.е. рассчитанная при f = const) зависимость $k_n(N + N_v)$ монотонно уменьшается при $N + N_v \rightarrow N_{\min} =$ = INT[2³/ α], но общая зависимость $k_n(N + N_n)$ имеет осциллирующий вид с максимумами в точках $k_n(N + N_v)_{cub}$, соответствующих нанокристаллам с кубической формой, и с минимумами при таких значениях $N + N_v \neq (N + N_v)_{cub}$, из которых можно построить только бездефектный стержень биатомной толщины. А так как многие свойства нанокристалла определяются именно значением $k_n(N)$, то зависимость этих свойств от N также будет иметь осциллирующий вид. Поэтому изоморфная производная $(\partial k_n/\partial N)_f$ не будет иметь никаких особенностей, чего нельзя сказать о неизоморфной производной $(\partial k_n / \partial N)_{x \neq f}$

В рамках RP(vac)-модели удельная поверхностная энергия грани (100) и давление Лапласа определяются выражениями вида:

$$\sigma = \left(\frac{\partial f_H}{\partial k_n^*}\right)_{T,N,c} \left(\frac{\partial k_n^*}{\partial Z_s(f)}\right)_{N,k_p} / \left(\frac{\partial (\Sigma/N)}{\partial Z_s(f)}\right)_{N,c,k_p} =$$

$$= \frac{-(1-\phi_v)}{6c^2\alpha_s} \left(\frac{\partial f_H}{\partial k_n^*}\right)_{T,N,c},$$

$$P_{ls} = \frac{2\Sigma}{3V} \sigma = \frac{4\alpha_s Z_s(f)}{[\alpha(N+N_v)]^{1/3}c(N,f)} \sigma =$$
(18)

В "термодинамическом пределе" (т.е. когда $N \to \infty$ и $V \to \infty$ при v = V/N = const), согласно (15), имеем: $k_n(N \to \infty)^* \to 1$. При этом функция σ стремится к значению $\sigma(N = \infty)$, а функции P_{ls} из (18) и P_{st} из (11) исчезают.

 $=4\alpha_s \frac{(1-k_n)}{\alpha c(N-f)}\sigma.$

Таким образом, для вычисления функции $\sigma(T, c, N, f)$ с помощью (17) необходимо определить зависимость удельной свободной энергии Гельмгольца f_H от трех аргументов: T, c и k_n^* .

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ ДЛЯ RP-МОДЕЛИ

Пусть взаимодействие атомов в нанокристалле простого однокомпонентного вещества описывается парным четырехпараметрическим потенциалом Ми–Леннарда-Джонса, который имеет следующий вид [12, 14]:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_{\rm o}}{r}\right)^b - b \left(\frac{r_{\rm o}}{r}\right)^a \right],\tag{19}$$

где D и r_{o} – глубина и координата минимума потенциала, $b > a \ge 1$ – параметры.

Для простоты допустим, что нанокристалл не содержит вакансий и диффундирующих атомов. Тогда, используя для колебательного спектра нанокристалла модель Эйнштейна и приближение "взаимодействия только ближайших соседей", для удельной свободной энергии Гельмгольца RP-модели можно принять [12, гл. 8]:

$$\frac{f_H}{k_n(\infty)} = \left(\frac{k_n^*}{2}\right) DU(R) + 3\frac{k_B\Theta_E}{k_n(\infty)} \times \left\{\frac{1}{2} + \left(\frac{T}{\Theta_E}\right) \ln\left[1 - \exp\left(-\frac{\Theta_E}{T}\right)\right]\right\}.$$
(20)

Здесь $k_{\rm B}$ — постоянная Больцмана, $\Theta_{\rm E}$ — это температура Эйнштейна, которая связана с температурой Дебая соотношением [12, 20]: $\Theta = (4/3)\Theta_{\rm E}$; $R = r_{\rm o}/c$ — относительная линейная плотность кристалла, U(R) — функция потенциальной энергии, которая, в соответствии с (19), имеет вид:

$$U(R) = \frac{aR^b - bR^a}{b - a}.$$

Как показано в [14, 21], температура Дебая определяется выражением:

$$\Theta(k_n, c) = A_w(k_n, c) \xi \left[-1 + \left(1 + \frac{8D}{k_{\rm B}A_w(k_n, c)\xi^2} \right)^{1/2} \right], (21)$$

где функция $A_w(k_n, c)$ возникает из-за учета энергии "нулевых колебаний" атомов:

$$A_{w}(k_{n},c) = K_{R} \frac{5k_{n}ab(b+1)}{144(b-a)} \left(\frac{r_{o}}{c}\right)^{b+2},$$

$$K_{R} = \frac{\hbar^{2}}{k_{B}r_{o}^{2}m}, \quad \xi = \frac{9}{k_{n}(\infty)},$$
(22)

где *ћ* – постоянная Планка, *m* – масса атома.

Из (21) можно найти выражения для первого (γ), второго (q) и третьего (z) параметров Грюнайзена. Они имеют следующий вид:

$$\gamma = -\left(\frac{\partial \ln \Theta}{\partial \ln v}\right)_T = \frac{b+2}{6(1+X_w)},$$

$$q = \left(\frac{\partial \ln \gamma}{\partial \ln v}\right)_T = \gamma \frac{X_w(1+2X_w)}{(1+X_w)},$$

$$z = -\left(\frac{\partial \ln q}{\partial \ln v}\right)_T = \gamma(1+4X_w) - 2q =$$

$$= \gamma \left(\frac{1+3X_w}{1+X_w}\right) = \frac{(b+2)(1+3X_w)}{(1+X_w)^2},$$
(23)

где введена функция $X_w = A_w \xi / \Theta$, которая определяет роль квантовых эффектов.

Используя (20)—(23), для уравнения состояния и изотермического модуля упругости (B_T) можно получить следующие выражения [18, 22]:

$$P = -\left(\frac{\partial f_H}{\partial v}\right)_T =$$

$$= \left[\frac{k_n}{6}DU'(R) + 3k_B\Theta_E\gamma E_w\left(\frac{\Theta_E}{T}\right)\right]\frac{1}{v},$$

$$B_T = -v\left(\frac{\partial P}{\partial v}\right)_T = P + \left[\frac{k_n}{18}DU''(R) + \frac{1}{3k_B\Theta_E\gamma(\gamma - q)E_w\left(\frac{\Theta_E}{T}\right) - 3Nk_B\gamma^2 TF_E\left(\frac{\Theta_E}{T}\right)\right]\frac{1}{v},$$
(24)
(25)

где функции k_n , Θ_E и γ зависят от N-f-параметров нанокристалла с поверхностью Гиббса,

$$E_{w}(y) = 0.5 + \frac{1}{[\exp(y) - 1]},$$

$$F_{E}(y) = \frac{y^{2} \exp(y)}{[\exp(y) - 1]^{2}},$$

$$U'(R) = R\left[\frac{\partial U(R)}{\partial R}\right] = \frac{ab(R^{b} - R^{a})}{b - a},$$

$$U''(R) = R\left[\frac{\partial U'(R)}{\partial R}\right] = \frac{ab(bR^{b} - aR^{a})}{b - a}.$$
(26)

В рамках RP-модели для удельной (на единицу площади) поверхностной энергии грани (100) нанокристалла, ее изохорной и изобарной производных по температуре и функции Δ_p можно получить следующие выражения [18, 22]:

$$\sigma(N, f) = -\frac{k_n(\infty)DR^2}{12\alpha^{2/3}r_o^2}L_{\rm E}(N, f),$$
(27)

$$\sigma'(T)_{v} = \left(\frac{\partial\sigma}{\partial T}\right)_{c,N,f} = -\frac{3k_{\rm B}R^{2}\gamma(N,f)}{2\alpha^{2/3}(b+2)r_{\rm o}^{2}k_{n}(N,f)^{*}}F_{\rm E}\left(\frac{\Theta_{\rm E}}{T}\right),$$
(28)

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 11 2020

+

$$\sigma'(T)_{P} = \left(\frac{\partial\sigma}{\partial T}\right)_{P,N,f} = \sigma'(T)_{v} + v\alpha_{p}\left(\frac{\partial\sigma}{\partial v}\right)_{T,N,f} =$$

= $\sigma'(T)_{v} - \frac{2}{3}\sigma\alpha_{p}\Delta_{p},$ (29)

$$\Delta_{p} = -\frac{1}{2} \left[\frac{\partial \ln(\sigma)}{\partial \ln(c)} \right]_{T,N,k_{p},f} = 1 + \frac{1}{2L_{E}(N,f)} \times \left\{ U'(R) - 9 \left[q - \gamma t_{y} \left(\frac{\Theta_{E}}{T} \right) \right] H_{w}(N,T) \right\},$$
(30)

где изохорная теплоемкость (C_v), коэффициент теплового расширения α_p и введенные функции имеют следующий вид:

$$C_{v} = 3Nk_{\rm B}F_{\rm E}\left(\frac{\Theta_{\rm E}}{T}\right), \quad \alpha_{p} = \frac{1}{v}\left(\frac{\partial v}{\partial T}\right)_{p} =$$

$$= \gamma \frac{C_{v}}{VB_{T}} = \frac{\gamma C_{v}}{NB_{T}\left[\pi r_{\rm o}^{3}/(6k_{p})\right]}\left(\frac{v_{\rm o}}{v}\right),$$

$$L_{\rm E}(N,f) = U(R) + 3H_{w}(N,T), \quad v_{\rm o} = \frac{\pi r_{\rm o}^{3}}{6k_{p}}, \quad (31)$$

$$H_{w}(N,T) = \frac{6\gamma(N,f)}{(b+2)}\left[\frac{k_{\rm B}\Theta_{\rm E}(N,f)}{Dk_{n}(N,f)}\right]E_{w}\left(\frac{\Theta_{\rm E}}{T}\right),$$

$$t_{y}(y) = 1 - \frac{2y\exp(y)}{[\exp(2y) - 1]}.$$

Отметим, что поверхностное давление также можно найти и из выражения (24), как разницу между давлениями, рассчитанными для макро- и нанокристалла:

$$P_{sf} = P(T, v, N = \infty) - P(T, v, N, f).$$
 (32)

Из полученных выражений (27)–(30) можно сделать следующие выводы:

1. Функция $\sigma(P)$ с ростом давления увеличивается до максимума (при $P_M(N, f)$), после чего она резко уменьшается и при определенном давлении $(P_f(N, f))$ переходит в отрицательную область. Более подробно это было изучено в [23].

2. При $P < P_M$ для веществ, у которых $\alpha_p > 0$ выполняется: $\sigma'(T)_P < \sigma'(T)_v < 0$. При T = 0 К обе функции при любых N-f-параметрах достигают максимума: $\sigma'(0)_P = \sigma'(0)_v = 0$ [18, 23]. Это согласуется с третьим началом термодинамики в "сильной" формулировке Планка. Таким образом, зависимости $\sigma'(T)_P$ и $\sigma'(T)_v$ нелинейные и полагать (как это сделано в [2, 7, 9, 10]), что $\sigma'(T) =$ сопѕт, не вполне корректно.

3. Функция Δ_p при $P > P_M$ переходит в отрицательную область, а при P_f она имеет разрыв второго рода. Подробнее это было изучено в [24].

4. Функции $\sigma(N, f)$, $\sigma'(T)_P$ и $\sigma'(T)_v$ при $P < P_M$ убывают с уменьшением N тем заметнее, чем выше температура, или чем заметнее форма нанокристалла отклонена от энергетически оптимальной формы (для RP-модели это куб) [13, 14, 18, 23]. 5. При высоких давлениях и низких температурах функция $\sigma(N)$ может возрастать при изобарно-изотермическом уменьшении размера нанокристалла.

Таким образом, полученная в рамках RP-модели функция $k_n(N, f)$ вместе с формализмом из (20)-(31) позволяют рассчитать зависимость как уравнения состояния, так и всех решеточных и поверхностных свойств от размера и формы нанокристалла при любых (соответствующих твердой фазе) значениях температуры и удельного объема. Обобщение данной модели на случай наличия в системе вакансий и диффундирующих атомов было сделано в [19]. Это позволило в рамках RP(vac)-модели описать всю фазовую диаграмму простого вещества, включая фазовые переходы кристалл-жидкость, жидкость газ и кристалл-газ. В [19] было показано, что при уменьшении числа атомов в системе S-петля фазового перехода кристалл-жидкость на изотерме уравнения состояния уменьшается, а при определенном значении числа атомов (N_0) S-петля кристалл-жидкость исчезает. При этом величина N₀ увеличивается как с ростом температуры, так и при отклонении формы нано-системы от наиболее энергетически оптимальной (для RP(vac)-модели — это куб). В кластере из $N < N_0$ атомов фазовый переход кристалл-жидкость исчезает. Для металлов была получена оценка: $N_0 = 50 - 300$.

МЕТОД ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МЕЖАТОМНОГО ПОТЕНЦИАЛА

Для расчетов по формулам (20)-(31) необходимо определить параметры парного межатомного потенциала Ми-Леннард-Джонса (19). В литературе встречаются высказывания, что парный четырехпараметрический потенциал Ми–Леннард-Джонса (19) дает при расчетах решеточных свойств кристаллов худшие результаты, чем 3-хпараметрический потенциал Морзе для металлов, либо многочастичные потенциалы для Si или Ge (потенциалы типа Stillinger-Weber или Tersoff, которые включают не менее 10-12 параметров, и которые можно использовать только в численных расчетах). Это мнение возникло из-за трудностей определения самосогласованным образом всех четырех параметров потенциала Ми-Леннард-Джонса, особенно значений степенней а и b. Поэтому ранее (лет 50 тому назад) в большинстве расчетов брали ничем не обоснованные значения степенных параметров a = 6 и b = 12. Это было обусловлено тем, что с параметрами 6 и 12 в выражениях для U(R), U'(R) и U''(R) получаются квадратные уравнения, с которым было легче работать. Потенциал 6–12 использовался Джоном Эдвардом Леннард-Джонсом с соавторами (J.E. Lennard-Jones et al.) в "докомпьютерную

эру" (т.е. в 30-40-х гг. ХХ в.) для описания свойств инертных газов [12]. По этой же причине потенциал 6-12 (названный в литературе потенциалом Леннард-Джонса) был применен для расчета свойств твердой фазы металлов и диэлектриков. Это привело к плохим результатам, на основе которых и сложилось неправильное мнение о неприменимости потенциала Ми-Леннард-Джонса общего вида (19), т.е. со степенями a-b, для описания свойств металлов. Отметим, что потенциал Морзе дает для металлов более лучшие результаты чем потенциал Леннард-Джонса 6–12. Это было обусловлено тем, что в "докомпьютерную эру" корректно определить три подгоночных параметра было намного легче, чем четыре. Но трехпараметрический потенциал Морзе является частным случаем четырехпараметрического потенциала Ми–Леннард-Джонса (19) при b = 2a [12].

Для определения параметров r_0 , D, b и a в [25] была предложена система четырех уравнений, в которые входили измеренные при T = 0 К и P = 0 значения молярного объема (V_{00}), молярной энергии сублимации (L_{00}), температуры Дебая (Θ_{00}) и первого параметра Грюнайзена (γ_{00}). Это позволило в [25] рассчитать параметры потенциала (19) для многих кристаллов: для инертных газов, для металлов и для молекулярных кристаллов.

Но предложенный в [25] метод предполагает, что значения L_{00}, Θ_{00} и γ_{00} определены в экспериментах при T = 0 К и P = 0 с высокой точностью. К сожалению, этого не получается, причем наименее точно определяется величина уоо. Именно поэтому в [25] значения D, b и a были рассчитаны при фиксированных значениях L_{00} и Θ_{00} и различных величинах γ_{00} , которые известны из литературы. При этом возникала неопределенность как в выборе величины γ₀₀, так и в полученных при таком расчете наборе параметров b и a. Это привело к тому, что в работе [26] был предложен метод, в котором при данных значениях r_0 , D и b величина a корректировалась так, чтобы получалось хорошее совпадение с экспериментальным значением коэффициента теплового расширения α_n при P = 0и T = 300 K.

Но для тугоплавких металлов (Nb, Ta, Mo, W) с объемно-центрированной кубической (ОЦК) структурой такая корректировка величины *a* для получения хорошего согласия с величиной $\alpha_p(P=0, T = 300 \text{ K})$ оказалась недостаточной. Это было связано с тем, что для этих металлов приближенно измеряется не только значение γ_{00} , но и величина Θ_{00} . Например, для Мо и W в литературе приводятся следующие значения температуры Дебая:

 Θ_{00} (Mo)/K = 380 [20], 450 [27], 460–474.5 [28], 472.4–474.9 [29],259 ± 11 [30], 423 [31], 273.7 [32], 375–527 [33], 455–470 [34]; $\Theta_{00}(W)/K = 310 [20], 400 [27], 382.58-390 [28], 382.6-384.6 [29], 384-388 [30], 383 [31], 232 [32], 378 \pm 7 [35].$

По этим причинам в [36, 37] при расчетах свойств ОЦК-W и кристалла Au с гранецентрированной кубической (ГЦК) структурой корректировались уже два параметра: b и a, при фиксированных значениях r_0 и *D*. Корректировка производилась до получения наилучшего совпадения как с экспериментальным значением коэффициента теплового расширения: $\alpha_p (P = 0, T = 300 \text{ K}),$ так и с экспериментальной зависимостью уравнения состояния $P(300 \text{ K}, v/v_0)$. Однако, полученные таким путем параметры потенциала (19) привели к низким значениям модуля упругости В_Т (*P* = 0, *T* = 300 К). Поэтому в работах [38, 39] оптимизация потенциала (19) проводилась уже по трем параметрам: D, b и a, при фиксированном значении r_o. В этом методе стремились получить наилучшее согласие с экспериментальными данными для $\alpha_p (P = 0, T = 300 \text{ K}), B_T (P = 0, T = 300 \text{ K})$ и с экспериментальной зависимостью Р(300 К, v/v_{o}). Таким способом были получены параметры потенциала (19) для ОЦК-Мо [38] и ОЦК-Nb [39]. Эти параметры позволили получить хорошие зависимости для функций: $P(T, v/v_0), \alpha_p(P, T),$ $B_T(P, T)$, изохорной C_v и изобарной $C_p = C_v(1 + C_v)$ + $\gamma \alpha_{n} T$)) теплоемкости, температуры плавления T_{m} , а также производных этих функций по давлению. Однако, из-за высокого значения D рассчитанные значения энергии сублимации L₀₀ и поверхностной энергии σ оказались много больше экспериментальных данных.

В связи с этим в данной работе предложена новая методика оптимизации потенциала (19) по двум параметрам: *b* и *a*, при фиксированных значениях r_0 и молярной энергии сублимации L_{00} . Варьируя в широких диапазонах значения Θ_{00} и γ_{00} : $100 < \Theta_{00} < 600$ и $1.1 < \gamma_{00} < 4.1$, из рассчитанных по методу из [25] наборам параметров *D*, *b* и *a* отбираются только такие, которые при расчете уравнения состояния: *P* (300 K, $v/v_0 = 0.8$), модуля упругости: B_T (*P* = 0, *T* = 300 K) и коэффициента теплового расширения: α_p (*P* = 0, *T* = 300 K), дают величины, входящие в интервал допустимых значений.

В таблице 1 представлены полученные параметры межатомного потенциала (19) и вытекающие из этих параметров значения указанных свойств, как для ОЦК-Fe и ГЦК-Au, так и для тугоплавких ОЦК-металлов. Для ОЦК-Ta расчет параметров потенциала и свойств сделан для двух значений энергий сублимации: из [40] и из [41] из-за их заметного различия.

Как видно из табл. 1, полученные нами величины $P(300 \text{ K}, v/v_0 = 0.8)$ получились несколько выше экспериментальных данных. Это указывает

указанных	λ	1.720	1 –1.8 [14]	3.001	-3.05 [14]	1.869	-1.69 [14]	1.640	1.650	-2.19 [14]	1.710	5-2.03 [34]	1.800	-1.76 [14]
четах с использованием	Θ, K	415.17	420-478 [14, 20]	198.04	156–178 [14]	327.28	241 [30]-300 [27]	289.93	278.54	60.9 [32]–264.6 [29]	451.13	455-470 [34]	330.35	232 [32]–400 [27] 310–610 [14]
юлучаются при расч	$B'(P) = (\partial B_T / \partial P)_T$	5.85	4-6 [46, 52]	8.35	5.31 [32]–9.57 [47]	5.95	3.3 [32]-14.5 [31]	5.80	5.70	3.4–3.55 [44]– 3.842 [31]	60.9	4.21-4.67 [34]	6.10612	4.4 [32]–19.1 [31]
омного потенциала (19) и свойства, которые г	$B_T = -\nu(\partial P/\partial v)_T,$ $\Gamma \Pi a$	161.3	156–171 [46, 52]	166.4	166.4—173.2 [27, 31]	167.2	144.2–170.2 [27, 31]	192.8	193.8	192 [32]–195 [44]– 201.9 [31]	248.7	244–260 [34]	295.7	296 [32]–323.3 [27]
	$lpha_p^{0.6}\mathrm{K}^{-1}$	34.1	33–38 [45, 46]	43.0	42—42.8 [45, 47]	24.0	21.3–22.8 [45, 48, 49]	18.5	18.6	18-19.8 [45, 49, 50]	16.4	14–16.5 [45, 49, 51]	15.0	11-15 [35, 45, 49]
	<i>Р</i> (0.8), ГПа	75.9	50—60 [43]	109.9	65–75 [32]	77.7	50-60 [32]	86.3	85.8	55–75 [32, 44]	115.0	80–95 [32, 34]	136.2	103-120 [32]
межато	а	3.09	Эксперимент	2.80		2.55	Эксперимент	3.49	3.13	Эксперимент	3.93		3.45	
ща 1. Энергия сублимации, параметры м тегров	b	8.37		16.05	Эксперимент	9.24		7.86	7.92		8.29	римент 70 0 00	8.82	Эксперимент
	$D/k_{\rm B}, {\rm K}$	12561.53		7419.16		21732.20		21318.49	23701.02		19832.34		25 594.79	
	$r_{\rm o}$ [40], 10^{-10} M	2.4775		2.8751		2.8648		2.8648	I		2.72 [25]	Экспе	2.7365	
	L ₀₀ , кДж/моль	413.80 [40]		368.19 [40]		719.65 [40]		706.26 [40]	785.608 [41]		655.31 [42]		848.10 [40]	
Табли парам	плятэндХ	Ге		Au		Nb		Ta			Мо		*	

ВЫЧИСЛЕНИЕ ПОВЕРХНОСТНОЙ ЭНЕРГИИ КРИСТАЛЛА

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 11 2020

95

на то, что рассчитанные параметры потенциала работоспособны в области упругих деформаций, т.е. при $v/v_0 \ge 0.9$. Но рассчитанные предлагаемым методам потенциальные параметры дают в комплексе лучшее согласие с набором экспериментальных данных, чем параметры потенциала (19) из [25, 26, 36–40]. Для ОЦК-Та лучшее согласие рассчитанных свойств с экспериментальными данными получено из значения энергии сублимации, которое приведено в [41].

Помимо определения параметров потенциала (19) данный метод расчета позволяет определить более достоверные значения для Θ , γ и L_{00} . Как было указано в [21, 53] современные экспериментальные методы не позволяют измерить данные параметры с необходимой точностью (на это указывает разброс экспериментальных данных в табл. 1). Поэтому использование данного метода весьма актуально.

6. РЕЗУЛЬТАТЫ РАСЧЕТА ПОВЕРХНОСТНЫХ СВОЙСТВ МАКРОКРИСТАЛЛА

В таблице 2 представлены рассчитанные при использовании параметров потенциала (19) из табл. 1 значения: v/v_o , σ , $\sigma'(T)_v$ и $\sigma'(T)_P$ (в 10⁻⁶ Дж/(м² · K)), $\sigma'(P)_T = (\partial \sigma / \partial P)_T - изотермическая производная <math>\sigma$ по P (в 10⁻³ Дж/(м² · ГПа)) и Δ_p из (30). Значение $\sigma'(P)_T$ рассчитывалось путем численного дифференцирования функции σ по давлению вдоль изотермы.

Так как для нанокристаллов экспериментальных данных в литературе нет, то для проверки метода расчеты были проведены для макрокристаллов ($N = \infty$) при P = 0 и двух значениях температуры. Для каждого кристалла в первой строке представлены расчеты при T = 300 K, во второй: при T = 1000 K для ОЦК-Fe и ГЦК-Au, и при T == 2500 K для тугоплавких ОЦК металлов: Nb, Ta, Mo, W. В третьей строке представлены известные из работ [1, 4, 5, 54–56] экспериментальные и теоретические (в скобках) данные.

Для ОЦК-Та расчет был проведен для двух наборов параметров потенциала (19), которые представлены в табл. 1: в первых двух строках для первого набора, в третьей и четвертой — для второго набора параметров.

Наиболее хорошо поверхностные свойства экспериментально изучены для макрокристаллов ОЦК-Fe и ГЦК-Au. При этом экспериментальные значения σ и $\sigma'(T)_P$ оценивались при $T \ge \Theta$, а теоретические значения σ – при T = 0 К. Как видно из табл. 2 наши расчеты $\sigma(100)$ хорошо согласуются с экспериментальными оценками из [1, 4. 8, 54, 55]. Что касается производных σ по Tи P, то в литературе имеется очень мало данных

Рис. 1. Изменение удельной поверхностной энергии грани (100) ОЦК-Та с ростом давления.

для $\sigma'(T)_{P}$, а для $\sigma'(T)_{v}$, $\sigma'(P)$ и Δ_{p} никаких данных (ни теоретических, ни экспериментальных) в литературе нет.

В работах [4, 6, 7, 54, 55] точность экспериментального определения величины $\sigma(100)$ для металлов оценивают в пределах $\pm(100-200) \times 10^{-3}$ Дж/м². Численные методы расчета $\sigma(100)$, согласно [6, 8], имеют точность $\pm(180-640) \times 10^{-3}$ Дж/м². В связи с этим определить значение $\sigma'(T)_P$, которое по величине порядка $10^{-(4-5)}$ Дж/м², экспериментально, либо путем численного моделирования очень проблематично. Исходя из этого, можно утверждать, что полученные здесь величины $\sigma'(T)_V$ являются более корректными, чем известные из литературы экспериментальные оценки.

ИЗМЕНЕНИЕ ПОВЕРХНОСТНЫХ СВОЙСТВ ПРИ ПЕРЕХОДЕ ОТ МАКРО-К НАНОКРИСТАЛЛУ ДЛЯ ОЦК-ТАНТАЛА

Из представленных в табл. 1 и 2 металлов наименее изучен ОЦК-тантал (m(Ta) = 180.948 а. е. м, $k_n^{o}(\infty) = 8, k_p = 0.6802, \alpha = \pi/(6k_p) = 0.7698$), который имеет высокую температуру плавления: $T_m(P = 0) = 3295$ К [30], 3293 К [49], 3290 К [50]. Поэтому нами были рассчитаны поверхностные свойства как макро-, так и нано-Та при различных P-T-N-условиях. На рис. 1–3 представлены барические зависимости поверхностных свойств для ОЦК-Та, атомы которого взаимодействуют посредством потенциала (19) с параметрами из табл. 1: набор со степенями 3.13–7.92. Расчеты выполнены вдоль трех изотерм (T = 10, 300, 2500 К) как для макрокристалла, так и для нанокристалла кубической формы (f = 1) при $N_{po} = 7$, т.е. состоящего из $N = INT[fN_{po}^3/\alpha] = 446$ атомов. Толстыми сплошными линиями 1, 3, 5 показаны зависи-

· ·		v/v _o	$\sigma(100)$	$-\sigma'(T)$	$-\sigma'(T)_{p}$	$\sigma'(P)_{T}$	
Элемент	<i>Т</i> , К		0(100), 10 ^{−3} Дж/м ²	мкДж/(м ² · К)	мкДж/(м² · К)	мДж/(м² · ГПа)	Δ_p
	300	1.01199	2202.98	60.48	112.94	9.53	1.0468
	1000	1.03953	2115.60	64.49	131.87	11.59	1.1596
Fe	Экспеј	римент	$\begin{array}{c} 2420-2480 \ [1,4] \\ (2220-2920) \ [1] \\ (2500) \ [5] \\ 1910 \pm 190 \ [54] \\ 2040 \ [55] \end{array}$				
	300	1.01302	1531.38	50.98	98.93	6.70	1.0923
	1000	1.04803	1454.77	50.80	120.53	9.89	1.3159
Au	Экспеј	римент	$\begin{array}{c} 1500 - 1510 \ [1] \\ (1630 - 1800) \ [1] \\ 1510 \pm 160 \ [8] \\ 1410 \pm 37 \ [54] \\ 1363 \ [55] \end{array}$		500 [55] 100—105 [56]		
	300	1.00794	2870.66	47.02	94.32	11.78	1.0292
	2500	1.07336	2632.27	47.64	119.81	18.11	1.2547
Nb	Экспер	римент	2660–2700 [1] (2860–2990) [1] 2210 ± 54 [54] 2150 [55]		170 [55]		
	300	1.00601	2819.56	47.66	83.39	10.00	1.0262
	2500	1.05367	2617.67	48.25	97.88	13.93	1.2275
	300	1.00601	3136.47	47.83	87.66	11.04	1.0237
Та	2500	1.05361	2924.95	48.26	102.47	15.12	1.2049
	Экспер	римент	2900-3150 [1] (3100-4050) [1] 2480 ± 70 [54] 2414 [55]		170 [55]		
	300	1.00601	2907.50	49.66	82.48	8.02	1.0294
	2500	1.05069	2696.50	53.52	103.01	11.3975	1.2557
Мо	Экспер	римент	$\begin{array}{c} 2910-3000 \ [1]\\ (3810-3840) \ [1]\\ (3180) \ [5]\\ 2630 \pm 50 \ [54]\\ 2582 \ [55] \end{array}$		180 [55]		
	300	1.00499	3715.79	51.60	89.72	8.58	1.0238
	2500	1.04352	3497.01	53.21	105.576	11.57	1.2062
W	Экспер	оимент	3270–3680 [1] (3900–4640) [1] 2210 ± 22 [54] 2653 [55]		170 [55]		

Таблица 2. Значения поверхностных свойств рассчитанные для макрокристалла при $P = 0^*$

* Для каждого кристалла в первой строке представлены расчеты при *T* = 300 K, во второй: при *T* = 1000 K для ОЦК-Fe и ГЦК-Au, и при *T* = 2500 K для ОЦK металлов Nb, Ta, Mo, W. В третьей строке представлены известные из литературы экспериментальные и теоретические (в скобках) данные. Для ОЦК-Ta расчеты сделаны для двух наборов потенциала из табл. 1.

Рис. 2. Изменение изохорной (4 верхние спадающие линии) и изобарной (4 нижние возрастающие кривые) производных удельной поверхностной энергии по температуре для ОЦК-Та с ростом давления.

мости для макрокристалла, а тонкими линиями 2, 4, 6 - для нанокристалла при температурах T = 2500, 300, 10 К соответственно.

На рис. 1 показана барическая зависимость удельной поверхностной энергии (в 10⁻³ Дж/м²) грани (100) ОЦК-Та. Как видно из полученных зависимостей $\sigma(P)$, при P = 0 величина σ уменьшается с уменьшением N тем заметнее, чем выше температура. Но при низких температурах и высоких давлениях на изотерме имеются две Р-точки, в которых зависимости $\sigma(P)$ для макро- и нанокристаллов пересекаются. Поэтому в Р-точке удельная поверхностная энергия не зависит от размера нанокристалла: $\sigma(N) = \sigma(\infty)$. Впервые такие Р-точки были обнаружены в [57] при изучении свойств ОЦК-Fe. Потом параметры Р-точек были изучены для нанокристаллов ОЦК-W в [36] и для ОЦК-Nb в [58]. С ростом температуры эти *Р*-точки сближаются, и при высоких температурах Р-точек на изотерме уже нет. В области, оконтуренной *Р*-точками, величина σ возрастает при изотермо-изобарическом уменьшении размера нанокристалла. Такое поведение функции $\sigma(P, N)$ обусловлено тем, что при низких температура и высоких давлениях поверхностное давление сжимает нанокристалл, что и приводит к появлению первой *P*-точки, и к неравенству $\sigma(N) > \sigma(\infty)$. С ростом давления функция σ для нанокристалла уменьшается заметнее, чем для макрокристалла, что и приводит к образованию второй *Р*-точки на изотерме. С ростом температуры поверхностное давление уменьшается, что и приводит к исчезновению области с Р-точками.

На рис. 2 показаны барические зависимости для $\sigma'(T)_v$ – изохорной (4 верхние спадающие линии) и $\sigma'(T)_P$ – изобарной (4 нижние возрастающие кривые) производных удельной поверхност-

Рис. 3. Барические зависимости производной по давлению удельной поверхностной энергии грани (100) ОЦК-Та вдоль разных изотерм.

ной энергии по температуре (в $10^{-6} \text{Дж}/(\text{м}^2 \cdot \text{K})$) для ОЦК-Та. Как видно из рис. 2, при низких давлениях выполняется $|\sigma'(T)_v| < |\sigma'(T)_P|$. При P = 0 и $T \ge \Theta$ величина $\sigma'(T)_v$ практически не зависит от температуры.

На рис. 3 показаны барические зависимости для $\sigma'(P)_T$ – производной по давлению удельной поверхностной энергии (в 10⁻³ Дж/(м² · ГПа)) ОЦК-Та вдоль изотерм: 2500 К (линии 1 и 2), 300 К (линии 3 и 4) и 10 К (линии 5 и 6). Из рис. 3 следует, что в области низких давлений величина $\sigma'(P)_T$ увеличивается при изотермо-изобарическом уменьшении N. Но с ростом давления картина меняется на противоположную. Таким образом, для определенной температуры существует определенное давление, где величина $\sigma'(P)_T$ не зависит от размера кристалла.

ЗАКЛЮЧЕНИЕ

Предложен метод для расчета удельной поверхностной энергии, изохорной и изобарной производных функции σ по температуре, и изотермической производной функции σ по давлению. Показано, что метод применим как для макро-, так и для нанокристалла однокомпонентного вещества с заданным числом атомов и с определенной формой поверхности.

Разработан метод самосогласованного определения параметров парного межатомного потенциала Ми–Леннард-Джонса исходящий из экспериментальных данных по термоупругим свойствам кристалла. Данным методом были определены параметры межатомного потенциала для Fe, Au, Nb, Ta, Mo, W. Показано, что при использовании этих параметров в аналитических расчетах получаются более надежные результаты, чем при использовании параметров потенциала из других работ.

Показано, что рассчитанные значения удельной поверхностной энергии и изобарной производной функции σ по температуре хорошо согласуются с экспериментальными оценками известными из литературы. Впервые рассчитаны значения изохорной производной функции σ по температуре, изотермической производной функции σ по давлению и величины Δ_p при P = 0 и различных температурах для макрокристаллов Fe, Au, Nb, Ta, Mo, W.

На примере ОЦК-Та изучены изменения поверхностных свойств при уменьшении размера нанокристалла вдоль изотерм T = 10, 300, 2500 К. Показано, что имеются оконтуренные *P*-точками *P*-*T*-области, в которых функция о возрастает при изоморфо-изотермо-изобарическом уменьшении размера нанокристалла.

БЛАГОДАРНОСТИ

Автор выражает благодарность С.П. Крамынину, Н.Ш. Газановой, З.М. Сурхаевой и М.М. Гаджиевой за плодотворные дискуссии и помощь в работе.

Работа выполнена при финансовой поддержке РФФИ (грант № 18-29-11013_мк) и Программы Президиума РАН (программа № 6, грант 2-13).

СПИСОК ЛИТЕРАТУРЫ

- Jiang Q., Lu H.M., Zhao M. // J. Phys.: Cond. Matt. 2004. V. 16. № 4. P. 521. https://doi.org/10.1088/0953-8984/16/4/001
- Zhao M., Zheng W., Li J., Wen Z., Gu M., Sun C.Q. // Phys. Rev. B. 2007. V. 75. № 8. P. 085427. https://doi.org/10.1103/PhysRevB.75.085427
- 3. *Aqra F., Ayyad A.* // Appl. Surf. Sci. 2011. V. 257. № 15. P. 6372.
- https://doi.org/10.1016/j.apsusc.2011.01.123
- Schönecker S., Li X., Johansson B., Kwon S.K., Vitos L. // Scient. Rep. 2015. V. 5. P. 14860. https://doi.org/10.1038/srep14860
- Tran R., Xu Z., Radhakrishnan B., Winston D., Sun W., Persson K.A., Ong S.P. // Scient. Data. 2016. V. 3. № 1. P. 1. https://doi.org/10.1038/sdata.2016.80
- 6. De Waele S., Lejaeghere K., Sluydts M., Cottenier S. // Phys. Rev. B. 2016. V. 94. № 23. P. 235418. https://doi.org/10.1103/PhysRevB.94.235418
- Cheng T., Fang D., Yang Y. // Appl. Surf. Sci. 2017. V. 393. P. 364. https://doi.org/10.1016/j.apsusc.2016.09.147
- Patra A., Bates J.E., Sun J., Perdew J.P. // Proc. Nat. Acad. Sci. 2017. V. 114. № 44. P. E9188. https://doi.org/10.1073/pnas.1713320114
- Zhang X., Li W., Kou H., Shao J., Deng Y., Zhang X., Ma J., Li Y., Zhang X. // J. Appl. Phys. 2019. V. 125. № 18. P. 185105. https://doi.org/10.1063/1.5090301

- Шебзухова И.Г., Арефьева Л.П. // ЖТФ. 2019. Т. 89. № 2. С. 306. https://doi.org/10.1134/S1063784219020208
- 11. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Часть 1. М.: Изд-во Наука, 1976. 584 с.
- Мелвин-Хьюз Э.А. Физическая химия. В 2-х томах. Москва: Изд-во Иностранной Литературы, 1962. 1148 с.
- 13. *Магомедов М.Н.* // ФТТ. 2004. Т. 46. № 5. С. 924. https://doi.org/10.1134/1.1744976
- 14. Магомедов М.Н. Изучение межатомного взаимодействия, образования вакансий и самодиффузии в кристаллах. М.: Изд-во Физматлит, 2010. 544 с.
- 15. *Магомедов М.Н.* // Российские нанотехнологии. 2014. Т. 9. № 5-6. С. 63. https://doi.org/10.1134/S1995078014030100
- 16. *Maromedos M.H.* // ЖТФ. 2013. T. 83. № 6. C. 155. https://doi.org/10.1134/S1063784213060212
- 17. *Нагаев Э.Л.* // УФН. 1992. Т. 162. № 9. С. 49. https://doi.org/10.3367/UFNr.0162.199209b.0049
- Магомедов М.Н. // Кристаллография. 2017. Т. 62. № 3. С. 487. https://doi.org/10.1134/S1063774517030142
- 19. *Магомедов М.Н.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2019. № 9. С. 103. https://doi.org/10.1134/S1027451019050070
- 20. Жирифалько Л. Статистическая физика твердого тела. М.: Изд-во Мир, 1975. 383 с.
- 21. *Магомедов М.Н.* // ЖТФ. 2013. Т. 83. № 9. С. 56. https://doi.org/10.1134/S106378421309020X
- 22. *Магомедов М.Н.* // Российские нанотехнологии. 2019. Т. 14. № 1–2. С. 19. https://doi.org/10.1134/S1995078019010063
- 23. *Магомедов М.Н.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 11. С. 107. https://doi.org/10.1134/S1027451013060104
- 24. *Магомедов М.Н.* // ЖТФ. 2016. Т. 86. № 5. С. 84. https://doi.org/10.1134/S1063784216050145
- 25. *Магомедов М.Н.* // ТВТ. 2006. Т. 44. № 4. С. 518. https://doi.org/10.1007/s10740-006-0064-5
- 26. *Магомедов М.Н.* // ЖТФ. 2015. Т. 85. № 11. С. 48. https://doi.org/10.1134/S1063784215110195
- 27. *Киттель Ч.* Введение в физику твердого тела. М.: Изд-во Наука, 1978. 792 с.
- Shukla M.M., Padial N.T. // Revista Brasileira de Física. 1973. V. 3. № 1. P. 39. http://sbfisica.org.br/bjp/download/v03/v03a03.pdf.
- 29. Verma J.K.D., Aggarwal M.D. // J. Appl. Phys. 1975.
 V. 46. № 7. P. 2841. https://doi.org/10.1063/1.322028
- Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. Справочник. М.: Изд-во Металлургия, 1989. 384 с.
- Физические величины: Справочник / Под. ред. Григорьева И.С., Мейлихова Е.З. М.: Изд-во Энергоатомиздат, 1991. 1232 с.
- Karbasi A., Saxena S.K., Hrubiak R. // CALPHAD. 2011. V. 35. № 1. P. 72. https://doi.org/10.1016/j.calphad.2010.11.007
- Desai P.D. // J. Phys. Chem. Ref. Data. 1987. V. 16. № 1. P. 91. https://doi.org/10.1063/1.555794

ПОВЕРХНОСТЬ. РЕНТГЕНОВСКИЕ, СИНХРОТРОННЫЕ И НЕЙТРОННЫЕ ИССЛЕДОВАНИЯ № 11 2020

- 34. Huang X., Li F., Zhou Q., Meng Y., Litasov K.D., Wang X., Liu B., Cui T. // Scient. Rep. 2016. V. 6. P. 19923. https://doi.org/10.1038/srep19923
- 35. *Бодряков В.Ю.* // ТВТ. 2015. Т. 53. № 5. С. 676. https://doi.org/10.1134/S0018151X15040069
- 36. *Gazanova N.Sh.* // Appl. Sol. St. Chem. 2018. № 3(4). P. 36. https://doi.org/10.18572/2619-0141-2018-3-4-36-40
- 37. *Ahmedov E.N.* // J. Phys.: Conf. Ser. 2019. V. 1348. Nº 012002. P. 1.
- https://doi.org/10.1088/1742-6596/1348/1/012002
- 38. Akhmedov E.N. // J. Phys. Chem. Sol. 2018. V. 121. P. 62. https://doi.org/10.1016/j.jpcs.2018.05.011
- Kraminin S.P., Ahmedov E.N. // J. Phys. Chem. Sol. 2019. V. 135. P. 109108. https://doi.org/10.1016/j.jpcs.2019.109108
- 40. *Zhen Shu, Davies G.J.* // Phys. Stat. Solidi (a). 1983. V. 78. № 2. P. 595. https://doi.org/10.1002/pssa.2210780226
- 41. Электронная база данных: http://www.chem.msu.su/ cgi-bin/tkv.pl
- Термические константы веществ. Справочник в 10-ти выпусках / Под ред. Глушко В.П. М.: Изд-во ВИНИТИ. 1965–1982.
- Белащенко Д.К., Островский О.И. // Журн. физ. химии. 2011. Т. 85. № 6. С. 1063. https://doi.org/10.1134/S0036024411060094
- 44. Gu J.-B., Wang C.-J., Zhang W.-X., Sun B., Liu G.-Q., Liu D.-D., Yang X.-D. // Chinese Phys. B. 2016. V. 25. № 12. P. 126103. https://doi.org/10.1088/1674-1056/25/12/126103
- 45. *Новикова С.И.* Тепловое расширение твердых тел. М.: Изд-во Наука, 1974. 294 с.
- 46. Wilburn D.R., Bassett W.A. // American Mineralogist. 1978. V. 63. № 5-6. P. 591. https://pubs.geoscienceworld.org/msa/ammin/article-abstract/63/5-6/591/40926

- 47. Pamato M.G., Wood I.G., Dobson D.P., Hunt S.A., Vočadlo L. // J. Appl. Crystallography. 2018. V. 51. № 2. P. 470. https://doi.org/10.1107/S1600576718002248
- 48. *Straumanis M.E., Zyszczynski S.* // J. Applied Crystallography. 1970. V. 3. № 1. P. 1. https://doi.org/10.1107/s002188987000554x
- 49. Wang K., Reeber R.R. // Mater. Scien. Eng.: R, 1998. V. 23. № 3. P. 101. https://doi.org/10.1016/s0927-796x(98)00011-4
- 50. Бодряков В.Ю. // ТВТ. 2016. Т. 54. № 3. С. 336. https://doi.org/10.1134/S0018151X16030020
- 51. Бодряков В.Ю. // ТВТ. 2014. Т. 52. № 6. С. 863. https://doi.org/10.1134/S0018151X14040051
- Shibazaki Y., Nishida K., Higo Y., Igarashi M., Tahara M., Sakamaki T., Terasaki H., Shimoyama Y., Kuwabara S., Takubo Y., Ohtani E. // American Mineralogist. 2016. 101. № 5. P. 1150. https://doi.org/10.2138/am-2016-5545
- 53. *Mazomedos M.H.* // ЖТФ. 2010. T. 80. № 9. C. 150. https://doi.org/10.1134/S1063784210090240
- 54. Kumikov V.K., Khokonov Kh.B. // J. Appl. Phys. 1983. V. 54. № 3. P. 1346. https://doi.org/10.1063/1.332209
- Alchagirov B.B., Taova T.M., Khokonov Kh.B. // Transactions of JWRI (Japan). 2001. V. 30. P. 287. https://repository.exst.jaxa.jp/dspace/handle/a-is/48071
- 56. *Задумкин С.Н.* // Докл. АН СССР. 1955. Т. 101. № 3. С. 507.
- 57. *Магомедов М.Н.* // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2018. № 2. С. 103. https://doi.org/10.1134/S1027451018010299
- Kramynin S.P. // J. Phys. Chem. Sol. 2020. V. 143. P. 109464. https://doi.org/10.1016/j.jpcs.2020.109464

Calculation of the Crystal Surface Energy and Its Dependencies on Temperature and Pressure

M. N. Magomedov*

Institute for Geothermal Problems and Renewable Energy – Branch of Joint Institute for High Temperatures of Russian Academy Sciences, Makhachkala, 367030 Russia

*e-mail: mahmag4@mail.ru

Based on the parameters of the Mie–Lennard-Jones pairwise interatomic interaction potential, a method was developed for calculating the specific surface energy (σ), isochoric and isobaric derivatives of function σ respect temperature, and isothermal derivative of function σ by pressure. It was shown the method is applicable for both macro-and nano-crystals with a specified number of atoms and a certain surface shape. To implement this method, the parameters of the pairwise interatomic potential were determined by means of the self-consistent way from the thermoelastic properties of the crystal. The method was tested on Fe, Au, Nb, Ta, Mo, W macrocrystals at different temperatures and the good agreement with the experimental data were obtained. Changes of the surface properties when the size of a nanocrystal decreases were studied using the example of BCC-Ta along isotherms T = 10, 300, 2500 K. It is shown that at high pressures and low temperatures, the function of σ can increase with an isomorphic-isothermal-isobaric decrease in the size of the nanocrystal.

Keywords: surface energy, interatomic potential, nanocrystal, state equation, thermal expansion.