УДК 539.22.082.79

РЕНТГЕНОВСКОЕ ИНТЕРФЕРОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ВЛИЯНИЯ ПОСТОЯННОГО МАГНИТНОГО ПОЛЯ НА ДИНАМИЧЕСКОЕ ПОВЕДЕНИЕ ДИСЛОКАЦИЙ В КРИСТАЛЛАХ КРЕМНИЯ

© 2020 г. Г. Р. Дрмеян*

Институт прикладных проблем физики НАН Республики Армении, Ереван, 0014 Армения *e-mail: drm-henrik@mail.ru Поступила в редакцию 17.01.2020 г. После доработки 20.03.2020 г.

Принята к публикации 22.03.2020 г.

Приведены результаты исследования влияния постоянного магнитного поля на динамическое поведение дислокаций в кристаллическом блоке интерферометра, побывавшего в магнитном поле, который в дальнейшем подвергался одноосному механическому растягивающему напряжению вдоль кристаллографической оси [110]. Экспериментально доказано, что в кристаллах кремния, которые прошли предварительную магнитную обработку, наблюдается эффект упрочнения. Показано, что магнитная память, появляющаяся у образцов кремния с дислокациями после выдерживания в магнитном поле, носит кратковременный характер.

Ключевые слова: движения дислокаций, магнитная обработка, сдвиг, плотность дислокации, механическое деформирование.

DOI: 10.31857/S1028096020120109

введение

Известно [1, 2], что поле механических напряжений. созданное дефектами кристаллической решетки, влияет на физические и механические свойства монокристалла. В частности, плотность дислокаций в кристаллах в значительной мере определяет пластичность и прочность материала. Например, модуль упругости кристалла, содержащего дислокации, уменьшается. Причина уменьшения модуля упругости объяснена в [3]. Известно также [4–6], что поведение дислокаций в кристаллах в магнитном поле имеет ряд особенностей. Опыты показывают, что наложение магнитного поля способно существенно изменить пластические свойства кристаллов. Это явление получило название магнитопластического эффекта. Обнаружен как положительный, так и отрицательный магнитопластический эффект, т.е. поле может вызывать как упрочнение, так и разупрочнение кристаллов. В [7, 8] отмечается, что постоянное магнитное поле влияет на подвижность дислокаций как в металлах, так и в кристаллах кремния nи р-типа проводимости, легированных, соответственно, фосфором и бором. В [9] экспериментально установлено, что само по себе действие магнитного поля не приводит к перемещению дислокаций в исходных кристаллах кремния.

Четкие изменения в динамическом поведении дислокаций фиксировали только в том случае, когда после магнитной обработки образцы деформировались механически.

Известно [10, 11], что рентгеновские интерферометрические методы чрезвычайно чувствительны к структурным нарушениям и имеют большое разрешение. Метод рентгеновского дифракционного муара является единственным прецизионным методом, позволяющим проводить прямые экспериментальные исследования структуры полей напряжений дислокационных ансамблей, возникающих в кристаллических блоках рентгеновского интерферометра, подвергнутых разным внешним воздействиям. В связи с изложенным выше представляется целесобразным исследование влияния постоянного магнитного поля на динамическое поведение дислокаций в кристаллах кремния методом рентгеновской интерферометрии. В качестве индикатора и меры такого влияния была избрана средняя длина свободного пробега дислокации в кристалле.

Что касается класса простых полупроводниковых кристаллов, в частности кристаллов кремния, то следует указать на практическое отсутствие в литературе работ по исследованию влияния магнитного поля на подвижность дислокаций в указанных кристаллах методом рентгеновской интерферометрии. Следовательно, изучение указанного влияния этим методом, безусловно, является актуальным для современной физики полупроводников, поскольку приближает к установлению физических механизмов, которые определяют свойства пластичности и прочности полупроводниковых кристаллов.

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Из теории муаровых картин известно, что относительная деформация $\varepsilon_0 = \Delta d/d$ и период полос дилатационного муара Λ_D связаны соотношением:

$$\varepsilon_0 = \left| \frac{\Delta d}{d} \right| = \frac{d}{\Lambda_D},\tag{1}$$

где *d* – расстояние между отражающими плоскостями, Δd – абсолютное изменение периода отражающих плоскостей.

Известно [12], что под действием небольших напряжений дислокационный отрезок длиной $\Delta \ell$ перемещается на малое расстояние L. Из-за такого малого перемещения возникает дополнительная относительная деформация. Эта деформация обусловлена только дислокационной деформацией. Следовательно, деформация состоит из упругой (ε_0) и дислокационной (ε_d) частей:

$$\varepsilon = \varepsilon_0 + \varepsilon_d. \tag{2}$$

Известно также [3], что дислокационная относительная деформация определяется выражением:

$$\varepsilon_d = \Delta \ell b_{\rm B} L \rho, \tag{3}$$

где $\Delta \ell$ — длина дислокационной петли, $b_{\rm B}$ — мо-дуль вектора Бюргерса дислокаций, L — средняя длина свободного пробега дислокации в кристалле, ρ – плотность дислокации. Поставив (3) в (2), получим:

$$\varepsilon = \varepsilon_0 + \Delta \ell b_{\rm B} L \rho. \tag{4}$$

Исходя из вышеизложенных обсуждений получим для периода дилатационной муаровой картины [3]:

$$\Lambda_D = \frac{d(1-\nu)}{\rho(\varepsilon_0 + \Delta\ell b_{\rm B}L)}.$$
(5)

В [13] показано, что период дилатационной муаровой картины, полученной от трехкристального рентгеновского кремниевого интерферометра, подвергнутого действиям постоянных магнитных полей, определяется выражением:

$$\Lambda_D = \frac{d(1-\nu)}{B(\mu - b_M)},\tag{6}$$

где v – коэффициент Пуассона, B – модуль вектора индукции магнитного поля, µ – магнитная проницаемость кристалла, b_M – константа, подлежащая определению (b_M выражает приращение µ вдоль поля). Ее можно найти из выражения [13]:

$$\frac{\sigma}{E} = (\mu - b_M) \frac{B}{1 - \nu} = \frac{d}{\Lambda_D}.$$
(7)

Из (5) и (6) получим:

$$L = \frac{B(\mu - b_M) - \rho \varepsilon_0}{\rho \Delta \ell b_{\rm B}}.$$
(8)

Подставляя (1) в (8), получим:

$$L = \frac{B(\mu - b_M) - \rho \frac{\Delta d}{d}}{\rho \Delta \ell b_{\rm B}}.$$
(9)

Как видно из (9), средняя длина свободного пробега дислокации в кристалле обратно пропорциональна плотности дислокации. Нетрудно найти связь между средней длиной свободного пробега дислокации и величиной сдвига в кристалле. Так, пусть на единицу длины по нормали приходится n₁ действующих плоскостей скольжения, на каждой из которых имеется n₂ дислокаций. Плотность дислокаций в таком случае будет $\rho = n_1 n_2$. При движении дислокаций вдоль плоскостей скольжения произойдет смещение отдельных пачек скольжения. Пусть *L* – средняя длина свободного пробега дислокации в кристалле. При перемешении всех дислокаций в данной плоскости скольжения пачка скольжения сместится на $\Delta \ell = a n_2 L$, a - M eжатомное расстояние. Так как толщина пачки равна $\frac{1}{n_1}$, величина сдвига в кристалле будет:

$$\lambda = \Delta \ell n_1 = a n_1 n_2 L = a \rho L. \tag{10}$$

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Для исследования влияния постоянного магнитного поля на динамическое поведение дислокаций в кристаллах кремния был изготовлен специальный трехкристалльный интерферометр из высокосовершенного монокристалла кремния (рис. 1). Толщина каждого блока интерферометра приблизительно равна 0.8 мм, использовано излучение Си K_{α} . Интерферометр был изготовлен из слитка кремния, от пластин которого на топограммах не наблюдались дислокационные петли. Затем вводили 60-градусные дислокации в блокерасщепителе трехкристального интерферометра. Источником для генерации дислокаций служила царапина, нанесенная на поверхность кристаллического блока. Для получения однородной по

Рис. 1. Трехкристальный рентгеновский интерферометр с выбранной кристаллографической ориентацией.

глубине царапины (от степени ее однородности зависят плотность и распределение генерируемых дислокаций) было изготовлено специальное устройство и использована методика введения дислокаций в блок рентгеновского интерферометра [14]. После нанесения царапины кристаллический блок интерферометра подвергался механическому нагружению при температуре 600— 700°С четырехточечным изгибом.

После введения дислокаций в блоке интерферометра проводили его магнитную обработку: блок интерферометра с предварительно введенными дислокациями помещали в постоянное магнитное поле с индукцией B = 0.17 Тл. Выдерживание в магнитном поле составляло семь суток. После экспозиции в магнитном поле блокрасщепитель интерферометра подвергался одноосному механическому растягивающему напряжению вдоль оси [110] (рис. 1). Влияние магнитной обработки на длину пробега дислокаций изучали при механическом напряжении $\sigma = 3.16 \times 10^3$ Па (σ вычисляли с точностью 0.5%).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Муаровую топограмму снимали в начале (до внесения дислокации) (рис. 2а) и после внесения дислокаций в блок интерферометра, его магнитной обработки и механического растягивания (рис. 2б). По измеренным периодам муаровых картин вычисляли абсолютное изменение периода отражающих плоскостей Δd и относительную деформацию $\varepsilon = \frac{\Delta d}{d}$, а также модуль упругости $E = \sigma/\varepsilon$, для которого получено значение E == 16.89 × 10¹⁰ Па. Далее, учитывая, что $E_1 \bar{10}_1 =$ $= 1.689 \times 10^{11} \text{ H/m}^2, v_{11}\overline{10} = 0.262 [15], d(2\overline{2}0) =$ = 1.92013 Å (для кремния), $\mu = 4\pi \times 10^{-7}$ Гн/м, оценили параметр b_M при индукции B = 0.075 Тл и экспериментальную относительную деформацию $|\Delta d/d_{3\kappa cn}| \approx 3.64 \times 10^{-7}$. Тогда с помощью (10) получим: $b_M = -2.3257 \times 10^{-6}$ Гн/м. Подставляя в (7) значение b_M и оценивая $|\Delta d/d|$ при величине магнит-

Рис. 2. Муаровая топограмма: а – до внесения дислокаций (×8); б – после внесения дислокаций в блок интерферометра, его магнитной обработки и механического растягивания (×8).

ной индукции B = 0.125 Тл, получим $|\Delta d/d| \approx 4.37 \times 10^{-7}$, что неплохо согласуется с экспериментальным результатом $|\Delta d/d_{_{эксп}}| \approx 4.15 \times 10^{-7}$. Учитывая, что $b_{\rm B} = 2d(220) = 3.84$ Å, $\Delta \ell = 1$ см (из эксперимента), $|\Delta d/d| = 4.15 \times 10^{-7}$, $\mu = 4\pi \times 10^{-7}$ Гн/м, B = 0.17 Тл, $b_M = -2.3257 \times 10^{-6}$ Гн/м, из (9) получим $L \approx (5-25) \times 10^{-4}$ см.

Средняя плотность дислокации была определена с помощью металлографического микроскопа. Так, в центре царапины плотность дислокации составляла $(1.1-1.4) \times 10^6$ см⁻². При удалении от центра, на расстоянии 2 мм $\rho = (2.1-2.4) \times 10^4$ см⁻², а на расстоянии 4 мм $\rho \sim 5.6 \times 10^2$ см⁻². Для расчетов взяли $\rho = 4.02 \times 10^3$ см⁻². Поскольку межатомное расстояние для кремния, a = 2.35 Å, с помощью выражения (10) определена величина сдвига в кристалле при перемещении всех дислокаций в данной плоскости скольжения для $\lambda 1.1-6.1$ Å. Результаты приведены в табл. 1.

Эффект "магнитного" влияния на подвижность дислокаций в диамагнитном кремнии, обнаруженный в работе, может быть связан с действием целого ряда факторов. В частности, изменение динамического поведения дислокаций в исходных кристаллах кремния в результате их обработки магнитным полем можно объяснить перестройкой системы точечных дефектов и дефектных комплексов, которые взаимодействуют с упругими полями дислокаций. Одним из возможных объяснений может быть изменение зарядового состояния дислокаций и окружающей их атмосферы, в результате чего уменьшается кулоновская составляющая взаимодействия дислокаций с центрами захвата и понижается высота барьеров, которые удерживают дислокации в старто-

ДРМЕЯН

			-				
N⁰	<i>В</i> , Тл	σ, 10 ³ H/м ²	<i>Х</i> , мм	ρ, см ⁻²	$\varepsilon = \left \frac{\Delta d}{d} \right \times 10^{-7}$	<i>L</i> , 10 ⁻⁴ см	λ, 10 ⁻⁹ см
1	0.075	5.3	0.0	1.25×10^{6}	3.64	1.10	61.3
2	0.125	5.1	2.0	2.25×10^{4}	4.15	2.30	50.1
3	0.175	4.7	3.0	4.02×10^{3}	4.41	2.50	32.6
4	0.225	4.5	4.0	5.61×10^{2}	2.63	0.39	11.3

Таблица 1. Длины пробегов дислокаций и величина сдвига при разных расстояниях от центра царапины *X*, плотности дислокации ρ и значениях магнитной индукции

вых положениях. Эффект может быть обусловлен также влиянием дополнительной энергии, которая локально выделяется в области дислокации при рекомбинации носителей в процессе механического деформирования кристалла. Эта энергия облегчает образование и движение заряженных двойных перегибов на дислокации. Вероятно, в экспериментах действие магнитного поля приводит к изменению поляризации парамагнитного спинового центра и к уменьшению вероятности захвата. В результате уменьшается вероятность рекомбинации носителей.

ЗАКЛЮЧЕНИЕ

Полученные в работе результаты позволили установить, что после выдерживания образцов кремния в магнитном поле и при дальнейшем механическом нагружении наблюдается возрастание стартовых напряжений и времени задержки начала движения дислокаций, а также уменьшение скорости дислокации, возникает эффект упрочнения. Характеристики подвижности дислокаций оказались чувствительными только к действию магнитного поля, индукция которого достигает некоторого порогового значения B == 0.17 Тл. Свойства, приобретенные в результате магнитной обработки, не исчезают сразу же после прекращения действия магнитного поля. Магнитная память, появляющаяся у образцов кремния с дислокациями после выдерживания в магнитном поле, носит кратковременный характер. В обработанных магнитным полем и подвергающимся механическому напряжению кристаллах кремния изменяется скорость дислокаций и практически не изменяется энергия активации их движения. Все перечисленные экспериментальные результаты еще требуют более глубокого теоретического осмысления. Однако уже сейчас можно говорить об их практической значимости.

БЛАГОДАРНОСТИ

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА (проект № 18Т-1С395).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Жданов Г.С.* // Физика твердого тела. М.: Изд-во МГУ, 1962. С. 451.
- 2. *Тимошенко С.П.* Теория упругости. М.: Изд-во АН СССР, 1976. 473 с.
- 3. Дрмеян Г.Р.// Поверхность. Рентген., синхротр. и нейтрон. исслед. 2015. № 4. С. 24.
- 4. *Альшиц В.И., Даринская Е.В., Петржик Е.А. //* Изв. вузов. Черн. металлургия. 1990. Т. 10. С. 85.
- 5. Головин Ю.И., Моргунов Р.Б., Иванов В.Е. и др. // Письма в ЖЭТФ. 1998. Т. 68. С. 400.
- Darinska E.V., Petrzhik E.A., Erofeeva S.A., Kisel V.P. // Sol. Stat. Phenom. A. 1999. V. 503. P. 69.
- 7. Спицын В.И., Троицкий О.А. // Электропластическая деформация металлов. М.: Наука, 1985. С. 17.
- 8. *Макара В.А., Стебленко Л.П., Горидько Н.Я. и др. //* Физика твердого тела. 2001. Т. 43. Вып. 3. С. 462.
- Макара В.А., Стебленко Л.П., Горидько Н.Я. и др. // Вестн. Киев. ун-та. Сер. физ.-мат. науки. 1999. Т. 4. 316 с.
- 10. Иверонова В.И., Ревкевич Г.П. Теория рассеяния рентгеновских лучей. М.: Изд-во МГУ, 1972. 245 с.
- 11. *Пинскер З.Г.* Рентгеновская кристаллооптика. М.: Наука, 1982. 389 с.
- 12. *Коттрелл А.Г.* Теория дислокаций в кристаллах. М.: Металлургиздат, 1958. 268 с.
- Дрмеян Г.Р., Абоян А.А., Мовсисян А.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2013. № 11. С. 43.
- А.с. № 3222А (РА). Способ генерации дислокаций в монокристалле. / Агентство интеллектуальной собственности Республики Армения. Дрмеян Г.Р. // 2018.
- Wordman I.J., Evans R.A. // J. Appl. Phys. 1965. V. 36. P. 153.

X-ray Interferometric Study of a Constant Magnetic Field Influence on the Dynamic Behavior of Dislocation in Silicon Crystals

H. R. Drmeyan*

Institute of Applied Problems of Physics, NAS of the Republic of Armenia, Yerevan, 0014 Armenia *e-mail: drm-henrik@mail.ru

The results of studying the influence of a constant magnetic field on the dynamic behavior of dislocation in the crystal block of an interferometer, which was in a magnetic field and subsequently subjected to uniaxial mechanic tensile stress along crystal axis [110], are presented. It has been experimentally proved that in silicon crystals that have undergone preliminary magnetic treatment, a hardening effect is observed. The magnetic memory that appears in silicon samples with dislocations after exposure in a magnetic field is shown to be of short duration.

Keywords: dislocation movement, magnetic treatment, shift, dislocation density, mechanical deformation.